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KINEMATICS AND DYNAMICS OF A PLANETARY GEAR
TRAIN FOR ROBOTICS

ST. STAICU °

Lucrarea prezenta stabileste unele relatii matriceale recurente privind
analiza geometricd, cinematica si dinamica a unui tren de roti dintate planetare,
utilizat in roboticd. Prototipul acestui mecanism este un sistem mecanic cu trei
grade de libertate, care este constituit din sapte elemente si patru angrenaje conice.
Controlate de motoare electrice, trei elemente active ale robotului au trei rotatii
independente. Presupundnd ca pozitia §i miscarea de rotatie a platformei sunt
cunoscute, se determind relatii matriceale si grafice pentru momentele celor trei
cupluri active.

Some recursive matrix relations concerning the geometric analysis,
kinematics and dynamics of a Bendix wrist planetary bevel-gear train for robotics
are established in this paper. The prototype of this mechanism is a three-degree-of-
freedom system with seven links and four bevel gear pairs. Controlled by electric
motors, three active elements of the robot have three independent rotations.
Supposing that the position and the rotational motion of the platform are known, an
inverse dynamics problem is developed using the virtual powers approach. Finally,
some recursive matrix relations and some graphs for the torques of the actuators
are determined.
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Introduction

Generally, a parallel manipulator needs at least six degrees of freedom to
freely manipulate an object in space. The first three moving links are used
primarily for manipulating the position, while the second mechanism is used to
control the orientation of the end-effectors. The subassembly associated with its
last moving links is called the wrist, and their joint axes are often designed to
intersect at a common point called the wrist centre.

Planetary bevel-gear trains with three degrees of freedom are adopted as the
design concept for robotic wrist (Hsieh and Sheu, 1995). Bevel-gear wrist
mechanisms have been incorporated in most industrial robots because they are
simple and compact in size compared to others and can be sealed in a metallic
housing that keeps the gear trains free of contamination. Furthermore, using bevel
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gear trains for power transmissions, actuators can be mounted remotely on the
forearm, thereby reducing the weight and inertia of a robot manipulator.

In the present paper some recursive matrix relations for the kinematics and
dynamics of a Bendix wrist planetary bevel-gear train for robotics are established.

1. Inverse geometric model

Since a robot wrist must rotate about three axes, it is a mechanism with three
degrees of freedom. Further, we present a matrix methodology for the geometric
analysis and the kinematics using the concept of fundamental circuit of an open-
loop chain (Tsai, 1988, 1999). This method involves the identification of an open-
loop chain and the derivation of the geometric relationship between the
orientation of the end-effector and the joint angles of the chain, including the
input actuator displacement.
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Fig. 1 Bendix wrist mechanism

Let Ox,y,z,(T,) be a fixed Cartesian frame, about which the mechanism

moves. The wrist architecture consists of seven links, seven turning pairs and four
bevel gear pairs (Fig. 1). Therefore, the wrist is a 3-dof spherical mechanism,
which has a limited rotational range about the second joint axis.

In the Bendix wrist, link la, of /, in length, masse m, and tensor of inertia Ja,
one of the three driving parts of the robot, serves as carrier for thelb-2b andlc -
2cbevel gear pairs, while link 2a, of /, in length, masse m; and tensor of inertia

~

J;', serves as carrier for the 2b-3band 2c-3c bevel gear pairs. The gears 1 and
Icare sun gear, and gears2b, 2care planet gears adjacent to carrierla when
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gear3a is planet gear adjacent to carrier2a. Three coaxial members numbered
la, 1b, 1c are supported by bearings housed in the forearm.

Bevel gear pairs1b-2b-3bandlc-2c¢-3c transmit the rotations of the coaxial
input links to the end-effector. This moving platform of length/, , masse m; and

tensor of inertiaj;‘ is attached to the link 3a =3b =3c, which is housed in the

carrier 2a and is free to arbitrarily undergo three concurrent rotations with respect
to the centre O,

Fig. 2 Kinematical scheme of the wrist

Let us consider the rotation angles (01/(1),(01%,(01% of the three actuators

A,,B,,C,as variables giving the instantaneous position of the mechanism (Fig. 2).
Pursuing the circuits 4, B and C we obtain the successive transformation
matrices (Staicu, 1998):

a,, =apb,,a, =a30,,a;, =a},0,

b, = bl%eh b, = b;03:b32 = b3(02‘92

by, = bfﬂz’ bs, = bs(ﬁez (D
¢y =i, ¢y =c5105,05, =30,

cpy =cpby, ey =0,

where one denoted

0 0 -1 0 0 1 -1 0
=01 0,0,={0 1 0[,60,={0 1 O 2)
1 0 O -1 00 0 -1
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4 Ly
cos@,,, sing;, ., 0 k
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Further on, we introduce a matrix approach, which utilizes the theory of
fundamental circuits. There exists a real or fictitious carrier for every gear pair in
a planetary gear train and a fundamental matrix equation for each loop can be

written as
Appip-1 = al?ﬂ,kafk al?,k—l 3)
Priat = Nk Prsri> Ok =y + 0y

where @, ,_ and @, , denote the relative angular displacements of carrier 7, and

planet gearT,,,, respectively, ande,_,, a,,, are the angles of the gear7, ,and 7.
The gear ratios of a gear pair is defined as N, , =7, /r_ =z, /z,,, where
¥,,,r,, and z, ,z,,, denote the radius and the number of teeth of two gears,

respectively (Fig.3).
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Fig. 3 Gear fundamental circuit

