
U.P.B. Sci. Bull., Series A, Vol. 74, Iss. 4, 2012                                                  ISSN 1223-7027 

 
−− nϕ APPROXIMATE WEAK AMENABILITY OF 

ABSTRACT SEGAL ALGEBRAS 
  

Zahra GHORBANI1, Mahmood Lashkarizadeh BAMI 2 

In this paper, we investigate −− nϕ approximately weakly amenability and 
character inner amenability of abstract Segal algebra. Let B  be an abstract Segal 
algebra in a Banach algebra A  with a central approximate identity which is 
bounded in 

A
. . Suppose that )(AHom∈ϕ  is such that )|( BB ϕϕ  is in 

)(BHom . We prove that for each N∈n , if A is −− nϕ weakly amenable, then 

B  is −B|ϕ approximately weakly amenable. 
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1. Introduction 

         A Banach algebra A  is called amenable if for each Banach A -module X , 
every bounded derivation from A  into a dual A -module *X  is an inner 
derivation. Recently, some authors have added a kind of twist to the amenability 
definition. Given a continuous homomorphism ϕ  from A  into A , they defined 
and studied ϕ -derivations and ϕ -amenability (see [3], [7], [18]and [21]). 

Suppose that A  is a Banach algebra and )(AHom∈ϕ , consisting of all 
continuous homomorphisms from A  into A . 

Let X  be a Banach A -bimodule, a linear operator XAD →:  is a ϕ -
derivation if it satisfies )()()()(=)( bDabaDabD ϕϕ +  for all Aba ∈, . A ϕ -
derivation D  is called a ϕ -inner derivation if there is Xx∈  such that 

)()(=)( axxaaD ϕϕ −  for all Aa∈ . Let ),(1 XAϕZ  denote the set of all 

continuous ϕ -derivations and ),(1 XAϕN  be the set of all ϕ -inner derivations 

from A  into X . The first cohomology group ),(1 XAϕH  is defined to be the 

quotient space ),()/,( 11 XAXA ϕϕ NZ . 
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A Banach algebra A  is called ϕ -amenable if {0}=),( *1 XAϕH  for all A -

bimodules X  and A  is called ϕ -weakly amenable if {0}=),( *1 AAϕH . Note that 
every derivation of a Banach algebra A  into an A -bimodule X  is an Aid -
derivation, where Aid  is the identity operator on A . A ϕ -derivation D  is called 
approximate ϕ -inner derivation if there is a net )( αx  in X  such that 

))(.).((lim=)( axxaaD ϕϕ αα
α

− . A Banach algebra A  is called ϕ -approximate 

amenable if every ϕ -derivation is an approximate ϕ -inner derivation. 
               The aim of the present paper is to introduce and investigate 

−− nϕ approximately weakly amenability of abstract Segal algebra.   

2. The results 

           We start this section by introducing the following: 
 
Let A  be a Banach algebra and YX ,  be Banach A -bimodules, then A -

bimodule homomorphism from X  to Y  is a homomorphism YX →:ϕ  with  
).,()(=)(),(=)( XxAaaxaxxaxa ∈∈⋅⋅⋅⋅ ϕϕϕϕ  

 
Definition 2.1 Let A  be a Banach algebra with the norm 

A
. . Then a 

Banach algebra B  with the norm 
B

.  is an abstract Segal algebra with respect to 
A if: 

(i) B  is a dense left ideal in A ; 
(ii) there exists 0>M  such that 

BA
bMb ≤  for all Bb∈ ; 

(iii) there exists 0>C  such that 
BAB

baCab ≤  for all Bba ∈, . 
 
Recall that a net Ie ∈αα )(  in A  is central bounded approximate identity if 

),(= IAaaeae ∈∈ ααα  and Ie ∈αα )(  is a bounded approximate identity for A . 
Let A  be a Banach algebra, the duals )(nA  are Banach A-bimodule for 

each Nn∈ . We take AA =(0)  and we denotes the restriction of ϕ  to B  by Bϕ . 
 
