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KINEMATICS AND DYNAMICS OF A 2-DOF ORIENTING 
GEAR TRAIN 

Stefan STAICU1, Iulian TABARA2, Ovidiu ANTONESCU3 

Articolul stabileşte relaţii matriceale pentru cinematica şi analiza dinamică 
a unui tren de roţi dinţate pentru orientare cu două grade de libertate. Mecanismul 
este un sistem paralel cu cinci elemente mobile şi trei cuplaje prin roţi dinţate 
controlate de două motoare electrice. Cunoscând mişcarea de rotaţie a efectorului, 
problema de dinamică inversă este rezolvată printr-un procedeu bazat pe principiul 
lucrului mecanic virtual, dar rezultatele au fost verificate în sistemul de lucru al 
ecuaţiilor lui Lagrange de speţa a doua. În final, se obţin câteva grafice pentru 
unghiurile de rotaţie la intrare, forţele active şi puterile mecanice ale celor trei 
sisteme de acţionare. 

Recursive matrix relations for kinematics and dynamics analysis of a 2-
DOF orienting gear train are established in this paper. The mechanism is a parallel 
system with five moving parts and three bevel gear pairs controlled by two electric 
motors. Knowing the rotation motion of the end-effector, the inverse dynamic 
problem is solved using an approach based on the principle of virtual work, but the 
results have been verified in the framework of the Lagrange equations of second 
kind. Finally, some graphs for the input angles of rotation, the forces and the 
powers of the actuators are obtained.  
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1, −kkp : orthogonal relative transformation matrices from the frame 111 −−− kkk zyx  to 
following frame kkk zyx  

321 ,, uuu : three orthogonal unit vectors 

21,φφ : angles giving the orientation of the end-effector  

1, −kkϕ :   relative rotation angle of kT , )3,2,1( =k  rigid body 
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1, −kkω : relative angular velocity of kT  

0kω :    absolute angular velocity of kT  

1,
~

−kkω : skew symmetric matrix associated to the angular velocity 1, −kkω  

1, −kkε :   relative angular acceleration of kT  

0
~

kε :     absolute angular acceleration of kT  

1,
~

−kkε :   skew symmetric matrix associated to the angular acceleration 1, −kkε  
C

kr :     position vector of the mass centre of kT  rigid body  

km :     mass of kT rigid body 

kĴ :     symmetric matrix of tensor of inertia of kT  about the link-frame kkk zyx  
CACA PPmm 10101010 ,,, : torques and powers of the two actuators 

 

1 Introduction 

The orienting mechanisms are incorporated in the structure of industrial robots 
and have two or three output rotations. Generally, these mechanical systems have 
conical and cylindrical toothed elements in their structure, while the input axes are 
parallel and the output axes are orthogonal. The three rotary orientation 
movements are usually performed around the axes of a Cartesian orthogonal 
frame, having its axes linked to the last arm of the robot’s positioning mechanism. 

The industrial robots with orienting gear trains can perform several operations 
such as welding, flame cutting, spray painting, milling or assembling. Being 
comparatively simple and compact in size, the bevel-gear wrist mechanisms can 
be sealed in a metallic box that keeps the device of contamination. Furthermore, 
using bevel gear trains for power transmission, the actuators can be mounted 
remotely on the forearm, thereby reducing the weight and inertia of a robot 
manipulator. 

Planetary gear trains with three degrees of freedom are adopted as the design 
concept for robotic wrist ( [1-5]). 

2 Inverse kinematics model 

Recursive matrix relations for kinematics and dynamics of a 2-DOF orienting 
gear train, which has a non-symmetrical kinematical schema, are developed in the 
paper (Fig. 1). The robot wrist must rotate around two orthogonal axes so that the 
mechanism has two degrees of freedom. A matrix methodology for the kinematics 
analysis based on the concept of fundamental circuit of an open-loop chain is 
presented. This method involves the identification of all open-loop chains and the 
derivation of the geometric relationships between the orientation of the end-
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effector and the joint angles of the chains, including the input actuator 
displacements ([6], [7], [8]). 

