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KINEMATICS OF A 3-PRP PLANAR PARALLEL ROBOT

Damien CHABLAT', Stefan STAICU?

Articolul prezintda o modelare recurenta pentru cinematica unui robot paralel
plan 3-PRP. Trei lanturi cinematice plane ce conecteazd platforma mobila a
manipulatorului sunt situate in plan vertical. Cunoscand miscarea platformei, se
dezvolta cinematica inversa §i se determind porzitiile, vitezele si acceleratiile
robotului. Unele ecuatii matriceale oferd expresii iterative si grafice pentru
deplasarile, vitezele si acceleratiile celor trei actionori de translatie.

Recursive modelling for the kinematics of a 3-PRP planar parallel robot is
presented in this paper. Three planar chains connecting the moving platform of the
manipulator are located in a vertical plane. Knowing the motion of the platform, we
develop the inverse kinematics and determine the positions, velocities and
accelerations of the robot. Several matrix equations offer iterative expressions and
graphs for the displacements, velocities and accelerations of the three prismatic
actuators.

Keywords: kinematics, planar parallel robot, singularity
1. Introduction

Compared with serial manipulators, the potential advantages of the parallel
architectures are a higher kinematical precision, lighter weight, better stiffness,
greater loading capability, stable capacity and suitable positional actuator
arrangements. However, they present limited workspace and complicated
singularities [1].

Considerable efforts have been devoted to the kinematics and dynamic
analysis of fully parallel manipulators. The class of manipulators known as
Stewart-Gough platform focused particular attention (Stewart [2]; Merlet [3];
Parenti-Castelli and Di Gregorio [4]) and is used in flight simulators and, more
recently, for Parallel Kinematics Machines. The Delta parallel robot (Clavel [5];
Tsai and Stamper [6]; Staicu and Carp-Ciocardia [7]) as well as the Star parallel
manipulator (Hervé and Sparacino [8]) are equipped with three motors, which
train on the mobile platform in a three-degree-of-freedom general translation
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motion. Angeles, Gosselin, Gagné and Wang [9, 10, 11] analysed the kinematics,
dynamics and singularity loci of a spherical robot with three actuators.

A mechanism is considered as a planar robot if all the moving links in the
mechanism perform planar motions; the loci of all points in all links can be drawn
conveniently on a plane and the axes of the revolute joints remains normal to the
plane of motion, while the direction of translation of a prismatic joint preserves
parallel to the plane of motion.

Co g ff — — —
A\
\ /o
Cs R .
\
\
\
1\
Ao

Fig. 1 The 3-PRP planar parallel robot

Aradyfio and Qiao [12] examine in their paper the inverse kinematics
solution for the three different 3-DOF planar parallel robots. Gosselin and
Angeles [13] and Pennock and Kassner [14] each present a kinematical study of a
planar parallel robot, where a moving platform is connected to a fixed base by
three links or legs, each leg consisting of two binary links and three parallel
revolute joints. Sefrioui and Gosselin [15] give a numerical solution in the inverse
and direct kinematics of this kind of robot. Mohammadi-Daniali et al. [16] present
a study of velocity relationships and singular conditions for general planar parallel
robots.

Merlet [17] solved the forward posed kinematics problem for a broad class
of planar parallel manipulators. Williams and Reinholtz [18] analysed the
dynamics and the control of a planar three-degree-of-freedom parallel manipulator
at Ohio University, while Yang et al. [19] concentrate on the singularity analysis
of a class of 3-RRR planar parallel robots developed in their laboratory. Bonev,
Zlatanov and Gosselin [20] describe several types of singular configurations by
studying the direct kinematics model of a 3-RPR planar parallel robot with
actuated base joints. Mohammadi-Daniali et al. [21] analysed the kinematics of a
planar 3-DOF parallel manipulator using the three PRP legs, where the three
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revolute joint axes are perpendicular to the plane of motion, while the prismatic
joint axes lie in the same plane.

A recursive method is developed in the present paper for deriving the
inverse kinematics of the 3-PRP planar parallel robot in a numerically efficient
way.

