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KINEMATICS AND DYNAMICS OF A 2-DOF ORIENTING
GEAR TRAIN

Stefan STAICU, Tulian TABARA?, Ovidiu ANTONESCU?

Articolul stabileste relatii matriceale pentru cinematica si analiza dinamica
a unui tren de roti dintate pentru orientare cu doud grade de libertate. Mecanismul
este un sistem paralel cu cinci elemente mobile si trei cuplaje prin roti dintate
controlate de doud motoare electrice. Cunoscand migcarea de rotatie a efectorului,
problema de dinamica inversa este rezolvata printr-un procedeu bazat pe principiul
lucrului mecanic virtual, dar rezultatele au fost verificate in sistemul de lucru al
ecuatiilor lui Lagrange de speta a doua. In final, se obfin citeva grafice pentru
unghiurile de rotatie la intrare, fortele active §i puterile mecanice ale celor trei
sisteme de actionare.

Recursive matrix relations for kinematics and dynamics analysis of a 2-
DOF orienting gear train are established in this paper. The mechanism is a parallel
system with five moving parts and three bevel gear pairs controlled by two electric
motors. Knowing the rotation motion of the end-effector, the inverse dynamic
problem is solved using an approach based on the principle of virtual work, but the
results have been verified in the framework of the Lagrange equations of second
kind. Finally, some graphs for the input angles of rotation, the forces and the
powers of the actuators are obtained.
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List of symbols

Dy - Orthogonal relative transformation matrices from the frame x,_,y, ,z,, to
following frame x,y,z,
u,,u,,u,: three orthogonal unit vectors

@,, @, : angles giving the orientation of the end-effector
¢, relative rotation angle of 7, , (k =1, 2, 3) rigid body
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@, ., : relative angular velocity of 7,

@,,: absolute angular velocity of 7,

@, ,_, - skew symmetric matrix associated to the angular velocity @, ,_,
relative angular acceleration of 7,

£, . absolute angular acceleration of 7,
skew symmetric matrix associated to the angular acceleration £, , |

7. . position vector of the mass centre of 7, rigid body
m, : mass of T, rigid body
J,: symmetric matrix of tensor of inertia of 7, about the link-frame x,y,z,

A C A4 C.
my,, my,, By, P, : torques and powers of the two actuators

1 Introduction

The orienting mechanisms are incorporated in the structure of industrial robots
and have two or three output rotations. Generally, these mechanical systems have
conical and cylindrical toothed elements in their structure, while the input axes are
parallel and the output axes are orthogonal. The three rotary orientation
movements are usually performed around the axes of a Cartesian orthogonal
frame, having its axes linked to the last arm of the robot’s positioning mechanism.

The industrial robots with orienting gear trains can perform several operations
such as welding, flame cutting, spray painting, milling or assembling. Being
comparatively simple and compact in size, the bevel-gear wrist mechanisms can
be sealed in a metallic box that keeps the device of contamination. Furthermore,
using bevel gear trains for power transmission, the actuators can be mounted
remotely on the forearm, thereby reducing the weight and inertia of a robot
manipulator.

Planetary gear trains with three degrees of freedom are adopted as the design
concept for robotic wrist ( [1-5]).

2 Inverse kinematics model

Recursive matrix relations for kinematics and dynamics of a 2-DOF orienting
gear train, which has a non-symmetrical kinematical schema, are developed in the
paper (Fig. 1). The robot wrist must rotate around two orthogonal axes so that the
mechanism has two degrees of freedom. A matrix methodology for the kinematics
analysis based on the concept of fundamental circuit of an open-loop chain is
presented. This method involves the identification of all open-loop chains and the
derivation of the geometric relationships between the orientation of the end-
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effector and the joint angles of the chains, including the input actuator
displacements ([6], [7], [8]).
LetOxyz be a fixed frame, about which the mechanism moves. The mechanism

topology consists of five moving links, five revolute pairs and three bevel gear
pairs (Fig. 2). Therefore, the wrist is a 2-DOF spherical mechanism, which has a
limited rotation range about the vertical joint axis.
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Fig. 1 The 2-DOF orienting gear train Fig. 2 Kinematical scheme of the mechanism

There are two active gears la, lc and two kinematic chains0—1b—2band
0 —1d — 2d — 3d starting from the forearm and ending to a common element as
end-effector 2e =2b=3d .

