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A CHEBYSHEVE COLLOCATION METHOD FOR THE
SOLUTION OF HIGHER-ORDER FREDHOLM-VOLTERRA
INTEGRO-DIFFERENTIAL EQUATIONS SYSTEM

Khosrow MALEKNEJAD?, Maryam ATTARY?

A numerical approximation method for the solution of Fredholm-Volterra
Integro-Differential Equations (FVIDESs) system is presented. A Chebysheve
collocation points together the Shannon approximation is proposed to transform
FVIDEs system to an algebraic system. The convergence analysis of the proposed
scheme is derived. Finally, the reliability and efficiency of the method are
demonstrated by some numerical experiments.
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1. Introduction

Integral Equations (IEs) and Integro-Differential Equations (IDEs) arise

in many mathematical modeling processes, e.g. control theory, financial
mathematics, dynamic processes in chemical reactors, population dynamics,
electromagnetics, heat conduction, viscoelasicity and many other practical
applications [1, 2, 3].

Recently, significant progress has been made in numerical methods based
on the Shannon wavelets. These methods are some of those very much successful
methods for numerical solution of ODEs, PDEs and IEs.

Several authors have investigated the numerical solvability of IDEs system
and other related equations. Ebadi et al. [4] in 2009, solved system of nonlinear
Volterra Integro-Differential Equations by using the Tau method. Cerdik-Yaslan
and Akyuz-Dascioglu in [5] used Chebysheve polynomial to solve nonlinear form
of FVIDEs system. In [6] Maleknejad et al. presented a method for solving
FVIDEs based on the Bernstein operational matrix. Numerical solution of
Fredholm Integro-Differential Equations by the Tau method has been proposed by
Pour-Mahmoud et al. in [7]. In [2] Yusufoglu presented a new quadrature method
for solving FVIDEs system.
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In this paper we consider Fredholm-Volterra Integro-Differential
Equations system of the form[8]:

SYROI00 =00+ [ 3K, 691,60

n=0 j=1
|
+ J:ZGU (t,s) fj (s)ds, 1)
j=1
i=1,..1,
under the mixed conditions
m-1
Slat M=)+ M) +6Mf V()N =a;,j=1.,1,-1<c<L
n=0

(2)
Where f;(t) is an unknown function, the functions F/'(t), K;(t,s) and

G;(t,s) are defined on interval —-1<t,s<1 and «f, g/, 6] and a, are

constants.

In this research, we design a numerical algorithm based on the collocation
method in Chebysheve points and the connection coefficients of the Shannon
approximation. The outline of the paper is as follows. In Section 2, we are briefly
introduced the Shannon wavelets family and their basic properties. These
preliminaries allow us to design a numerical algorithm, which is implemented in
Section 3. In Section 4, the convergence analysis of the proposed method is
investigated. Finally, in Section 5 the method is applied to a few test examples to
illustrate the accuracy and the implementation of the method.

1. Preliminaries

We begin by recalling the definitions of the Shannon scaling functions
and mother wavelets from [9], as follows:

o L sinz(2it—k)
(1) = 212Sinc(21t k) = 212 SINZ(2'T=kK)
¢j,k() ( ) ﬂ'(zjt—k)

sinyz(th—k—;)—sinZn(th—k—;)

, j,keZ,

%”j,k(t):zjl2 ’ j,kEZ. (3)

. 1
2it—k-=
z( 2)

Where the Sinc function is defined on the whole real line by:

sin (xt)
Sinc () =1 1 > 70
1, t=0
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Also, the following equations are the Fourier transforms of (3):

—jf2

(Dj,k(w):?eiiwm]){(z_wj"‘?’”): keZ,
2 ,
Wi (@) = _22_7z-eiw(k+1/2)/21 [7((2,_0)_1) (- 261-0_1)]1 jikez,
where the characteristic function y(w) is defined as:
1L, 27 <w<A4r,
7(@) = {0, otherwise.

2. Outline of the method for FVIDEs system

Consider the Fredholm-Volterra Integro-Differential Equation system
(1) where the following assumptions are satisfied [9, 10]:
). Let ¢,,(t) and v, (t) be the Shannon scaling functions and mother

wavelets, then:
<y, ()W, () >= 05,0,
* < @5, (1), 95, (1) >= Sy,

< - 4
* <y (), y, () >=0, r>0.

I). Let f,(t) be a class of functions such that the following integral exist
and finite:

Nk =< T, 00 ©) >= [ F, Oy (D,

Tk =< O O >= [ 10w, Ot
Remark 1. &, is the Kronecker delta.

2.1. Linear function approximation

In order to obtain the numerical solution f,(t) of (1), we recall the

following information from [9,10], that will become instrumental in establishing
our useful formulas.

Theorem 1. If f;(t) € L,(R), then the series

_i’]j,k¢0,k (t)+i irr,j,klﬂr,k (t)1 (6)

r=0k=—o
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converges to f,(t), with ,, and 7 ;, are define in (5).