2. Kinematics modelling

The planar 3-PRP parallel robot is a special symmetrical closed-loop
mechanism composed of three planar kinematical chains with identical topology,
all connecting the fixed base to the moving platform. Three points 4,, B,, C,
represent the summits of a fixed triangular base and other three points define the
geometry of the moving platform. Each leg consists of two links, with one
revolute and two prismatic joints. The parallel mechanism with seven links
(T,,k=1,2,...,7) consists of three revolute and six prismatic joints (Fig.1). Griibler
mobility equation predicts that the device has certainly three degrees of freedom.

In the actuation scheme PRP each prismatic joint is an actively controlled
prismatic cylinder. Thus, all prismatic actuators can be located on the fixed base.
We attach a Cartesian frame x,y,z,(7;) to the fixed base with its origin located at

triangle centre O, the z, axis perpendicular to the base and the x, axis pointing
along the C,B, direction. Another, mobile reference frame x.y.z. is attached to
the moving platform. The origin of the central reference frame x.y.z. is located

at the centre G of the moving triangle (Fig. 2).

In the following we shall represent the intermediate reference systems by two
axes only, like in many robotics papers [1, 3, 9]. We note that the relative
translation 4, ,_, and the rotation angle ¢, ., point along or about the direction of
Z, axis.

We consider that the moving platform is initially located at a central
configuration, where the platform is not rotated with respect to the fixed base and
the mass centre G coincides with the origin O of the fixed frame. One of the
three active legs (for example leg A4) consists of a prismatic joint, which is a

linear drive 1 as well, linked at the x;'y/ 'z frame, having a rectilinear motion
with displacement A i1, velocity v/s =1 and acceleration y; =1 . Next to the
link of the leg a rigid body 2 is bound to the x;'y;'z; frame, having a relative
rotation about the z; axis with the angleg;, velocity i =@ and
acceleration¢ J\= ¢;,. A prismatic passive joint is introduced at the planar moving
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platform as an equilateral triangle with the edge l=lox/§ , which translates

relatively with the displacement A% and the velocity vi, = A% along the z;' axis.

Also, we consider that at the central configuration all legs are
symmetrically extended and that the angles of orientation of the three edges of the
fixed platform are given by

V4 T
a, ZE,aB:ﬂ,aC:—E. (1)

Ay

Fig. 2 Kinematical scheme of first leg A of the mechanism

In the following, we apply the method of successive displacements during the
geometric analysis of the closed-loop chains and we note that a joint variable is
the displacement required to move a link from the initial location to the actual
position. If every link is connected to at least two other links, the chain forms one
or more independent closed-loops.

The variable angle ¢, ,_, of rotation about the joint axis z, is the parameter

needed to bring the next link from a reference configuration to the next
configuration. We call the matrix ¢/, , for example, the 3x3 orthogonal
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transformation matrix of the relative rotation with the angle ¢, ,_, of the link 7

around z; .
In the study of the kinematics of robotic manipulators, we are interested in
deriving a matrix equation relating the location of an arbitrary body 7, to the

joint variables. When the change of coordinates is successively considered, the
corresponding matrices are multiplied. So, starting from the reference origin O
and pursuing the three legs 0O4,4,4,4,, OB,B,B,B,, OC,C,C,C,, we obtain the
following transformation matrices [22]:

90 =00,, 4, = q;ﬂlelTa 5, = 6,0,

: . )
with (¢ =a, b, ¢), (i=4, B, C)
cosg;,, sing,,, O cosa; sing, 0
where 47  =|-sing,,, cosg,,, 0|, 0, =|-sina, cosa,
0 0 1 0 0

00 -1 1 =430

6, = 01,0, _Us o1 o (3)
2
0 0 0 0o 2

k
9ro = qu—s+1,k—s (k=1,2,3).
s=1

The displacements A, , A%, A, of the active links are the joint variables that

give the input vector A, =[A} A5 151" for the position of the mechanism.
In the inverse geometric problem however, we can consider that the position of
the mechanism is completely given by the coordinates x_, y¢ of the mass centre
G of the moving platform and the orientation angle @ of the movable frame
X;VcZs - The orthogonal rotation matrix of the moving platform from x,y,z, to
X;YcZ; reference system is
cos¢g sing O
R=|—-sing cos¢g O], 4)
0 0 1
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Further, we suppose that the position vector 7% =[x y¢ 0]" of the centre G and
the orientation angle @, which are expressed by following analytical functions