In the wrist mechanism, the gearla, of radius7, mass m, and tensor of inertia
J , 1s adjoining to the link 15 of length /,, which could serve as carrier for the 1d -
3d bevel gear pair. This element includes a bevel gear of radiusz,, mass m, and
tensor of inertia j2 . Four gearsla, 1b, 1c, 1d are sun gears while2e =2b=3d is a
bevel planet gear fixed to the end-effector and adjacent to a fictitious carrier 2d .

The gearlc of radiusz,, mass m, and tensor of inertiaj3 is connected to a

second gear 1d of radiusr,, mass m, and tensor of inertia./, . Including the end-
effector of length/, at the last gear2e =2b =3d of radiusz;, massm,, tensor of

inertia J 5, we obtain an assembly that is free to arbitrarily undergo two concurrent

rotations with respect to the common center O. We remark that the active gears
la and lc share one fixed common joint on axis x and that the links 15 and 1d
share another common joint on axis z .
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In the following, we apply the method of successive displacements to
geometric analysis of closed-loop chains and we note that a joint variable is the
displacement required to move a link from the initial location to the actual
position. If every link is connected to at least two other links, the chain forms one
or more independent closed-loops. The variable angles ¢, , , of rotation about the

joint axis z, are the parameters needed to bring the next link from a reference
configuration to the next configuration. We call the matrix @/, _, , for example, the
orthogonal transformation 3x3 matrix of relative rotation with the angle ¢/, | of

link 7," around z;' axis. In the study of the kinematics on constrained systems,

we are interested in deriving a matrix equation relating the location of an arbitrary
T, body to the joint variables. When the change of coordinates is successively

considered, the corresponding matrices are multiplied.

Or+1,k

k+1

Fig. 3 Gear fundamental circuit

In what follows, we introduce a matrix approach that utilizes the theory of
Sfundamental circuits [6]. There exists a real or fictitious carrier for every gear pair
in a planetary gear train and a fundamental matrix equation for each loop can be
written as

5 _ _
A = al(cpﬂ,key A j—1> Prj—1 = Mt ja1 Presi o> O, =a,, +a;,
coso, 0 —sind,
9;’% = 0 1 0 ) (h
sind, 0 coso,

where ¢, ,_ and ¢, ,, , denote the relative angles of rotation of the carrier 7, and
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the planet gear7, ,,, respectively, whilee, ,, «,, are the angles that characterize

+1°
the geometry of the connected gears 7, _and 7 ;.

The ratio of a gear pair is defined as

Msa =N/ T = Zen ' 2405 (2)
wherer, |, r,,,andz, |, z, are the radius and the number of teeth of the two
gears, respectively (Fig. 3).

The motions of the five parts of the gear train are concurrent rotations around
the fixed point O. To simplify the graphical image of the kinematic scheme of the
gear mechanism, in what follows we will represent the intermediate reference
systems by only two axes, as it is used in most of the robotics papers. The z, axis

is represented, of course, for each component7,. It is noted that the relative
rotation with angle ¢,, , of the body 7, must always be pointed about the

direction of the z, axis. Consequently, four appropriate frames for the first
kinematical chain and five frames for the second circuit are fixed in a same origin
O (Fig. 4). We consider the rotation angles @3, @, of the actuators as
parameters giving the instantaneous position of the mechanism. Seven relative
angles of rotation (plﬁ , 0, P, 0n. 00, (pf) ,,, are the variables in the inverse

kinematics problem.

Starting from the reference origin O and pursuing five independent serial
circuits0—1a, 0—-1b-2b, 0—1c, 0—1d —2d —3d and 0—1le—2e, we obtain the
following successive matrices of transformation ([9], [10]):

— @ — L? — hL? — aP
a,y = a0, by, =bj0,, b, =bJ0,, ¢, = {6,

dyy =dy, d, =dy0,,dy, =d3,0,,e, =e€0,, e, = €36, 3)
where
0 0 -1 -1 0 0
6=/0 1 0[,0,=/0 1 0
10 0 0 0 -1
Cos (oli,k—l sin (oli,k—l 0
pliy =|-sing,,, cospj,, 0|, (p=ab.c.de) (i=4,B,C,D,E) (4)
0 0 1

k
Pro = Hpk—.y+l,k—x > (k=1,2,3).
s=1

Let us suppose that the absolute motion of the end-effector 2e attached at the
planet gear 2b=3d is a rotation around the center O. In the inverse geometric



8 Stefan Staicu, Iulian Tabara, Ovidiu Antonescu

problem however, the orientation of the end-effector in the fixed frame is known
through of the two Euler angles (pf) =4, gofl =¢,, that are expressed by two
analytical functions

4 =¢;‘[1—cos(%z)], (1=1,2), (5)

where 2¢, represents the maximum value of the angle of rotation ¢, .

