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ON THE TIME/FREQUENCY SIMULTANEOUS ALIGNMENT
OF THE SIGNALS COMPORTMENT

Lia ROTARIU'

In aceasti lucrare, conceptul de “atom-frecventd” (T/F), elaborat de J.
von Neumann si D. Gabor, este punctat in termeni matematici; de asemenea, unele
proprietdti ale transformatei Fourier cu fereastrda sunt scoase in evidentd
(Proposition 2 si Proposition 3); in final este prezentatd o aplicatie a undinelor
pentru descrierea mecanismului fiziologic al urechii umane in timp-frecventa.

In this paper , the “atom-frequency” (T/F) concept, elaborated by J. von
Neumann and D. Gabor, is pointed out in mathematical terms, also, some
properties of Fourier transformation with window are marked out (Proposition 2
and Proposition 3); finally, we give an application of wavelets for (T/F) human ear
physiological mechanism description.

Keywords: wavelets, ,attenuated sine”.

1. Introduction

If u:R—>C is a L'(R)-class function, ad-hoc called signal, then we

assign its Fourier transformation #: R — C , which is a continuous and bounded
function, defined by

0

i) = [u(), (1)

this improper integral being convergent for any @ € R. The function # is called
the frequency spectrum of the signal u, and A(w)=|u(w)|, the frequency
amplification of u .

An insufficiency of the classic Fourier transformation is constituted by the
fact that we have to know the values of u for entire time axis (according to (1)) if
we want to calculate the spectrum u(w,)in only one frequency @, € R

Applying the Fourier inversion formula in adequate conditions (for example, if u
is a continuous function and u < L'(R) U L*(R)) ,
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1 T ~ iot
u() =~ jw i(w) e do, )

it turns out that to determinate the sample u(z,) for a time moment ¢, € Rt is
necessary to know the spectrum (@) in entire frequency band.

Thus, we consider the pairs (¢,,®,), simultaneous taken, and analyse the
time/frequency comportment of some signals in their neighbourhood.

2. Time-Frequency Atoms

It is considered a plan related to an orthogonal fixed point where by
abscissa is mentioned the generic time ¢, and by ordinate line, the generic
frequency w. To represent a signal in an orthogonal plane 0w means to take
simultaneous its time duration and its frequency ratio (human voice case). We fix
a pair (t,,0,) € RxR.

Intuitively, an (7/F) atom around the point (¢,,®,) is any signal u
(from L'(R)UL’(R) ) with compact support, which contains #,(so u is null out
of the support); moreover, # has to have compact support, which contains @, (so

frequencies u(w)are insignificant out of the support). According to the

indeterminism principle, such a non-zero signal doesn’t exist, no matter how
small are the supports of u and u .
John von Neumann called 7'/ F atom any family of functions by the form

(" u(t—t,)}, with (¢,,m,) € Rx R, where u(¢) is a fixed function (from
L'(R)uU L’ (R)-class). Distributing the points (Z,,®, ) uniformly in the 1O® plan ,
J. von Neumann has recommanded, in the Signals Theory, to use an
orthonormated base in the Hilbert space L°(R) relative to the dot product

< f.g>= [ f(®)-g(0)dt, made of T/F atoms.

—00

sin 7t

Proposition 1. Let be u(z) = (for t#0) and u(0)=1. The T/F

atoms

u, ()=e u(t-k) ; k,leZ, 3)
(corresponding to the values ¢, =k, ®, =27 ), make an orthonormated base for
L*(R).
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Proof. Using the Parseval formula, it results immediately that
<uy, U, >=0,06,,.