LetOxyz be a fixed frame, about which the mechanism moves. The mechanism 
topology consists of five moving links, five revolute pairs and three bevel gear 
pairs (Fig. 2). Therefore, the wrist is a 2-DOF spherical mechanism, which has a 
limited rotation range about the vertical joint axis. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
  Fig. 1 The 2-DOF orienting gear train                     Fig. 2 Kinematical scheme of the mechanism 
 
There are two active gears a1 , c1  and two kinematic chains bb 210 −− and 

ddd 3210 −−− starting from the forearm and ending to a common element as 
end-effector dbe 322 == . 

In the wrist mechanism, the gear a1 , of radius 1r , mass 1m  and tensor of inertia 

1Ĵ  is adjoining to the link b1  of length 1l , which could serve as carrier for the d1 -
d3 bevel gear pair. This element includes a bevel gear of radius 2r , mass 2m  and 

tensor of inertia 2Ĵ . Four gears dcba 1,1,1,1  are sun gears while dbe 322 ==  is a 
bevel planet gear fixed to the end-effector and adjacent to a fictitious carrier d2 . 

The gear c1  of radius 3r , mass 3m  and tensor of inertia 3Ĵ  is connected to a 

second gear d1  of radius 4r , mass 4m  and tensor of inertia 4Ĵ . Including the end-
effector of length 2l at the last gear dbe 322 == of radius 5r , mass 5m , tensor of 

inertia 5Ĵ , we obtain an assembly that is free to arbitrarily undergo two concurrent 
rotations with respect to the common center O . We remark that the active gears 
a1  and c1 share one fixed common joint on axis x  and that the links b1  and d1  

share another common joint on axis z . 
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In the following, we apply the method of successive displacements to 
geometric analysis of closed-loop chains and we note that a joint variable is the 
displacement required to move a link from the initial location to the actual 
position. If every link is connected to at least two other links, the chain forms one 
or more independent closed-loops. The variable angles 1, −kkϕ  of rotation about the 
joint axis kz  are the parameters needed to bring the next link from a reference 

configuration to the next configuration. We call the matrix ϕ
1, −kka , for example, the 

orthogonal transformation 33×  matrix of relative rotation with the angle A
kk 1, −ϕ  of 

link A
kT  around A

kz  axis. In the study of the kinematics on constrained systems, 
we are interested in deriving a matrix equation relating the location of an arbitrary 

kT  body to the joint variables. When the change of coordinates is successively 
considered, the corresponding matrices are multiplied. 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                                      Fig. 3 Gear fundamental circuit 
 
In what follows, we introduce a matrix approach that utilizes the theory of 

fundamental circuits [6]. There exists a real or fictitious carrier for every gear pair 
in a planetary gear train and a fundamental matrix equation for each loop can be 
written as 
                    11,11,11,1,,11,1 ,, +−+−+−−+−+ +=== kkkkkkkkkkkykkkk naaa k ααδϕϕθ δϕ   
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the planet gear 1+kT , respectively, while 11, +− kk αα are the angles that characterize 
the geometry of the connected gears 1−kT and 1+kT . 

The ratio of a gear pair is defined as 
                                           11111,1 // −+−+−+ == kkkkkk zzrrn ,                                     (2) 
where 11, +− kk rr and 11, +− kk zz are the radius and the number of teeth of the two 
gears, respectively (Fig. 3). 

The motions of the five parts of the gear train are concurrent rotations around 
the fixed point O . To simplify the graphical image of the kinematic scheme of the 
gear mechanism, in what follows we will represent the intermediate reference 
systems by only two axes, as it is used in most of the robotics papers. The kz axis 
is represented, of course, for each component kT . It is noted that the relative 
rotation with angle 1, −kkϕ  of the body kT  must always be pointed about the 
direction of the kz  axis. Consequently, four appropriate frames for the first 
kinematical chain and five frames for the second circuit are fixed in a same origin 
O  (Fig. 4). We consider the rotation angles CA

1010 , ϕϕ  of the actuators as 
parameters giving the instantaneous position of the mechanism. Seven relative 
angles of rotation BB

2110 , ϕϕ , DDD
322110 ,, ϕϕϕ , EE

2110 ,ϕϕ are the variables in the inverse 
kinematics problem. 