Constraint geometric conditions for the rotation of the end-effector are given
by the identities
by =dy =ey. (6)
From these equations, we obtain the real-time evolution of all characteristic joint
angles, as follows:

_9 23

1
¢1/(1)__> ¢1€):¢1: ¢§:¢23¢1%:_(_¢1+ )
n, n, ny
12
(/)1[(;=_¢1+_2: (/)ﬁz_za ¢3[;:¢2, ¢1%:¢1a ¢)2E1=¢2- (7
ny ny
nlzr—l’ nzzr—S, 3:r—4

In the design of power transmission mechanisms, it is often necessary to
analyze the velocity ratios between their input and output parts and angular
velocities or angular accelerations of the intermediate parts.

Fig. 4 Moving frames sequence

The analysis of the kinematics of bevel-gear wrist mechanisms of gyroscopic
structure is very complex, due to the fact that the carriers and planet gears may
possess simultaneous angular velocities about nonparallel axes. The conventional
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tabular or analytical method, which concentrates on planar epicyclical gear trains,
is no longer applicable. To overcome this difficulty, Freudenstein, Longman and
Chen [11] applied the dual relative velocity and dual matrix of transformation for
the analysis of epicyclical bevel-gear trains. Tsai, Chen and Lin [12], Chang and
Tsai [13] and Hedman [14] showed that the kinematic analysis of geared robotic
mechanisms can be accomplished by applying the theory of fundamental circuits.

Since a kinematic chain is an assemblage of links and joints, these can be
symbolized in a more abstract form known as an equivalent graph representation
(Fig. 5). For the reason that will be clear later we use the associated graph to
represent the topology of the mechanism. In the kinematic graph representation
we denote the links by vertices and the joints by edges (Yan and Hsieh [15], [16]).
Two small concentric circles label the vertex denoting the fixed forearmO .

la 1b

2d

Ic 1d

Fig. 5 Associated graph of the mechanism

To distinguish the difference between the pair types, the gear pairsla-1b,1c -
1d ,1d -2d -3d are drawn by thick edges and the revolute joints0-1a,0-15,0 -
lc,0-1d ,1b-2b by thin edges. There are two significant independent loops, five
serial kinematic chains and we identify the end-effector2b =3d =2eand one
fictitious carrier 2d .

The kinematics of an element for each circuit is characterized by skew-
symmetric matrices given by the recursive relations [17], [18]:

520 = pk,k—laN)li—l,opZ,k—l + 52,/(—1
@iy, =@, il -(p=a,b,c,d,e),(i=4,B,C,D,E), (8)
where u; is a skew-symmetric matrix associated with the unit vector u,. These
matrices are associated to the angular velocities
@Jio = pk,k—lg)i—l,o + éjli,k—l > CT)/i,k—l = ¢)li,k—lﬁ3 . )
Knowing the rotate motion of the end-effector by the relations (5), one

develops the inverse kinematic problem and determines the velocities v, @, and

accelerations 7, €, of each moving link.
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Based on the important remark
O g1 = Mt k1 P > (10)
the derivatives with respect to time of the relations (7) lead to the relative angular
velocities of all links as function of the angular velocitiesw, = ¢,, ®, = @,of the
end-effector:

, , 1 . 4
a’10 ¢1 a)IO & a)g =¢,, wl% =—(-¢, +ﬁ)
n, n n,
a)l() ¢1 ¢ a)21 —¢2 a)sz ¢2’w£) :¢l’w2ﬁ :éz- (11)
n, 3

Starting from these results, a complete expression of the Jacobian of the
mechanism is easily written in an invariant form. This square invertible matrix is
an essential element for the analysis of singularity loci into robot workspace.