Let us suppose that the absolute motion of the platform attached to planet gear
3ais a general rotation around the centre O, . In the inverse geometric problem,

however, the orientation of the end- effector is known by intermediate of the three
Euler’s angles «,, «,, a, expressed by the functions

a, =a[l —COS(% 0], (=123). (4)

Representing the orientation of the platform in the fixed frame, the product of
successive known matrices of rotation a, = a! (&), a, = a_(a,), a; =a. (a;)
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leads to the general rotation matrix
a=a,a,a, (5)
Geometric conditions of rotation for the platform are given by the following
identities
oT oT oT
s asy =bsybsy =c50¢5 =a (6)
where
as, =0,0,0,,b5, = c5, = 0,0,0,0,0, . (7)
From these equations, we obtains the real-time evolution of all characteristic
L . A A4 A B B B B B C C C C C
JOINES: @y, @315 P35 5 Pros P15 P> Pazs Poar Pros Pars Paz> Pazs Poa-

2. Kinematics of robotic wrist mechanism

In the design of power transmission mechanisms, it is often necessary to
analyse the speed ratios between their input and output members and angular
velocities or angular accelerations of the intermediate members.

The analysis of the kinematics of bevel-gear wrist mechanisms of gyroscopic
structure is very complex, due to the fact that the carriers and planet gears may
have simultaneous angular velocities about nonparallel axes. The conventional
tabular or analytical method, which concentrates on planar epicyclical gear trains,
is no longer applicable. To overcome this difficulty, Freudenstein, Longman and
Chen (1984) applied the dual relative velocity and dual matrix of transformation
for the analysis of epicyclical bevel-gear trains. Chang and Tsai (1989) and
Hedman (1993) showed that the kinematical analysis of geared robotic
mechanisms can be accomplished by applying the theory of fundamental circuits.

Since a kinematical chain is an assemblage of links and joints, these can be
symbolized in a more abstract form known as equivalent graph representation
(Fig. 4). For the reason that will be clear later, we use the associated graph to
represent the topology of the mechanism: vertices denote the links and edges
denote the joints (Yang and Hsieh, 1991). Two small concentric circles label the
vertex denoting the fixed link 0. To distinguish the differences between pairs
connections, gear pairslb-2b,2b-3b,1c-2c,2c-3c are denoted by thick edges
and revolute joints are denoted by thin edges. The three edged paths, which start
from the base linkOand end at the end-effector link3a, consist of
vertices 1a,2a,3a,1b,2b,3band 1¢,2¢,3c . There are four independent loops and we

identify four fundamental circuits.
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1lc 2¢

Fig. 4 Associated graph of the wrist

The kinematics of an element for each circuit (for example the circuit 4) are
characterized by skew- symmetric matrices given by the recurrence relations
(Staicu, 2000):

~ A ~ 4 T 4~
Wyg = Ay 1@ gy 00 4 T O 4 U5 (8)
These matrices are associated to the absolute angular velocities
— A =~ A A — A - A4
Oy = g 1P 0 T Op i, O oy = P ©)

Knowing the rotation motion of the platform by the relations (4), one develops

the inverse kinematical problem and determines the velocities \7,:10 ,6?):0 and

accelerations 7 ,:10 , E,fo of each of the moving links. The following matrix relations
of connectivity constitute the inverse kinematical model
@il ajolly + @] ayilly + OHi] agily =
=i, {&,a)u, +a,al ali, +c,a alaliy}y,(i=1,2,3) (10)
where il,,U, Ui, are three skew-symmetric matrices associated with the orthogonal

unit vectors U,,U,,u;. The method is very straightforward and can by

implemented on a computer for the automated analysis of a planetary gear train.
This results in a system of linear equations that can be solved for angular
velocities of all the links. These relations give the relative angular velocities

o), 0}, 0 as a function of the angular velocities ¢,,c,,c, of the end-effector.
For the other two circuits B, C of wrist, analogous relations can then be obtained
with important remark

O =N 1@y (11)
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Starting from (10), a complete expression of the Jacobian of the mechanism is
easily written in an invariant form. This square invertible matrix is an essential
element for the analysis of singularity loci into robot workspace.

Let us assume now that the mechanism has successively three independent

virtual motions defined by the angular velocities w/y, =1, 0}y, =0, @}, =0, @} =1,

Cv __ Av _ Cv __ Av __ Bv __
@, =0, 0, =0 and v ;. =1, 0, =0, @, =0.