Starting from the reference origin O  and pursuing five independent serial 
circuits a10− , bb 210 −− , c10− , ddd 3210 −−−  and ee 210 −− , we obtain the 
following successive matrices of transformation ([9], [10]):  
                    11010 θϕaa = , 1212121010 , θθ ϕϕ bbbb == , 11010 θϕcc =  

                    13232221211010 ,, θθ ϕϕϕ dddddd === , 1212121010 , θθ ϕϕ eeee == ,              (3) 

where  
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Let us suppose that the absolute motion of the end-effector e2  attached at the 
planet gear db 32 =  is a rotation around the center O . In the inverse geometric 
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problem however, the orientation of the end-effector in the fixed frame is known 
through of the two Euler angles ,, 221110 φϕφϕ == EE  that are expressed by two 
analytical functions   

                                       )2,1()],
6

cos(1[* =−= ltll
πφφ ,                                 (5) 

where *2 lφ  represents the maximum value of the angle of rotation lφ . 
Constraint geometric conditions for the rotation of the end-effector are given 

by the identities 
                                                 203020 edb == .                                                 (6) 

From these equations, we obtain the real-time evolution of all characteristic joint 
angles, as follows: 

                     
1

1
10 n
A φϕ = , 110 φϕ =B , 221 φϕ =B , )(1

3

2
1

2
10 nn
C φφϕ +−=       

                     
3

2
110 n

D φφϕ +−= , 
3

2
21 n
D φϕ = , 232 φϕ =D , 110 φϕ =E , 221 φϕ =E .                    (7)   

                                         
2

1
1 r

rn = , 
4

3
2 r

rn = , 
5

4
3 r

rn = .  

In the design of power transmission mechanisms, it is often necessary to 
analyze the velocity ratios between their input and output parts and angular 
velocities or angular accelerations of the intermediate parts. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
                                                         Fig. 4 Moving frames sequence 
 

The analysis of the kinematics of bevel-gear wrist mechanisms of gyroscopic 
structure is very complex, due to the fact that the carriers and planet gears may 
possess simultaneous angular velocities about nonparallel axes. The conventional 
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tabular or analytical method, which concentrates on planar epicyclical gear trains, 
is no longer applicable. To overcome this difficulty, Freudenstein, Longman and 
Chen [11] applied the dual relative velocity and dual matrix of transformation for 
the analysis of epicyclical bevel-gear trains. Tsai, Chen and Lin [12], Chang and 
Tsai [13] and Hedman [14] showed that the kinematic analysis of geared robotic 
mechanisms can be accomplished by applying the theory of fundamental circuits. 

Since a kinematic chain is an assemblage of links and joints, these can be 
symbolized in a more abstract form known as an equivalent graph representation 
(Fig. 5). For the reason that will be clear later we use the associated graph to 
represent the topology of the mechanism. In the kinematic graph representation 
we denote the links by vertices and the joints by edges (Yan and Hsieh [15], [16]). 
Two small concentric circles label the vertex denoting the fixed forearm0 . 

 
 
 
 
 
 
 
 
 
 
                                         Fig. 5 Associated graph of the mechanism 
 

To distinguish the difference between the pair types, the gear pairs a1 - b1 , c1 -
d1 , d1 - d2 - d3 are drawn by thick edges and the revolute joints 0 - a1 , 0 - b1 , 0 -
c1 , 0 - d1 , b1 - b2 by thin edges. There are two significant independent loops, five 

serial kinematic chains and we identify the end-effector edb 232 == and one 
fictitious carrier d2 . 

