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KINEMATICS OF A 3-PRP PLANAR PARALLEL ROBOT 

Damien CHABLAT1, Stefan STAICU2  

Articolul prezintă o modelare recurentă pentru cinematica unui robot paralel 
plan 3-PRP. Trei lanţuri cinematice plane ce conectează platforma mobilă a 
manipulatorului sunt situate în plan vertical. Cunoscând mişcarea platformei, se 
dezvoltă cinematica inversă şi se determină poziţiile, vitezele şi acceleraţiile 
robotului. Unele ecuaţii matriceale oferă expresii iterative şi grafice pentru 
deplasările, vitezele şi acceleraţiile celor trei acţionori de translaţie.  

Recursive modelling for the kinematics of a 3-PRP planar parallel robot is 
presented in this paper. Three planar chains connecting the moving platform of the 
manipulator are located in a vertical plane. Knowing the motion of the platform, we 
develop the inverse kinematics and determine the positions, velocities and 
accelerations of the robot. Several matrix equations offer iterative expressions and 
graphs for the displacements, velocities and accelerations of the three prismatic 
actuators. 

Keywords: kinematics, planar parallel robot, singularity  

1. Introduction 

Compared with serial manipulators, the potential advantages of the parallel 
architectures are a higher kinematical precision, lighter weight, better stiffness, 
greater loading capability, stable capacity and suitable positional actuator 
arrangements. However, they present limited workspace and complicated 
singularities [1]. 

Considerable efforts have been devoted to the kinematics and dynamic 
analysis of fully parallel manipulators. The class of manipulators known as 
Stewart-Gough platform focused particular attention (Stewart [2]; Merlet [3]; 
Parenti-Castelli and Di Gregorio [4]) and is used in flight simulators and, more 
recently, for Parallel Kinematics Machines. The Delta parallel robot (Clavel [5]; 
Tsai and Stamper [6]; Staicu and Carp-Ciocardia [7]) as well as the Star parallel 
manipulator (Hervé and Sparacino [8]) are equipped with three motors, which 
train on the mobile platform in a three-degree-of-freedom general translation 
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motion. Angeles, Gosselin, Gagné and Wang [9, 10, 11] analysed the kinematics, 
dynamics and singularity loci of a spherical robot with three actuators.  

A mechanism is considered as a planar robot if all the moving links in the 
mechanism perform planar motions; the loci of all points in all links can be drawn 
conveniently on a plane and the axes of the revolute joints  remains normal to the 
plane of motion, while the direction of translation of a prismatic joint  preserves 
parallel to the plane of motion. 
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       Fig. 1 The 3-PRP planar parallel robot 

Aradyfio and Qiao [12] examine in their paper the inverse kinematics 
solution for the three different 3-DOF planar parallel robots. Gosselin and 
Angeles [13] and Pennock and Kassner [14] each present a kinematical study of a 
planar parallel robot, where a moving platform is connected to a fixed base by 
three links or legs, each leg consisting of two binary links and three parallel 
revolute joints. Sefrioui and Gosselin [15] give a numerical solution in the inverse 
and direct kinematics of this kind of robot. Mohammadi-Daniali et al. [16] present 
a study of velocity relationships and singular conditions for general planar parallel 
robots.  

Merlet [17] solved the forward posed kinematics problem for a broad class 
of planar parallel manipulators. Williams and Reinholtz [18] analysed the 
dynamics and the control of a planar three-degree-of-freedom parallel manipulator 
at Ohio University, while Yang et al. [19] concentrate on the singularity analysis 
of a class of 3-RRR planar parallel robots developed in their laboratory. Bonev, 
Zlatanov and Gosselin [20] describe several types of singular configurations by 
studying the direct kinematics model of a 3-RPR planar parallel robot with 
actuated base joints. Mohammadi-Daniali et al. [21] analysed the kinematics of a 
planar 3-DOF parallel manipulator using the three PRP legs, where the three 
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revolute joint axes are perpendicular to the plane of motion, while the prismatic 
joint axes lie in the same plane. 

A recursive method is developed in the present paper for deriving the 
inverse kinematics of the 3-PRP planar parallel robot in a numerically efficient 
way.  