Let us assume now that the mechanism has successively two independent
virtual motions. Characteristic virtual velocities expressed as function of robot’s
position are given by the relations (11). First, we consider the following input

angular velocities @y, =1, ), = 0and we obtain a set of virtual velocities:
a)llf)‘iz =n,, ,, =nn
@y, =0, a)zm n, 0y, =mn,, O, =N, a)flva =mn;. (12)
A second virtual motion is defined by the input velocities a)lfk 1, =0and
the following results:
oy, =0, @3y, =nyn,
Opg. =1y, @) =1y, 0D, =M1y, @, =0, @5 =nyn;. (13)

Concerning the relative angular accelerations of the compounding elements of
the mechanism, these are immediately given by deriving the relations of the

velocities (9): €, ,., = @y, .
The angular accelerations &;, and the useful square matrices @,,@;, +,, are
calculated with the followmg formulae [19], [20] [21]'
Exo = Pri- 5/{10""9/(/( lu3+wkk1pkklwklopkk1u3
BB +Ely = Pracy (a)k—l,oa)k—l,o + gk—l,o )pk,k—l +
+ a)li,k—l a)li,k—ll’73l’73 + 511;,1(71’73 + 2a)li,k—1pk,k—l ai—l,oplik—lﬁr (14)
The velocity v and the acceleration 7" of mass centre of the 7 rigid body
are calculated from two basic matrix relations

_»kc. = w/io’jkCla 77151 = {aN)lioaN)Iio + Eifo}’_”;ca- (15)
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For simulation purposes let us consider a mechanism which has the following
characteristics

[,=0.03m, /, =0.055m

1, =0.025m, r, =0.04m

r,=002m, r,=0.035m, r, =0.015m
m, =0.25kg, m, =0.4kg

m, =0.2kg, m, =0.35kg, m, =1kg (16)
* 7[ *
¢ =—,¢,=m, M, =001 Nm, Ar=6s.
4
3 T T T
e
— — Second actuator : : H
=
= 1 ! ' A
Ry ars
% 15—rrv -------- / R AR —
A IR S o P SRS S _
= : e
: AP : :
! s ! ! !
=y o T B
s s e e
LT ! ! !
/ ' ' ' '
] | 1 | 1 1
0 1 2 3 4 5 g
2-DOF orienting gear train tls)

. . 4 _C
Fig. 6 Input rotation angles 9 , @, of two actuators

A software program which implements the suggested algorithm is developed in
MATLAB to solve, first, the inverse kinematics of the orienting gear train. For
illustration, it is assumed that for a period of six second the end-effector starts
from rest, its initial position, and is moving on a known rotation motion. A
numerical study of the robot kinematics is carried out by computation of the input

angles of rotation @5, ¢, (Fig. 6) of the two revolute actuators.

3 Equations of motion
3.1. Principle of virtual work

Two torques of moment s, = m/yii, , m, =mii, control by intermediate of

electric motors the motion of the orienting gear train. The derivation of a dynamic
model has a very important effect in the determination of the actuator torques.
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In the inverse dynamic problem, in the present paper, one applies the principle
of virtual work in order to establish some recursive matrix relations for the
torques and the powers of the active systems.

The parallel mechanism can be artificially transformed in a set of five open
serial chains C, (i = 4, B, C,D,E) subjected to the constraints. This is possible by

removing successively the joints for the end-effector and taking their effects into
account by introducing the corresponding constraint conditions.

Considering that the end-effector motion is given, the position, angular
velocity, angular acceleration as well as the velocity and acceleration of the centre
of mass are known for each element. The force of inertia of an arbitrary rigid body

T, for example

wt =-mi 7+ @ha + 205 (17)
and the resulting moment of the forces of inertia
iy =~ BT TLEL + @5 ] (18)

are determined with respect to the common centre of rotation O. On the other
hand, the wrench of two vectors ]7;" and m;" evaluates the influence of the
action of the external and internal forces applied to the same element 7" or of its
weightm,' g, for example:
Fi=981mla, iy, m," =9.81m!'F M a iy (k=1,2,..,5). (19)

Finally, two recursive relations generate the vectors [22], [23]

FkA = ka/(i) +alcT+I,kail (20)

MkA = M}?o + a[ﬂ,kMkAH + 7/c11,k‘1[+1,kﬁki1 >
where

ﬁk/(l) == _.k[gA - _’k*A > MkAo = _njlzinoA - ﬁllfA . (21)

In the context of the real-time control, neglecting the frictional forces and
considering the gravitational effect and the action of a resistant torque A , through
the vectors /,* =0, m,” =-M,ii,, the relevant objective of a dynamic model is to
determine the input torques, which must be exerted by the actuators in order to
produce a given trajectory of the end-effector.