The kinematics of an element for each circuit is characterized by skew-
symmetric matrices given by the recursive relations [17], [18]: 
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−−−− += ωωω  
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~~ ui
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kk −− = ϕω , ),,,,(),,,,,( EDCBAiedcbap == ,                      (8) 
where 3

~u  is a skew-symmetric matrix associated with the unit vector 3u . These 
matrices are associated to the angular velocities 
                                31,1,1,0,11,0 , up i
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Knowing the rotate motion of the end-effector by the relations (5), one 
develops the inverse kinematic problem and determines the velocities i
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i
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i
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Based on the important remark 
                                         kkkkkk n ,11,11, +−+− = ωω ,                                           (10) 

the derivatives with respect to time of the relations (7) lead to the relative angular 
velocities of all links as function of the angular velocities 2211 , φωφω == of the 
end-effector: 

                       
1

1
10 n
A φω = , 110 φω =B , 221 φω =B , )(1

3

2
1

2
10 nn
C φφω +−=  

                       
3

2
110 n

D φφω +−= ,
3

2
21 n
D φω = , 232 φω =D , 110 φω =E , 221 φω =E .                   (11) 

Starting from these results, a complete expression of the Jacobian of the 
mechanism is easily written in an invariant form. This square invertible matrix is 
an essential element for the analysis of singularity loci into robot workspace. 

Let us assume now that the mechanism has successively two independent 
virtual motions. Characteristic virtual velocities expressed as function of robot’s 
position are given by the relations (11). First, we consider the following input 
angular velocities 110 =Av

aω , 010 =Cv
aω and we obtain a set of virtual velocities: 

                  110 nBv
a =ω , 3121 nnBv

a =ω  

                  010 =Dv
aω , 121 nDv

a =ω , 3132 nnDv
a =ω , 110 nEv

a =ω , 3121 nnEv
a =ω .           (12) 

A second virtual motion is defined by the input velocities 110 =Cv
cω , 010 =Av

cω and 
the following results: 
                  010 =Bv

cω , 3221 nnBv
c =ω  

                  210 nDv
c =ω , 221 nDv

c =ω , 3232 nnDv
c =ω , 010 =Ev

cω , 3221 nnEv
c =ω .          (13) 

Concerning the relative angular accelerations of the compounding elements of 
the mechanism, these are immediately given by deriving the relations of the 
velocities (9): i

kk
i

kk 1,1, −− = ωε . 

The angular accelerations i
k 0ε  and the useful square matrices i

k
i
k

i
k 000

~~~ εωω +  are 
calculated with the following formulae [19], [20], [21]: 

    31,0,11,1,31,0,11,0
~ uppup T
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i
k −−−−−−− ++= ωωεεε  

         i
k

i
k

i
k 000