Theorem 2.2 Let B  be an abstract Segal algebra in a Banach algebra A  

with a central approximate identity which is bounded in 
A

. .Then for each N∈n , 
and )(AHom∈ϕ , if A  is −− nϕ weakly amenable, then B  is 

−− nBϕ approximately weakly amenable 
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Proof. Let N∈n  and )(: nBBD →  be a continuous −ϕ derivation. Let nX  
be the closed linear span of the set },:)()({ )( BbabBa B

n
B ∈⋅⋅ ϕϕ . Suppose that 

)( αe  is a central approximate identity for B . Since )( αe  is central, it follows that  
.)( nXBD ⊆  

Consequently, )( αe  is a multiplier-bounded, central approximate identity for nX . 
In particular  

)()(=)()(lim 2 BbbDbDeB ∈⋅α
α
ϕ  

For each α  define the map BA→:ατ  by  
).()(=)( Aaeaa ∈αα ϕτ  

Let AB →:θ  denote the inclusion map. Trivially, both ατ  and θ  are linear and 
continuous left A -module morphisms and also continuous B -bimodule 
morphisms. It is clear that )(=)(=)( beebb BB ϕϕθτ ααα  for all Bb∈  , so by 
induction, for each N∈n  we have  

).()(=)(=)()( )()()()( nn
B

n
B

n BFFeeFF ∈⋅⋅ ϕϕθτ ααα  
Define the continuous linear map )(: nAAD →α  by  

(*)
)]()()([
)]()()([

=)( )(

)(

⎪⎩

⎪
⎨
⎧

⋅−
⋅−

oddisnifaeDaeD
evenisnifeDaaeD

aD n

n

ϕτ
ϕθ

ααα

αα
α  

for all Aa∈ . Thus for each Bb∈  we have 
 

(**)
))(.)((
))()((

=)( )(

)(

⎩
⎨
⎧ ⋅

oddisnifbDe
evenisnifebD

bD
B

n
B

n

αα

α
α ϕτ

ϕθ
 

Since )( αe  is central, it follows that )()()()(=)( cbDcDbbcD BB ϕϕ ααα ⋅+⋅  for all 
Bcb ∈, . 

From the density of B  in A , it follows that αD  is a −ϕ derivation from 
A  into )(nA . By assumption there exists )(nAF ∈α  such that  

).()()(=)( AaaFFaaD ∈⋅−⋅ ϕϕ ααα  
In particular, by equation (**)  for each even N∈n  we have  

))()(()(=)()( )(2
ααα ϕθτϕ ebDebD B

n
B ⋅⋅  

                                       )()(= )( bDn
αατ  

                                       ),()()()()()(= )()( bFFb B
nn

B ϕττϕ αααα ⋅−⋅  
 

and for every odd N∈n  we have  
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))()(()(=)()( )(2 bDebDe B
n

B ⋅⋅ ααα ϕθτϕ  
                                       )()(= )( bDn

αατ  
                                       )()(= )( bDn

αθ  
                                       ),()()()()()(= )()( bFFb B

nn
B ϕθθϕ αα ⋅−⋅  

 
for all Bb∈ . For each even n  put )(= )(

ααα τ FG n  and for every odd n  put 
)(= )(

αα θ FG n  if n  is odd. Trivially, )(nAG ∈α  for all α . By (*)  we have  
).()()(lim=)()(lim=)( 2 BbbGGbbDebD BBB ∈⋅−⋅⋅ ϕϕϕ αα

α
α

α
 

That is, D  is −Bϕ approximately inner.     □ 
 

 Before we present our next result we recall from [14] that a linear 
subspace )(1 GS  of the convolution group algebra )(1 GL  is said to be a Segal 
algebra on G  if it satisfies the following conditions. 

(i) )(1 GS  is dense in )(1 GL . 
(ii) )(1 GS  is a Banach space under some norm 

S
.  and for each 

)(1 GSf ∈   
 

S
sf ≤

1
 

           (iii) )(1 GS  is left translation invariant and the map fx x ∗δ6  from G  
into )(1 GS  is continuous. 

(iv) 
SSx ff =∗δ  for all )(1 GSf ∈  and Gx∈ . 

That every Segal algebra is an abstract Segal algebra with respect to )(1 GL  
but not conversely; see [22]. 
 

Corollary 2.3 Let )(GS  be a Segal algebra on a locally compact SIN 
group G .Then for each N∈n  and ))(( 1 GLHom∈ϕ  with )())(( GSGS ⊆ϕ . If 

)(1 GL  is −− nϕ weakly amenable, then )(GS  is approximately −−nGS )(|ϕ weakl- 
y amenable  

Proof. Since G  is a SIN group, then by a result of [17], )(GS  has a 
central approximate identity which is bounded in 

1
. . The result is now obvious 

from Theorem 2.2.     □  
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Proposition 2.4 Suppose A  is a commutative Banach algebra which is 
generated by the idempotent elements in A  and ϕ  is in )(AHom ; then A  is 

−− nϕ weak amenable. 
 
