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SIMULATION OF THE CYCLIC HARDENING BEHAVIOR
OF ALUMINUM ALLOYS

Tayeb KEBIRY, Mohamed BENGUEDIAB?, Abdelkader MILOUDI?,
Abdellatif IMAD?

The cyclic hardening (stress-strain) curve is useful in the design of structural
components that are subjected to cyclic plastic deformation; it is a very important
phenomenon that reflects the elastic-plastic material behavior. This work is a
contribution to the modeling of low cycle fatigue at a plastic strain imposed for
three aluminum alloys (6061-T6, 2024-T3 and 7075-T6) using the ANSYS finite
element method. This model has allowed the mechanical characterization in tension
and compression of the materials studied and establish their monotonous and cyclic
hardening curves. The results are used to determine the constants of Basquin and
cyclic hardening parameters. The simulated results are verified against
experimental results available in literature.
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1. Introduction

The strain-hardening generally results in a hardening or sometimes a
cyclic softening of a material deformed plastic due to a structural modification.
This operation causes an increase in the strength (hardness, yield strength) and a
decrease in the ductility (elongation, necking) in the case of sheets, wire and
drawn parts.

The aluminum mechanical properties are influenced by its purity and its
production method (currying, treating final annealing, etc.).

Several investigations have been devoted to the study of the behavior of
metals subjected to large deformations due to hardening. Brammer [1] found that
the cyclic hardening is more pronounced for successive imposed deformations.
Belattar et al. [2] found that the life of the pre-work-hardened specimens
decreases as compared to the one obtained with virgin specimens tests. This
reduction is related to the formation of dense dislocation structures inherited from
the pre-hardening stage.
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The embrittling of microstructure developments during the pre-hardening
accelerate fatigue damage and leads to an early break in 304L steel [2]. Recent
work led by Désiré et al. [3] on aluminum grades 1200 and 5005 showed that the
strong presence of magnesium in 5005 would cause a much more pronounced
hardening. The dislocation density in steel (JLF-1) decreases in a cyclic loading
deformation imposed with increasing temperature which leads to a low curing [4].
The low cycle fatigue simulations and/or experiments have been performed in the
literature mostly for a selected strain amplitude level [5]-[8]. For using nonlinear
isotropic/kinematic (combined) hardening a model has been used to predict
thermal ratcheting. Kinematic hardening parameters and also isotropic hardening
parameters were obtained from the monotonic and cyclic tests at a variety of
temperature using controlled strain by Zehsaz et al. [9]. The cyclic hardening or
softening behaviors of metallic materials is studied by using many alloys test
results [10], [11].

This work is a numerical simulation of the cyclic hardening behavior for
determining Basquin’s constants and the different parameters of cyclic hardening
for three different aluminum alloys 6061-T6, 2024 -T3, and 7075-T6 from the
generated hysteresis curves by using the ANSYS finite element method.

2. Controlled cyclic strain

When a specimen is subjected to controlled cyclic strain maximum and
minimum constraints are rarely constant throughout the test.

The recording of the force or stress as a function of the deformation
provide hysteresis loops (Fig. 1). There are several methods in the literature [12]
for determining the cyclic hardening curve.
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Fig. 1. Hysteresis loops obtained under imposed cyclic strain.

The total strain range (Aer) is defined as the sum of the elastic strain range
(Ager) and plastic (Aep) strain range.
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Agr =Ag, +Ag, (1)

There are two strain components that make up the cyclic stress-strain
curve, which are the linear-elastic portion (Aecer) and the plastic stress-strain (Agpi).

The linear-elastic strain is given by Eq. (2) for a uniaxial stress state as a
function of the elastic modulus (E),

o
Aggl = E (2)

The plastic strain (epi), is given by Eg. (3) as a function of the strain
hardening coefficient (K"), and the strain hardening exponent (n’),
1

Az = (%j ©)

The combined elastic and plastic strains constitute the total strain that is

known as the cyclic stress-strain equation,
1

c (o
Agr =—+| — 4
ENE 2
Likewise, the strain-life equation is made up of elastic and plastic terms.

The elastic strain-life term is known as Basquin’s Equation [13], [14],
—4 =—(2N 5
S =2 @Ny) )
Where (o) is the fatigue strength coefficient, b is the fatigue strength exponent, E

is the elastic modulus and (N, ) the number of cycles to failure.