~~~ εωω + ( ) ++= −−−−−
T

kk
i

k
i
k

i
kkk pp 1,0,10,10,11,

~~~ εωω        

                        .~~2~~~
31,0,11,1,31,331,1, uppuuu T

kk
i
kkk

i
kk

i
kk

i
kk

i
kk −−−−−−− +++ ωωεωω              (14) 

The velocity Ci
kv and the acceleration Ci

kγ  of mass centre of the i
kT  rigid body 

are calculated from two basic matrix relations 
                               Ci

k
i
k

Ci
k rv 0

~ω= , Ci
k

i
k

i
k

i
k

Ci
k r}~~~{ 000 εωωγ += .                             (15) 
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For simulation purposes let us consider a mechanism which has the following 
characteristics        

                          03.01 =l m , 055.02 =l m 
                           025.01 =r m , 04.02 =r m 
                           02.03 =r m , 035.04 =r m , 015.05 =r m   
                                25.01 =m kg , 4.02 =m kg 
                                2.03 =m kg , 35.04 =m kg , 15 =m kg                                       (16) 

                          πφπφ == *
2

*
1 ,

4
, 01.0=rM  Nm , 6=Δt  s . 

                             
                                             Fig. 6 Input rotation angles A

10ϕ , C
10ϕ  of two actuators         

 
A software program which implements the suggested algorithm is developed in 

MATLAB to solve, first, the inverse kinematics of the orienting gear train. For 
illustration, it is assumed that for a period of six second the end-effector starts 
from rest, its initial position, and is moving on a known rotation motion. A 
numerical study of the robot kinematics is carried out by computation of the input 
angles of rotation A

10ϕ , C
10ϕ  (Fig. 6) of the two revolute actuators. 

3 Equations of motion 

3.1. Principle of virtual work 
 

Two torques of moment 31010 umm AA =  , 31010 umm CC =  control by intermediate of 
electric motors the motion of the orienting gear train. The derivation of a dynamic 
model has a very important effect in the determination of the actuator torques. 
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In the inverse dynamic problem, in the present paper, one applies the principle 
of virtual work in order to establish some recursive matrix relations for the 
torques and the powers of the active systems. 

The parallel mechanism can be artificially transformed in a set of five open 
serial chains ),,,,( EDCBAiCi =  subjected to the constraints. This is possible by 
removing successively the joints for the end-effector and taking their effects into 
account by introducing the corresponding constraint conditions. 

Considering that the end-effector motion is given, the position, angular 
velocity, angular acceleration as well as the velocity and acceleration of the centre 
of mass are known for each element. The force of inertia of an arbitrary rigid body 

A
kT , for example 

                                    ( )[ ]CA
k

A
k

A
k

A
k

A
k

A
k

inA
k rmf 00000

~~~ εωωγ ++−=                                    (17)      
and the resulting moment of the forces of inertia 
                                    ]ˆ~ˆ~[ 00000

A
k

A
k

A
k

A
k

A
k

A
k

CA
k

A
k

inA
k JJrmm ωωεγ ++−=                             (18) 

are determined with respect to the common centre of rotation O . On the other 
hand, the wrench of two vectors A

kf ∗  and A
km∗  evaluates the influence of the 

action of the external and internal forces applied to the same element A
kT or of its 

weight gm A
k , for example: 

                   30
* 81.9 uamf k

A
k

A
k = , 30

* ~81.9 uarmm k
CA

k
A
k

A
k =  )5,...,2,1( =k .             (19) 

Finally, two recursive relations generate the vectors [22], [23] 

                                     
,~

1,1,11,10

1,10

A
k

T
kk

A
kk

A
k

T
kk

A
k

A
k

A
k

T
kk

A
k

A
k

FarMaMM

FaFF

+++++

++

++=

+=
                           (20) 

where  
                                     A

k
inA

k
A

k ffF ∗−−= 00 , A
k

inA
k

A
k mmM ∗−−= 00 .                        (21) 

In the context of the real-time control, neglecting the frictional forces and 
considering the gravitational effect and the action of a resistant torque rM through 
the vectors 0*

2 =E
rf , 3

*
2 uMm r

E
r −= , the relevant objective of a dynamic model is to 

determine the input torques, which must be exerted by the actuators in order to 
produce a given trajectory of the end-effector. 

The fundamental principle of virtual work states that a mechanism is under 
dynamic equilibrium if and only if the virtual work developed by all external, 
internal and inertia forces vanish during any general virtual displacement, which 
is compatible with the constraints imposed on the mechanism. Applying the 
fundamental equations of parallel robots dynamics [24], [25], following compact 
matrix relations, it results  
          10 3 10 1 10 1 10 1 10 1 10 1 21 2

A T Av A Bv B Cv C Dv D Ev E Ev E
a a a a a am u M M M M M Mω ω ω ω ω ω⎡ ⎤= + + + + +⎣ ⎦      (22) 



Kinematics and dynamics of a 2-DOF orienting gear train                            13 

for the torque of first actuator, and 
          10 3 10 1 10 1 10 1 10 1 10 1 21 2

C T Av A Bv B Cv C Dv D Ev E Ev E
c c c c c cm u M M M M M Mω ω ω ω ω ω⎡ ⎤= + + + + +⎣ ⎦       (23) 

for the torque of second actuator. 
The relations (20), (22) and (23) represent the inverse dynamic model of the 2-

DOF orienting gear train. The procedure leads to very good estimates of the 
actuators torques for given displacement of end-effector, provided that the inertial 
properties of the gears are known with sufficient accuracy and that friction is not 
significant. This new dynamic approach developed here can be extended to any 
gyroscopic bevel-gear train with revolute actuators.    