We have a representation by the form f(¢)=> c,u, (t) for any signal
k,l

f € L*(R) ; the coefficients ¢, are immediately deduced from ¢, =< f,u, >, for
any k,/ € Z . Therefore, any continual (analogical) signal f is identified by the
sequence c,, which is an illustration of the delator phenomenon named

analogical/digital conversion of the signals.
For the signal u(¢) from Proposition 1 (called ,,attenuated sine”), we have

u(w) = {
and for any £,/ € Z fixed, it results that

i, (0)= [u,()-e™dt = [&™ -u(t —k)-e™d;

1, if wc(x,x),

0, inrest

making a change of variable, ¢t —k = 7, we obtain
Uy (w) = e M (- 2n),
for any k,/ € Z. The graphics of the functions u# and u# are indicated in

Fig. 1; a), b).

yA yu

y=u(t)
/_\z\/;/ \?\'//\3\_' PR > >
a) Fig. 1. b)

The signal #(¢) has a good position in # =0 and it is insignificant out of
the system [—1,1]; u(f—k) is the translation of u with £ time units and
it is well localized in the point & . Therefore, u, (¢) is well localized in & and it is
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insignificant out of the interval [k -1k +1], for k€ Z.
In the same way, (@ —2a) is null for o — 24 ¢ [-7, 7], hence i, () is
null out of the interval [-z+ 27,7+ 2], which means that #, (@) is well

localized around the 27 frequency.

Let us consider now rectangles from the tOw plan, hachured like in Fig. 2
and centered in the points (k,271), with k,/ € Z . In this way, the time/frequency
T/ F plan, identified with the tO® plan, is parried with rectangles, like in Fig. 2.

E

)

A2 +1) /EMV/

2mi
a2 -1) 24
0 -1k k+l ; -
Fig. 2.

These kind of rectangles can be covered between themselves (so that they
can’t make a plan partition).

The orthonormated base u, , /,k € Z from the Proposition 1 presents six
disadvantages, which are connected with weak convergence in dots products
calculus <t.,u, >, necessary for signals digital representation. Also, the fact that
all the T/F atoms have the same duration is an impediment in some type of
applications (for example, in Geophysics or Radar). That’s why we proposed
some other kind of orthonormated bases for L*(R).

3. T/ F Transformation

D. Gabor proposed the replacement of the discret values k,/ € Z with
continuous variables &,7€ R, considering 7/F atoms by the type
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1

2r

(called window). For any signal u e L*(R), a function with two real variables,
W, , defined by

we, (1) = e -w(t—r1), where w(t) € L*(R) is a signal with the norm ||w|| , =

W, (z,8) =<u,w,, >= Tu(t) e w(t —r)dt, 4)

—0

was called the 7/F transformation of u, with the window w fixed (or
equivalent of Fourier transformation with window).

It may be remarked the analogy with the relation (1). D. Gabor proved ,
knowing W, (similarly with (2)), the recuparation of «# formula, namely

u(t) = [[ ., (z,€) - w, (dwdé. ()

Note: If w=1 (constant function), we have W (7,&)=u(¢) (Fourier
classic  transformation) and if w=r7 (Dirac distribution), then
W (z,&) =u(r)-e"" . In the two cases, w doesn’t belong to the space L’ (R).

We fix 7€ R and a > 0. We choose a window w:R — R which has to

. . . . 27m
have its support contained in the interval [-7,—7 +a]. Then, for { =——, ne Z,
a

we have (according to (4))

272” 0 72llnt a 727zint
W (c,—) = ju(t)-w(t—r)-e ¢ dt = ju(t)-w(t—r)-e ¢ dt.
a

—o0 0

Proposition 2. Let be u € L*(R) and ¢, the Fourier complex coefficients

of the function u(#)- w(t —7) restricted to the interval [0,a] and then extended to
R by its periodicity. In these conditions ,

Wu(ﬂ,z—m):a-cn,forany neZz. (6)
a

Proof. The demonstration results directly from definitions.
Therefore, knowing W, , we can determinate the coefficients ¢, using the

relation (6); the signal u(¢)is recovered from its Fourier coefficients:
2
—t

u(t) = ch e ¢
neZ

In other words, choosing convenable windows, from data about the signal u(¢),
we can find out local data about its 7/ F transformation, W, and conversely.
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Now we fix a window w. For any fixed #,w € R, we can consider the
function 4, , : R — C defined by

h,,(t)=w(t—1)-€“".
For any vector /heL’(R), we note with 4  the functional defined by

h" =< x,h >. With these notations , we can write:

Proposition 3. For any window w, we have the relation
[[ .o hidodi=1,

where [ is the identity on the Hilbert space L*(R).
Proof. Let us take u € L’ (R), arbitrary fixed. We have to prove that

u(e) = [ o ()b, (W)deod: (7)
Be it u,(7) =u(r)-w(z —t). Then W, (t,w)=u,(r), and, according to the relation
(2), it results that u,(7) = % fW,, (t,w)-e™dw . If we multiplicate with w(z —¢)
s —©
and integrate related with ¢, we obtain

j u,(7) - w(z —t)dt = 1 j dt j W, (t,0)W(r —1) e do,
—0 27[ -0  —0

which means

(@) ol} = [ W )b (@)oo

we also know that ||w||2 = . That’s why we can write now the following

1
27

u(z) = j Lz h, ()W, (t,0)dtde .

relation:

But
W (t,w)= ]O.W(Z' —t)-u(r)-e"dr = Thm (r)-u(r)dr =

=<u,h,, >=h,,(u),

>t

and the relation (7) is now proved.

Corollary. For any signal u € L*(R), its energy E(u) = ||u||j is given by

the formula
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E(u)= ij2| W (t,w) | dido.

Proof. We have | W, (¢, ®) |2: w.(t,o)W,(tw)= h;w (u)- h:w (u); so,
[[.17. o) [ dido=[u]" .

The size |W,(t,w)[’ has the next phisycal interpretation: it is the energy
density of the signal u related to the time unit in 7/ F plan.

Note: The T/F transformation works with a fixed duration of the
window, meaning that we have to consider only w(z—b)translations of the

window if we want to calculate W, (b,&); this can be an inconvenient in 7/ F
analysis of some signals u(#) with high variations in short intervals of time (like

in Geophysics, Radar, Human voice, etc.). This was one of the reasons which
determinated us to propose more flexible windows, which can be translatated and
also, delated (or contracted); this fact marked the appearance of the wavelet
concept.

We fix a window-function ¥ : R — R so that ¥ (¢) and #¥(¢) belong to

L*(R); moreover, ¥(0)=0; the function ¥ was called wavelet. For any signal

u e L*(R), we define the transformation of u by the wavelet ¥ as the next
function of two real variables a,b, with a > 0:

Wu(a,b)=% Tu(z)-\y("bjdz. )

a

Applying the Parseval classic relation, we obtain

W (a,b) = g Tﬁ(a)) e Y(aw)dw =

= ﬁRe jﬁ(m) e Y(aw)do .
s —0

This relation shows the connection with the 7/ F transformation.

4. Application

Let x be the location of a sensitive cell in the spiral shell cortex of the
human ear. We suppose that the audio signal received in x, g (¢), is the

convolution of an acoustic signal u(¢#) with a linear filter which depends by the
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location x, and has the transfer function A (). Then, in the frequency domain,
we have the relation

g.(0)=u(w)-H (0). )

Suppose that by the spiral shell geometry itself we have a delay in

frequency, i.e. there exists a function G so that H () = G(x —Inw). If we note

1 . .
a =e ", results that x = In— and we consider a wavelet W (¢) with
a

¥(w) = G(lni). (10)
[0

Then, using (9), results g (®) =‘i’x(a))-ﬁ(a)) and from the inversion Fourier
formula (2), we obtain the relation

1 T it T .10 =
gx(t)—gje ¥ (aw)-i(w)do =

—00

- [i(@)- #(a)e ™ de = 1 [u@)- ‘P(T—_tjdr
2z 7 a:, a
Using again the Parseval relation, results that the reception at the sensorial cell
localized in x is given by

g. ) =e""W(te™).
The construction of the W (¢) wavelet with the property (10) is still an open
problem.
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