The fundamental principle of virtual work states that a mechanism is under
dynamic equilibrium if and only if the virtual work developed by all external,
internal and inertia forces vanish during any general virtual displacement, which
is compatible with the constraints imposed on the mechanism. Applying the

fundamental equations of parallel robots dynamics [24], [25], following compact
matrix relations, it results

A _ =T Av y 5 A Bv a1 B Cv s C Dv y gD Ev g E Ev a7 E
myy =u; |:w10aM1 + o0 My + 0 M+ o M+ @, M| +a)21aM2:| (22)
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for the torque of first actuator, and
my =iy [a)mcM +ol ME+ oS ME + ol MP + o ME + a)zchEJ (23)
for the torque of second actuator.

The relations (20), (22) and (23) represent the inverse dynamic model of the 2-
DOF orienting gear train. The procedure leads to very good estimates of the
actuators torques for given displacement of end-effector, provided that the inertial
properties of the gears are known with sufficient accuracy and that friction is not
significant. This new dynamic approach developed here can be extended to any
gyroscopic bevel-gear train with revolute actuators.

3.2. Equations of Lagrange

A solution of the dynamics problem of the orienting gear train can be
developed based on the Lagrange equations of second kind. The generalized
coordinates of the robot are represented by the rotation angles of the two
actuators: ¢, =(Pf(1)a g, =P

The Lagrange equations are expressed by two differential relations

d OE., OE
—{—}-—= L2)), 24
dt{a i 2, 0, =12 (24)
that contain the following generahzed forces
O, =mjg—M,nn,, 0, = mjy — M, n,n,. (25)

The components of the general expression of the total kinetic energy
E=E,+E,+E.+E,+E, are expressed as analytical functions of first

derivatives with respect to time of the generalized coordinates:

| R 1.
E, zaa)lf)r‘lla)l/?)’EB :Ea)ll(;)TJ a)l()

l 1 -

E.= 1%TJ wlO’E a)loTJ4 [ (26)
2 2
1. -

E, = Ea)foTJsa)fo )

where the absolute angular velocities have the expressions:
@y = 4,5, a_jll(;) = g,
By = Gy, By = G,1yii, (27)
@y = —Gymtly + (G, + n,G, )i .
In the inverse dynamics problem, a long calculus of the derivatives with respect

to time di{aai} (j=1,2) of all above functions leads finally to the same
t

J
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expressions (22), (23) for the input torques mff), mlco required by the actuators,
now given as analytical solutions:

J . y
m;(l) =mnM, +{ nlz +Jo.n +Js.n g+ J s g,
1
J,. . J. Jun .
mlco =n,n,M, —{ 2 +J,.1, 1, +{—3+#+J52n2n3}¢2. (28)
n, n,n, n,
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0.0z

0015

Torgue (Mm)
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0.005

2-D0F orienting gear train - Angles of rotation:90 deg; 360 deg  tis)

. 4 C
Fig, 7 Input torques M, , M, of the two actuators
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Fig, 8 Input powers Plo s Plo of the two actuators

Based on the algorithm derived from the above relations (22), (23) or (28), a
computer program solves the inverse dynamics modeling of the robot, using the
MATLAB software. Assuming that a resistant torque of constant moment
M, =0.01 Nm applied at the end-effector and the weights ;g of compounding
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rigid bodies constitute the external forces acting on the mechanism during its
evolution, a numerical computation in the dynamics is developed, based on the

determination of the two input torques m;5, m/, (Fig. 7) and their active powers
Py =wmj, and PS =wm, (Fig. 8). The time-history evolution of the torques

and powers required by two active systems are shown for a period of six second
of motion.

4  Conclusions

Within the inverse kinematics analysis, some exact matrix relations giving the
position, velocity and acceleration of each link for a 2-DOF orienting gear train
have been established.

Based on the principle of virtual work, the new approach described above is
very efficient and establishes a direct recursive determination of the variation in
real-time of torques and powers of the actuators. The matrix relations, given by
this dynamic simulation, can be transformed in a model for automatic control of
the gear mechanism.
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