The plastic strain-life term is known as the Coffin-Manson Equation [13], [14].

S N ©)

Where (&%) is the strain ductility coefficient, cis the strain ductility exponent.
The combined total strain equation is known as the strain-life equation,

Ag o'f .
b= p @) et @Ng)f ™

Note that the strain-life equation is defined in terms of cycles.

The cyclic stress-strain curve (Fig. 2) was determined using the method of
one specimen for each strain-controlled level and define the stable hysteresis, is
obtained by joining the maximum values of each loop [12].
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Fig. 2. Determining the cyclic hardening curve [12].

3. Finite Element Modeling

For the low cycle fatigue testing is used a smooth cylindrical specimen
subjected to uniaxial forces, done according to the standard test ASTM E606
[15], as presented in Fig. 3.
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Fig. 3. Geometry and dimensions of the specimens used in the strain-controlled fatigue tests
(Dimensions in mm)

The materials studied are aluminum alloys 6061 -T6, 2024 -T3 and 7075-
T6 for which chemical compositions are given in Table 1 and mechanical
properties are shown in Table 2.

Table 1
Chemical composition of aluminum alloys (weight %)
Material Cu Fe Si Cr Mg Mn Zn Ti References
6061-T6 0.15 0.7 0.4 035 | 084 | 014 | 025 | 0.5 [16]
2024-T3 482 | 0.18 | 0.07 | 0.02 | 167 | 058 | 0.06 | 0.15 | [17],[18]
7075-T6 1.20 | 050 | 040 | 0.18 | 210 | 0.30 | 5.10 | 0.20 [19]
Table 2
Static mechanical properties
Young’s Poisson’s Yield Ultimate | Elongation | References
: modulus E ratio v strength tensile gt (%)
Material (GPa) oy(MPa) | strength oy
(MPa)
6061-T6 68 0.30 279 310 14 [20]
2024-T3 72 0.33 370 536 16,7 [18]
7075-T6 70.6 0.30 533 578 14 [21]
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The cyclic properties are reported in Table 3.

Table 3
Cyclic mechanical parameters
Fatigue . .
Fatigue Fatigue . -

Material strepgth ductility strength Fatigue ductility References

coefficient coefficient &' exponent b exponent ¢

o't (MPa) roexp
6061-T6 705 2.40 -0.11 -0.98 [1]
2024-T3 850 0.22 -0.086 -0.462 [18]
7075-T6 689 0.11 -0.145 -0.509 [21]

The simulation of the cyclic behavior at different controlled strain levels is
carried out with a stress ratio R = -1.

The simulation procedure is to set the test specimen on one side and
cyclically loaded on the other side by imposed displacement amplitude (AL) at a
frequency of 2 Hz as shown in Fig. 4. The value of plastic displacement amplitude
(AL) can be determined by relation Eq. (8).

AL=¢lL (8)

Where (¢) is strain and (L) its initial length of test specimen equal 200mm.

[A] Suppaort fixe
[B] Déplacerment

Tt .

Fig. 4.Displacement applied in test specimen.

For each tested alloy a series of low cycle fatigue simulations at controlled
plastic strain amplitude were carried out for different levels according to ASTM
E606 standard test [15] as shown in Table 4 and Fig. 4.

Table 4
Cyclic plastic strain controlled in %
Material Strain controlled in %
6061-T6 0,30 0.40 0.50 0.60 0.70 1 4 7
2024-T3 0.5 1 2 4 8 12 / /
7075-T6 0.70 1 3 5 7 9 / /

The mesh used is of type Solid185 with 8 nodes having three degrees of
freedom at each node which makes possible to visualize the deformations in three
directions. The convergence has been checked as shown in Fig. 5. The model
contains 157329 nodes and 37440 elements.
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Fig. 6. Lifetime obtained by 0.7% controlled cyclic plastic strain in aluminum alloy 7075-T6.

Fig. 5. Test specimen meshing.
The Fig. 6 shows the life time obtained by one simulation to low cycle
fatigue for 0.7% controlled cyclic plastic strain in aluminum alloy 7075-T®6.
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4. Results and Discussions

Figs. 7, 8 and 9 show the stabilized hysteresis loops for each level of strain

imposed for the three tested materials.