G G
Xo Vo _ ¢ _ T
Xo Yo

can describe the general absolute motion of the moving platform in its vertical
plane. The values 2x. ,2yS",2¢" denote the final position of the moving

platform.
The conditions concerning the absolute orientation of the moving platform are
expressed by three identities

q;ng =R, (q =a,b,c), (6)

where the resulting matrix g,, is obtained by multiplying the three basic matrices
T30 = A0 G2 =43 =0)=60,0, (i=4,B,C). (7
From these conditions one obtains the first relations between the angles of rotation
Pn =05 =05 =9 ®)

Six independent variables A7, A5,, 40, A%, , A5, AS, will be determined by several
vector-loop equations as follows

2
Fo+ Y GuoFias +asn i =Fo, (g=a,b,c) (i=4,B,C) )

k=1

where
Bl F (L 1B+ Ay, 7t = 1,0 =1 0]

f(;;;’:%zo[\/? 1 07, ﬁﬁ:%lo[—\/? 1 0]

=i N =i i —~ =G 1 \/g

5 =0, 7 :ﬂ'}z%Tzuw 7§G :Elo[o 1 -7
0 0 0 -1 0

i, =|0|,id,=|1|,d,=|0|,,=|1 0 0l (10)
0 0 0 O

Actually, these vector equations mean that
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L ; ( T ] A I, .
—+ cosa, + A, cos| d——+a. |=x, —xp ———=co0s(@d + ) +—=sin(d + .
(\/g ﬂqoj i 32 ¢ 3 i 0 00 2\/5 (¢ 1) 2 (¢ 1)

[%+/11iojsinat + A5, sin(¢—%+aij =5 = Yoo —%sin(¢+ai)—%°cos(¢+ai)(ll)

with (i= 4, B, C).

Developing the inverse kinematics problem, we determine the velocities and
accelerations of the manipulator, supposing that the planar motion of the moving
platform is known. So, we compute the linear and angular velocities of each leg in

terms of the angular velocity @C = i, and the centre’s velocity v =7 of the

moving platform.
The rotational motion of the elements of each leg (leg A4, for example) are
characterized by recursive relations using the following skew-symmetric matrices

~4 ~4 T 4~ 4 4 _
Oy = Ay Oy oAy + Dy Uy Oy =Py (=1,2,3), (12)

which are associated to the absolute angular velocities
~4 _ 7 A ~4 =4 P~ =4 ~Ad | A =
@y, =0, 05 = a0 + @ = Py, Oy =a,05, + 05, = Pus. (13)

The following relations give the velocities \7kAO of joints 4,

T Y O ) N 7

Vio = Aigliy » vy =0, Vi, = A,

-4 —4 ~d =4 R

Vio = A1 Vier0 T Ak @m0V jm1 T Vi lls - (14)

The geometrical equations of constraints (8) and (9) when differentiated with
respect to the time lead to the following matrix conditions of connectivity [23]

A=T T~ A=T T~ _ =T=G A=T ¢qd T~ T — T~ T —GA .
Violl j @yglly + Vil ; @yl =U; 1y — @yt ; {43 a50U a5l + Atz asry " (j=1,2)

ol =4, (15)

where 7, is a skew-symmetric matrix associated to the unit vector u,, pointing in
the positive direction of the z, axis. From these equations, we obtain the relative
velocities v}, 3, v{, as functions of the angular velocity of the platform and the

velocity of the mass centre G and the complete Jacobian matrix of the
manipulator. This matrix is a fundamental element for the analysis of the robot
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workspace and the particular configuration of singularities, where the manipulator
becomes uncontrollable.

By rearranging, the derivatives with respect to time for the six constraint
equations (11) lead to the matrix equation

J1210 :Jz[xg yoG ¢]T

for the planar robot with prismatic actuators.
The matrices J, and J, are the inverse and the forward Jacobian of the

manipulator and can be expressed as

with

Jy=diag{s, 65 I}

gop By
J2: ﬂlB ﬂzB 3B >
B By Py

@:gm¢—%)a=4313
pl=sin@~ 2 +a), By =—cos(p~ +at)

; ; T

B3 =(x(§; —xéo)cos(¢—§+oci)+
G i n

+(g _y()o)sm(d)_g"'o'i)_

/ .
—EQ+MMWM%§)

NE)

(16)

(17)

(18)

The singular configurations of the three closed-loop kinematical chains can easily
be determined through the analysis of two Jacobian matrices J, and J, [24, 25].