Proof. Let P  denote the set of all idempotent elements in A . Assume that 

)(: nAAD →  is a −ϕ derivation. For any )(=)(=)(, 32 pDpDpDPp∈  and 
)()(3=)(),()(2=)( 232 pDppDpDppD ϕϕ , so 0=)( pD . Since Pp∈  is 

arbitrary and A  is generated by P , it follows that 0=)(aD  for all Aa∈ . So, A  
is −− nϕ weak amenable.   □ 

 
We recall is called a character on A  is a non-zero homomorphism from 

A  into the scalar field. The set of all characters on A  the character space of A , is 
denoted by AΦ . The kernel of {0}∪Φ∈ Aϕ  is denoted by ϕM . Let 

{0}∪Φ∈ Aϕ . A linear functional d  on A  is called a point derivation at ϕ  if 
 

).,(),()()()(=)( Ababdabadabd ∈+ϕϕ  
 

 
Proposition 2.5 Let A  be a Banach algebra , AΦ∈ϕ  and θ  be an 

idempotent homomorphism on A . Let A  be −θ approximately weak amenable 
and ∅=kerϕθ∩Im . Then there are no non-zero, continuous point derivations 
at ϕ .  

Proof. Let d  be a continuous point derivation of A  at AΦ∈ϕ . Then the 
mapping *: AAD →  given by )(),)((=)( AaadaD ∈θϕ D  is a −θ  derivation, 
since  

 ))(()())(()(=)( θϕϕθϕϕ DD bdabadabD +  
            ).,(),)(()()())((= Ababdabad ∈⋅+⋅ θϕθθθϕ DD  

 
Since A  is −θ approximately weak amenable, so D  is −θ approximately 

inner. Thus, there exists a net *)( A⊂αθ  such that for every Aa∈ ,  
)).()((lim=)( aaaD θθθθ αα

α
⋅−⋅  

For every Aa∈  we have 
 

0,=))()((lim=))())(()((lim=))()(( 22 aaaaaaaD θθθθθθθθθ α
α

αα
α

−⋅−⋅  
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since )())()((=))(( AaaaDaaD ∈θ , 0=))(( aaD  and so 0=| / ϕMAd . Thus 0=d . 

□ 
 
Recently Jabbari et al. [11] have introduced the notation of ϕ -inner 

amenability )( AΦ∈ϕ . A Banach algebra A  is said to be ϕ -inner amenable if 
there exists **Am∈  satisfying 1=)(ϕm  and ),)(·(=)·( * AaAffamafm ∈∈ . 
Such m  will sometimes be referred as a ϕ -inner mean, and A  is said to be 
character inner amenable if A  is ϕ -inner amenable for every AΦ∈ϕ . They also 
gave several characterizations of ϕ -inner amenability. For instance, as in the case 
of ϕ -amenability in [14, Theorem 1.4], they proved that a ϕ -inner mean is in fact 
some *w -cluster point of a bounded net Aa ∈)( α  satisfying 0→− αα aaaa , for 
all Aa∈  and 1=)( αϕ a  for all α ; [15, Theorem 2.1]. In this section we 
investigate character inner amenability of abstract Segal algebras. 

 
Theorem 2.6 Let A  be a Banach algebra and let B  be an abstract Segal 

algebra with respect to A . Suppose that there exists Bb ∈0  such that bbbb 00 =  
for every Bb∈ . Then A  is ϕ -inner amenable )( AΦ∈ϕ  if and only if B  is B|ϕ -
inner amenable  

 
Proof. Suppose that A  is ϕ -inner amenable. Then there is a bounded net 
Aa ∈)( α  such that 0→−

A
aaaa αα , for all Aa∈  and 1=)( αϕ a  for all α . We 

may assume that 1=)( 0bϕ . For every α  we put  
.:= 0 Bbab ∈αα  

Since B  is an abstract Segal algebra with respect to A , there exists 0>C  such 
that for each Bb∈ ,  

BB
bbababbbb 0)(= αααα −−  

                                            0,0 →−≤
BA

bbabaC αα  
 and  

1.=)(=)( αα ϕϕ ab  
Since )( αa  is −

A
. bounded, it follows that )( αb  is −

B
. bounded. Thus B  is 

B|ϕ -inner amenable. 
Conversely Suppose that B  is B|ϕ -inner amenable. Then there is a 

bounded net Bb ∈)( α  such that 0→−
B

bbbb αα , for all Bb∈  and 1=)( αϕ b  for 
all α . We can assume that 1=)( 0bϕ . Define  
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αα bba 0:=  
for all α . Since B  is a dense left ideal in A , abab 00 =  for every Aa∈  and so B  
is an abstract Segal algebra with respect to A . Therefore there there exists 0>M  
such that for each Bb∈ ,  

 
AA

bababbaaaa ))()(= 00 αααα −−  

                       0,))()( 00 →−≤
B

bababbM αα  
 and for every α   

1.=)(|=)( αα ϕϕ ba B  
Since 

BA
M .. ≤ , it follows that )( αa  is −

A
. bounded. Therefor A  is ϕ -inner 

amenable.      □ 
 

 As a consequence of Theorem 2.6 we have the following result. 
 