2. Kinematics modelling 

The planar 3-PRP parallel robot is a special symmetrical closed-loop 
mechanism composed of three planar kinematical chains with identical topology, 
all connecting the fixed base to the moving platform. Three points  
represent the summits of a fixed triangular base and other three points define the 
geometry of the moving platform. Each leg consists of two links, with one 
revolute and two prismatic joints. The parallel mechanism with seven links 

 consists of three revolute and six prismatic joints (Fig.1). Grübler 
mobility equation predicts that the device has certainly three degrees of freedom. 
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In the actuation scheme PRP each prismatic joint is an actively controlled 
prismatic cylinder. Thus, all prismatic actuators can be located on the fixed base. 
We attach a Cartesian frame  to the fixed base with its origin located at 
triangle centreO , the  axis perpendicular to the base and the axis pointing 
along the  direction. Another, mobile reference frame  is attached to 
the moving platform. The origin of the central reference frame  is located 
at the centre  of the moving triangle (Fig. 2). 
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In the following we  shall represent the intermediate reference systems by two 
axes only, like in many robotics papers [1, 3, 9]. We note that the relative 
translation 1, −kkλ  and the rotation angle 1, −kkϕ  point along or about the direction of 

 axis. kz
We consider that the moving platform is initially located at a central 

configuration, where the platform is not rotated with respect to the fixed base and 
the mass centre G   coincides with the origin O  of the fixed frame. One of the 
three active legs (for example leg ) consists of a prismatic joint, which is a 
linear drive 1 as well, linked at the  frame, having a rectilinear motion  
with displacement , velocity  and acceleration . Next to the 
link of the leg a rigid body 2 is bound to the  frame, having a relative 
rotation about the  axis with the angle , velocity  and 
acceleration . A prismatic passive joint is introduced at the planar moving 
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platform as an equilateral triangle with the edge 30ll = , which translates 

relatively with the displacement  and the velocity  along the  axis. A
32λ AAv 3232 λ= Az3

Also, we consider that at the central configuration all legs are 
symmetrically extended and that the angles of orientation of the three edges of the 
fixed platform are given by 
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Fig. 2 Kinematical scheme of first leg A  of the mechanism 

In the following, we apply the method of successive displacements  during the 
geometric analysis of the closed-loop chains and we note that a joint variable is 
the displacement required to move a link from the initial location to the actual 
position. If every link is connected to at least two other links, the chain forms one 
or more independent closed-loops. 

The variable angle  of rotation about the joint axis  is the parameter 
needed to bring the next link from a reference configuration to the next 
configuration. We call the matrix , for example, the  orthogonal 
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transformation matrix of the relative rotation with the angle  of the link  

around . 

i
kk 1, −ϕ

321 CC

i
kT
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In the study of the kinematics of robotic manipulators, we are interested in 
deriving a matrix equation relating the location of an arbitrary  body  to the 
joint variables. When the change of coordinates is successively considered, the 
corresponding matrices are multiplied. So, starting from the reference origin O  
and pursuing the three legs , , , we obtain the 
following transformation matrices [22]: 
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The displacements  of the active links are the joint variables that 

give the input vector   for the position of the mechanism.  
In the inverse geometric problem however, we can consider that the position of 
the mechanism is completely given by the coordinates  of the mass centre 

 of the moving platform and the orientation angle 
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Further, we suppose that the position vector TGGG yxr ]0[ 000 =  of  the centre G and 
the orientation angle Φ, which are expressed by following analytical functions 
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can describe the general absolute motion of the moving platform in its vertical 
plane. The values  denote the final position of the moving 
platform. 
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The conditions concerning the absolute orientation of the moving platform are 
expressed by three identities 
 ,  (6) ),,(,3030 cbaqRqq T ==

where the resulting matrix  is obtained by multiplying the three basic matrices 30q
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From these conditions one obtains the first relations between the angles of rotation 
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Actually, these vector equations mean that  
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with . ),,( CBAi =

Developing the inverse kinematics problem, we determine the velocities and 
accelerations of the manipulator, supposing that the planar motion of the moving 
platform is known. So, we compute the linear and angular velocities of each leg in 
terms of the angular velocity 30 uG φω =  and the centre’s velocity  of the 
moving platform. 