 
3.2. Equations of Lagrange 
 

A solution of the dynamics problem of the orienting gear train can be 
developed based on the Lagrange equations of second kind. The generalized 
coordinates of the robot are represented by the rotation angles of the two 
actuators: Aq 101 ϕ= , Cq 102 ϕ= . 

The Lagrange equations are expressed by two differential relations  

                                         )2,1(}{ ==
∂
∂

−
∂
∂ jQ

q
E

q
E

dt
d

j
jj

,                                  (24) 

that contain the following generalized forces  
                               31101 nnMmQ r

A −= , 32102 nnMmQ r
C −= .                           (25)                                 

The components of the general expression of the total kinetic energy 
EDCBA EEEEEE ++++=  are expressed as analytical functions of first 

derivatives with respect to time of the generalized coordinates: 

                            AAT
A JE 10110

ˆ
2
1 ωω= , BBT

B JE 10210
ˆ

2
1 ωω=  

                            CCT
C JE 10310

ˆ
2
1 ωω= , DDT

D JE 20410
ˆ

2
1 ωω=                                     (26) 

                            EET
E JE 20520

ˆ
2
1 ωω= ,  

where the absolute angular velocities have the expressions:  
                                    3110 uqA =ω , 31110 unqB =ω  

                                    3210 uqC =ω , 32210 unqD =ω                                                 (27) 

                                    33221111120 )( unqnqnunqE ++−=ω . 
In the inverse dynamics problem, a long calculus of the derivatives with respect 

to time )2,1(}{ =
∂
∂ j
q
E

dt
d

j

 of all above functions leads finally to the same 



14                                 Stefan Staicu, Iulian Tabara, Ovidiu Antonescu 

expressions (22), (23) for the input torques CA mm 1010 ,  required by the actuators, 
now given as analytical solutions: 

             231511512
1

1
3110 }{ φφ nnJnJnJ

n
JMnnm zzz

z
r

A ++++=    

             2325
3

24

32

3
124

2

3
3210 }{}{ φφ nnJ

n
nJ

nn
JnJ

n
JMnnm z

zz
z

z
r

C ++++−= .             (28)   

                                
                                                  Fig, 7 Input torques Am10 , Cm10 of the two actuators          

                                
                                                   Fig, 8 Input powers AP10 , CP10 of the two actuators 

 
Based on the algorithm derived from the above relations (22), (23) or (28), a 

computer program solves the inverse dynamics modeling of the robot, using the 
MATLAB software. Assuming that a resistant torque of constant moment 

01.0=rM  Nm applied at the end-effector and the weights gm A
k  of compounding 
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rigid bodies constitute the external forces acting on the mechanism during its 
evolution, a numerical computation in the dynamics is developed, based on the 
determination of the two input torques Am10 , Cm10  (Fig. 7) and their active powers 

AAA mP 101010 ω=  and CCC mP 101010 ω=  (Fig. 8). The time-history evolution of the torques 
and powers required by two active systems are shown for a period of six second 
of motion. 

4 Conclusions 

Within the inverse kinematics analysis, some exact matrix relations giving the 
position, velocity and acceleration of each link for a 2-DOF orienting gear train 
have been established. 

Based on the principle of virtual work, the new approach described above is 
very efficient and establishes a direct recursive determination of the variation in 
real-time of torques and powers of the actuators. The matrix relations, given by 
this dynamic simulation, can be transformed in a model for automatic control of 
the gear mechanism. 
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