Corollary 2.7 Let B  be an abstract Segal algebra with respect to a 

character inner amenable Banach algebra A . If there exists Bb ∈0  such that 
bbbb 00 =  for every Bb∈  then for all BΦ∈ϕ , B  is ϕ -inner amenable  
 
Corollary 2.8 Let B  be an abstract Segal algebra with respect to a 

Banach algebra A  with a central approximate identity. Then A  is ϕ -inner 
amenable )( AΦ∈ϕ  if and only if B  is B|ϕ -inner amenable.  

   
Proof. Suppose that Ie ∈αα )(  is a central approximate identity for B . Fix 

I∈0α . Since )( αe  is central, it follows that )(=
00

Bbbebe ∈αα . Now an 

application of Theorem 2.6 completes the proof.      □ 
 
Proposition 2.9 Let A  be a Banach algebra and AΦ∈ϕ . If ϕker  has a 

central approximate identity, then A  is ϕ -inner amenable.  
  
Proof. Choose Aa ∈0  such that 1=)( 0aϕ . Let Ie ∈αα )(  be a central 

approximate identity for ϕker . Set αα eaaa 00= − . Then, for every ϕker∈b   
 αααα ebababeabababa 0000= +−−−  

                     0,000 →−+−≤ αα bebaebaba   
 so for every ϕker\Aa∈  we have ϕker00 ∈− aaaa  and  

 αααα eaaaaaeaaaaaaa 0000= +−−−  
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                     0.)()(= 0000 →−−− αeaaaaaaaa  

 It follows that, 1=)( αϕ a  and 0→− αα aaaa , for all Aa∈ . Thus A  is ϕ -inner 
amenable.     □ 

 
Let A  be a Banach algebra. We recall from [6] that a left multiplier on A  

is an element L  in )(AL  (linear maps on A ) such that )�,(,)(=)( AbabaLabL ∈  
and a right multiplier on A  is an element R  in )(AL  such that )(=)( baRabR . A 
multiplier is a pair ),( RL  where L  and R  are left and right multipliers on A , 
respectively, and ),()(=)( AbabaRbaL ∈ . 

    
 
Proposition 2.10 Let A  be a character inner amenable Banach algebra. If 

there exists Ab ∈0  such that )(=)( 2
0

2
0 baRabR  for every Aa∈  and R  is of closed 

range, then for each )( ARΦ∈ϕ  the Banach algebra )(AR  is ϕ -inner amenable.  
  
Proof. For arbitrary )( ARΦ∈ϕ  we can choose 1=))(( 2

0bRϕ . Define the 

linear functional ϕ~  on A  by AabaRa ∈())((:=)(~ 2
0ϕϕ . It is clear that ϕ~  defines 

a non-zero multiplicative linear functional on A  whose definition is independent 
of 0b . That is AΦ∈ϕ~ . As we mentioned in preliminaries, the −ϕ~  amenability of 
A  implies that there exist a net Iu ∈αα )(  in A such that 1=)(~

αϕ u  for all I∈α , 
and 0→− αα auau  for each Aa∈ . Now for each I∈α , set )(:= 2

0bRuv αα . So 
we have 1=)( αϕ v  and for each Aa∈   

 0.)()()()()( 2
0 →−≤− αααα uaRaRubRvaRaRv  

This complete the proof.      □ 
 
 A similar argument is also valid for a left multiplier L  on A . 
 
Corollary 2.11 Let A  be a character amenable Banach algebra. If there 

exists Ab ∈0  such that )(=)( 2
0

2
0 baRabR  for every Aa∈  and R  is of closed 

range, then for each )( ARΦ∈ϕ  the Banach algebra )(AR  is ϕ -inner amenable.  
 
Proof.  Suppose that A  is character amenable. Then A  has a bounded 

approximate identity and so by [7, Corollary 2.2] A  is a character inner amenable. 
By Proposition 2.10, )(AR  is ϕ -inner amenable for each )( ARΦ∈ϕ .    □ 
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In the case where A  is commutative, Proposition 2.10 given the following 
result. 

 
Corollary 2.12 Let A be a commutative character inner amenable Banach 

algebra and suppose that AAR →:  is of closed range. Then for each )( ARΦ∈ϕ  
the Banach algebra )(AR  is ϕ -inner amenable.  
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