0 0
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The rotational motion of the elements of each leg (leg A, for example) are 
characterized by recursive relations using the following skew-symmetric matrices 
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which are associated to the absolute angular velocities 
 010 =

Aω , 321102120 ua AAA φωωω =+= , 332203230 ua AAA φωωω =+= .  (13) 

 The following relations give the velocities A
kv 0  of joints  kA

                              31010 uv AA λ= , 021 =
Av , 33232 uv AA λ=  

                               31,1,0,11,0,11,0
~ uvravav A

kk
A
kk

A
kkk

A
kkk

A
k −−−−−− ++= ω .                            (14) 

The geometrical equations of constraints (8) and (9) when differentiated with 
respect to the time lead to the following matrix conditions of connectivity [23] 
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where 3
~u  is a skew-symmetric matrix associated to the unit vector , pointing in 

the positive direction of the  axis. From these equations, we obtain the relative 
velocities  as functions of the angular velocity of the platform and the 
velocity of the mass centre G  and the complete Jacobian matrix of the 
manipulator. This matrix is a fundamental element for the analysis of the robot 
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workspace and the particular configuration of singularities, where the manipulator 
becomes uncontrollable. 

By rearranging, the derivatives with respect to time  for the six constraint 
equations (11) lead to the matrix equation 
 TGG yxJJ ][ 002101 φλ =   (16) 

for the planar robot with prismatic actuators. 
The matrices  and  are the inverse and the forward Jacobian of the 

manipulator and can be expressed as 
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The singular configurations of the three closed-loop kinematical chains can easily 
be determined through the analysis of two Jacobian matrices  and  [24, 25]. 
For the matrix J1, the determinant vanishes in 

1J 2J
3/π=φ , which leads also to a 

singular configuration of J2. 

Concerning the relative accelerations  of the robot, new connectivity 
conditions are obtained by the time derivative of equations in (15), which are [26] 
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The formulations in (15) and (19) are for  only and they also apply to the legs A
B  and  when the superscript  is replaced by either C A B  or . C
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We can notice that, for this robot, the displacement of the leg is very simple. 
The displacement of body 2 is along a fixed line only, and its velocity and 
acceleration is equal to those of the associated, actuated joint.  

For simulation purposes let us consider a planar robot, which has the following 
characteristics: 
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A program, which implements the suggested algorithm, is developed in 
MATLAB to solve the inverse kinematics of the planar PRP parallel robot. For 
illustration, it is assumed that for a period of three seconds the platform starts at 
rest from a central configuration and rotates or moves along two orthogonal 
directions. A numerical study of the robot kinematics is carried out by 
computation of the displacements   , the velocities   and 
the accelerations    of three prismatic actuators.  
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 The following examples are  given to illustrate the simulation. As a first 
example, we consider the rotation motion of the moving platform about the axis 

 with a variable angular acceleration, while all the other positional parameters 
are held equal to zero.  

0z

  
Fig. 3 Displacements  ,10
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Fig. 7 Velocities  ,10
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As can be seen from Figs. 3, 4, 5, during the rotational motion of the platform all 
displacements, velocities and accelerations of all three actuators are identically 
distributed.  

In a second example, the  presumed motion of the platform is a translation 
along the horizontal axis  (Figs. 6, 7, 8). 0x

 

  

Fig. 9 Displacements  ,10
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Bv Cv10Fig. 10 Velocities  

 
Concerning the comparison in the case when the centre  moves along a 

rectilinear trajectory along  the axis , without any rotation of the platform, we 
remark that the distribution of the displacement, velocity and acceleration, as 
calculated by the program and depicted in Figs. 9, 10, 11 is the same, at any 
instant, for two of the three actuators. 
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Fig. 11 Accelerations  ,10

Aγ ,10
Bγ C

10γ

The simulation through the MATLAB program certify that  a major advantage 
of the current matrix recursive approach is the well structured way to formulate a 
kinematical model, which leads to computational efficiency. The proposed 
method can be applied to various types of complex robots, when the number of 
components of the mechanism is increased. 

          3. Conclusions 

Within the inverse kinematics analysis some exact relations that give  the 
position, velocity and acceleration of each element of the parallel robot in real-
time have been established. The method described is quite available in forward 
and inverse mechanics of all serial or planar parallel mechanisms, the platform of 
which behaves in translation, rotation or general 3-DOF evolution . 
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