For the matrix J;, the determinant vanishes in ¢ =7/3, which leads also to a

singular configuration of J,.

Concerning the relative accelerations y;;, &5, 5 of the robot, new connectivity

conditions are obtained by the time derivative of equations in (15), which are [26]

A=T T~ A4 =T T~ _ =T=G _
Viol; Aoty + V3 U Azglly =U T
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A _A=T ¢ Te~r~ T= T+~ T=0G4
= 0,0y U {ay sz as s + ayiisusanry” -
521” | (A ag i asily + agiiyaniy ™y = 25‘)21"32” ayilzasii; (j=1,2)

eh=4. (19)

The formulations in (15) and (19) are for 4 only and they also apply to the legs
B and C when the superscript A4 is replaced by either B or C.

The following recursive relations give the angular accelerations &/, and the

accelerations 7, of joints 4, :
A aa = a4 ia-
Vio = Arothss 73y =0, 75 = Ay
=4
€10 = ‘921 ¢u3’ Ep = =0

=4 — A4 A — A ~ A T —
Ero = Qg €mio T Epalts T Oy 1Ay i Oy oAy j U5

~A A A ~d4 ~d < T A4 == A4 =
WDy +Exo = Ay 1 (a)k—l,oa)k—l,o + gk—l,O)ak,k—l T O 1 O giUslhy + €y U + (20)

y ~4 T o~
Y200 4 1y D oAy 4y

— 4 — 4 ~ 4 ~ A ~A —~A
Vio = g1 Vi—r0 T Qg iy (a)k—l,oa)k—l,o & )rk,k—l +
+ 2V/:1,k71ak,k715/:171,061/?,/(71&3 + 77/:}/{715‘3 , (k=1,2,3)
We can notice that, for this robot, the displacement of the leg is very simple.
The displacement of body 2 is along a fixed line only, and its velocity and
acceleration is equal to those of the associated, actuated joint.

For simulation purposes let us consider a planar robot, which has the following
characteristics:

X0 =0.025m, y¢ =0.025m, ¢ =%,At=35

l, =04, = 0B, =0C, =0.3m, 1 =1,\3
A program, which implements the suggested algorithm, is developed in
MATLAB to solve the inverse kinematics of the planar PRP parallel robot. For
illustration, it is assumed that for a period of three seconds the platform starts at
rest from a central configuration and rotates or moves along two orthogonal
directions. A numerical study of the robot kinematics is carried out by

: : A B C ies A B C
computation of the displacements A,,, 4,,, 4,,, the velocities v/;, v,,, v,,,and

the accelerations y,5, 7., 7\, of three prismatic actuators.
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The following examples are given to illustrate the simulation. As a first
example, we consider the rotation motion of the moving platform about the axis
z, with a variable angular acceleration, while all the other positional parameters
are held equal to zero.
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As can be seen from Figs. 3, 4, 5, during the rotational motion of the platform all
displacements, velocities and accelerations of all three actuators are identically
distributed.

In a second example, the presumed motion of the platform is a translation
along the horizontal axis x, (Figs. 6, 7, 8).
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Fig. 9 Displacements A, Ay, 4 Fig. 10 Velocities V,y, V4, Vo

Concerning the comparison in the case when the centre G moves along a
rectilinear trajectory along the axis y,, without any rotation of the platform, we
remark that the distribution of the displacement, velocity and acceleration, as

calculated by the program and depicted in Figs. 9, 10, 11 is the same, at any
instant, for two of the three actuators.
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The simulation through the MATLAB program certify that a major advantage
of the current matrix recursive approach is the well structured way to formulate a
kinematical model, which leads to computational efficiency. The proposed
method can be applied to various types of complex robots, when the number of
components of the mechanism is increased.

3. Conclusions

Within the inverse kinematics analysis some exact relations that give the
position, velocity and acceleration of each element of the parallel robot in real-
time have been established. The method described is quite available in forward
and inverse mechanics of all serial or planar parallel mechanisms, the platform of
which behaves in translation, rotation or general 3-DOF evolution .
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