The results (Fig. 7a) obtained for the 6061-T6 alloy are explained the
simulation hysteresis loops showed good agreement with experimental results,
Brammer [1]. Also the Fig. 7b shows the following stable hysteresis loops,

measured at different values of strain amplitude for the same material.
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Fig. 7. Simulation of hysteresis loops for 6061 T6 aluminum, a) with experimental results [1],
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Fig. 8. Simulation of hysteresis loops for 2024-T3 aluminum.
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Fig. 9. Simulation of hysteresis loops for 7075-T6 aluminum.

10

Fig. 10 shows the evolution of the maximum stress on the number (Ns) of
cycles to failure for each plastic imposed deformation. These lines obtained can be

represented by Basquin’s law as:

Acl2=B.(N¢)"?
Log(Ac/2) = ALog(N ¢ )+ LogB

9)
(10)

The simulation of hysteresis loops for material 6061 T6 alloy is nearly the
same as the ones with experimental results [1].
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Fig. 10. Plots stress with respect to the number of cycles for the studied alloys.
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The coefficients A and B of equation (10) for these alloys are obtained by
linear regression as given in Table 5.

Table 5
Constants of Basquin Law.
Material Simulation Experimental
A B A B References
6061-T6 -0,117 516,41 -0,108 510,5 [1]
-0,128 505,9 [20]
2024-T3 -0,106 912,01 -0,112 983 [22]
-0,182 947,54 [23]
-0,103 840 [24]
7075-T6 -0,114 993,11 -0,113 985 [22]
-0,129 1110 [24]

The values of A are between -0.090 and -0.190. These values are
comparable to those from the literature for this type of alloy. For each alloy
studied, the average values of literature realized a comparison acceptable. The
cyclic behavior of these alloys is obtained by plotting the location of the extrema
of the hysteresis loops (Figures 7, 8 and 9). The stress-strain diagram is drawn on
a curve after passing the initial yield point.

Figures 11 and 12 represent the cyclic hardening curves of the three alloys
compared to the curves obtained under monotonic loading.

The simulation of cyclic hardening curve for the 6061 T6 alloy is in good
agreement with the experimental results obtained by Brammer [1], (Fig. 11).
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Fig. 11. Cyclic stress-strain curve simulation compared with monotonous and cyclic loading
(6061-T6) experimental results [1].
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Fig. 12 shows the simulation of cyclic hardening curves for the 2024 T3
and 7075 T6 alloys compared again with experimental monotonous curves [20]
and [24], respectively.
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Fig. 12. Cyclic stress-strain curves compared with experimental results monotonic for (Aluminum
2024-T3 [25] and 7075-T6 [21]).

The variations of the cyclic hardening curves can be presented as linear in
stress-strain curves which are shown in Fig. 13. The results for 6061 T6 alloy are
close to the experimental tests done by Brammer [1].
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Fig. 13. Evolution of plastic stress-strain.

The representation of the variation of stress in plastic strain can be
modeled by power relation (10) as:
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Acl2=K' (A&, /2)" (10)
Log(Ac/2)=n'Log(Ae, /2)+ LogK" (11)

The hardening parameters n' and K' are determined from a linear
regression and compared with to those from the literature, are given in Table 6.

The parameter n' is smaller than 0,1 provide a more descriptive way to
understand cyclic hardening behavior for this alloys studied.

Table 6
Hardening cyclic parameters
Simulation Experimental
Material n’ K’ n’ K’ References
6061-T6 0.0640 495 0.073 502,8 [1]
2024-T3 0.072 590 0,0651 605,23 [18]
7075-T6 0.0807 806 0,062 790 [21]

6. Conclusions

This work was carried out to model the hardening of three aluminum
alloys, 6061-T6, 2024-T3 and 7075-T6 for which the hardening functions were
derived from a simulation using ANSYS code. The error observed between the
simulations and the experimental results is approximately 3%.

The hysteresis loops are perfectly symmetrical and centered on the point
(0,0) in the space of stresses and strains confirming the absence of mean stress
and a mean deformation effects during the simulation.

The hysteresis loops for each alloy increase when the imposed plastic
strain increases. The increase of the hysteresis areas is explained by the increase
of the dissipated plastic deformation energy.

For alloy 6061-T6, the cyclic hardening (stress-strain) behavior obtained
from the FE simulation can be clearly compared to experimental tests, [1].

For all studied alloys, the cyclic hardening behavior can be quite different
from that obtained under monotonic tensile tests.

The significant hardening observed for 7075-T6 is explained by the high
content of magnesium compared to the one in other alloys.
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