Characteristic virtual velocities expressed as functions of robot’s position are

given by the above conditions of connectivity concerning the relative velocities of
three circuits:

ii] sy @, =] by G, =] cgy 05, =1 @y, (12)
Concerning the relative angular accelerations¢ fj,, ¢ ,,& 7, of the elements of
circuit 4, these are given by some other conditions of connectivity, obtained by
deriving the relations (10); it results:
el alyiiy +enu aliiy +ebu! aljii, =
=171~T {dla{ﬁl +d2a1Ta2TzZ2 + 0'Z3a1Ta2Ta3TL73 +
+ dldzalTﬁlaZTﬁz + d2d3a1Ta2Tb72a3Tﬁ3 +
+dsdyaf ihay a3 iy — 003 algiyay, i - (13)
ST N TN N TR N O TN T B
The angular accelerations &, and the matrices @;,@;,+2/ are easily
calculated with the recurrence relations
&io = ak,k—lgkA—l,o + 51?,1(—1”73 + wlék—lak,k—laN)lf—l,Oalik—lﬁ3

A A A ~4  ~4 ~4 T (14)
WDy + Ero = A j (wk—l,owk—l,o + €10 )ak,kfl +

4 A4 o~ 4~ 4 ~d T ~
+ O j Of g Uslly + Ef gyl +20) 110y 1 Dj_ 0B 143
3. Equations of motion

Such bevel-gear wrist is often built with direct drive actuators and hence, the
dynamics of this robot has a very important effect on the actuator torques.
Therefore, the derivation of a dynamic model is desirable for the design of an
efficient controller.

The motion of the Bendix wrist is controlled by three electric motors, 4,, B,,C,

which generate three moments iy = mjii,, mfy = mpiiy, i, = myi, having the
directions of the coaxial axesO,z;',0,z,0,z{ . Considering that the mobile

platform motion is given, the position, angular velocity, angular acceleration as
well as the velocity and acceleration of the centre of mass are known of each
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element. The inertia force and the resultant moment of inertia forces acting at
rigid body T, are also evaluated with respect to the wrist centre O,. On the other

hand, the characteristic vectors fk*,n?,t designate the action of the weight m, g and

of any other external and internal applied forces at the same element of the
mechanism.

In the context of the real-time control, neglecting the frictional forces and
considering the gravitational effect, the relevant objective of a dynamic model is
to determine the input torques, which must be exerted by the actuators in order to
produce a given trajectory of the end-effector.

In the inverse dynamic problem, in the present paper one applies the principle
of virtual power in order to establish some recursive matrix relations for the
torques of the three active couples. This fundamental principle states that a
mechanism is under dynamic equilibrium if and only if the virtual power
developed by all external, internal and inertia forces vanishes during any general
virtual displacement, which is compatible with the constraints imposed on the
mechanism. Applying the fundamental equations of parallel robots dynamics
obtained in a matrix compact form by Stefan Staicu (2000), the following matrix
relation results

A _ =T (374 A A
my =i, {M'+o} M + ol M+
B B C
+ ol M +ob) M +of M +oy, M } (15)
where are denoted:
A Al=4 ~A ~A ~A \=CA
Fioy=m; [7ko (wkowko + & )’”k ]_

A~ CA=d — P
MkO mry 7/k0+'] 8k0+wk0‘] w m (16)

Fk :Fk/(i) +ak+1,kﬁk+19 (k=1,2,3)

MkA = MkAo + akT+1,kMk+1 + Ecil,kakT-v-l,k Fey

£ =9.81mla, iy, m" =9.81m 7 a, ii,.
The relations (15) and (16) represent the inverse dynamic model of the planetary
gear trains. We can obtain analogous expressions for the torquesm;,,m, exerted

by the other two B,,C,actuators.

The procedure developed above leads to very good estimates of the actuators
torques for given displacement of end-effector, provided that the inertial
properties of the gears are known with sufficient accuracy and that friction is not
significant. It is also remarked that, depending on the masses and inertias of the
bodies, the present matrix dynamic model leads to interesting and useful results
for purposes of control. The new dynamic approach developed here is completely
general and can be used for any gyroscopic bevel-gear train with revolute
actuators.
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As application let us consider the commonly known Bendix wrist which has
the following characteristics:

[,=1,=0.05m, ,=0.075m r,” =0.02m, r;’ =0.025m, r,” =0.02 m,
rC =0.015m, ry =0.02m, L =0.02m, m' =0.25ke, m; =0.35kg,
mi =m? =m¢ =1.15kg, m* =0.15kg, m¥ =0.20kg, mC =0.10kg

e T« T s
mS =0.15kg, =§,a2 =Z,a3 =7,At=6s.

Finally, the graphs of the torques m{} (Fig. 5), m/, (Fig. 6), m§ (Fig. 7) of three
actuators are obtained.
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Fig. 5 Torque m;j of first actuator
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Fig. 6 Torque mﬁ) of second actuator
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tis)

Fig. 7 Torque mlc0 of third actuator

5. Conclusion

Based on the principle of virtual work, the new approach described above is
very efficient and establishes a direct recursive determination of the variation in
real-time of the torques of the actuators. The dynamical approach can be
transformed into a model for automatic command of a bevel-gear wrist
mechanism.
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