Definition 1 . The derivatives of f,(t) are computed in terms of the
Shannon wavelets as

f,-(n) (t)= i’h k(oénk) (t)+ Z Z Trj, kl//(n) (). )

r=0k=—o

Definition 2. ¢ (t) and y () are defined by

(Dénk) )= z ‘9k(r?)(00 p (1) + Z Za(n)r‘//r,h (t),

h— r= Oh —oo (8)
l//ﬁnk) 1) = Zﬂ(n)r(oo p (D) + Z Z K(n)rr‘//r,h ®).
h=—w r=0h=-M

Remark 2. a, B, x« and 4 are defined as the connection coefficients of
the Shannon wavelets.

Theorem 2 . Values of connection coefficients are:

akh ﬂkh
1“' Y niz’ _1)° —1], k=h,
() — 1 27 <= s!li(k — h)" (= :
"gkh - inﬂ' +1
A IR E | K= h,
27(n+1)
(inzrn n+1
ey [((1+ (—DM)E™! -1)], k =nh,
- 2n(n +1)
Kkh = jnamm

., nmrt(2°-1) s
2(— oD 1 k=

Using above statements, we have:

fj(t) 2771 k%k(t)"‘zzfr]k‘//rk(t) )

r=0k=

f(n)(t) = an k Z‘glfr?)(aoh(t)—i_zzfr .k ZK(n)rrWr,h(t)' (10)

r=0k=
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2.2. The Chebysheve collocation scheme

This subsection is devoted to applying the Chebysheve collocation
method to numerically solve the FVIDEs system. To do so, we consider a
collocation method including the Shannon wavelets approximation representation
of the equation.

We define a finite truncated series of f,(t) and f”(t) by

f, (t)_ Zﬂ,k%k(t)"'zzfrjk‘//rk(t) (11)

r=0k=—-M

f(n (t) - z 77] k Z ‘%?%h(”*‘z Z Z-r jk z K(n)rrWr,h (t)

r=0k=
(12)
Considering the system (1) with respect to (11) and (12) we obtain:

ZZFH (t)[ZUJk Z'gk(r? %h(t)+2 erjk

n= Oj‘l h=—M r= Ok——

Z K e (01 gi(t)+J' ZKij (t,s)[ Z 7, xPox (8) +
2
i r,j,kl//r,k (S)]dsn

=M

r=

M= OMZ

TV Ods + [ ZG.J (ts)l Z 7,4P0i (5) +
]

o

r=

or equivalently

> Z 7 k[ZF.J (t) Z 90900 ) - [ K (t,8)gy (s)ds -

j=lk=—

_[ Gu (t S)(”Ok (S)dS] + ZZ Z Tr j.k [ZFIJ (t) Z K_(n)rr (13)

j=lr=0k=-

Ve ® [ Ky Sy, (9)ds - LGU (t, Sy, (5)ds] = g, (t):
Defining:

T ZF., (t)29 905 (0 ~ [ K; (,5)y (5)ds
J Gy (690, (),
Q1) = 3RO Y Ky, 0 [ K, 69w, (5)ds

~[ 6yt 5w, (9)ds.
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Note that, there are 1(2M +1)(N +2) unknowns components, so for
solving (1) we need 1(2M +1)(N +2) equations. Using the given notation and

substituting t =t —cos(p —), x=0,...,p-1, p=12M +1)(N +2)—ml, in (13),

this relation can be transformed to the
following matrix form:

I'x=g;, i=1,.,1, (14)
where
YIl,—M (to) Y:,M (to) QI0,1,—M (to) QIN,l,M (to)
Yiw() o Yiu@) Qo) o Qywt)
r = | : : | : | : | : ’
Y]:,—M (tp—Z) Y{,M (tp—2) Q(.),l,—M (tp—Z) Qn_\l,l,M (tp—Z)
Y]I.,—M (tp—l) Y:,M (tp—l) Q:),l,—M (tp—l) QIN,I,M (tp—l)
= [771,—M o Tim To-m o Tham ]T’
and

g; :[gi(to) g:(t) - gi(t,,) 9i(t,,) ]T
On the other hand, the mixed conditions can be written as:

E[an(zmk zlgk(r? %h( 1)+szr1k

h=-M r 0k=—M

Z K0 (C1) + B ( Z M Z 90 @y, (1) +
o (15)

Z Zz-l’jk ZK(n)rrth(l))+5_ ( an,k

r= 0k=— k=—M

Z 86 pon (€) + Z Z Toi Z KOy @)= a,,

r=0k=
where j=1,..,1, —lﬁcsl.
Relation (13) in Chebysheve points and mixed conditions give
I2M +1)(N +2)—ml and ml  equations,  respectively.  Therefore,

[(2M +1)(N +2) equations are obtained whose solution give the unknown
components of the n;, and 7, ;.
Actually, the desired approximation to the solution f,(t) of (1) can be

obtained from
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fi©= ka<ﬂok(t>+22rr,kwrk(t>

r=0k=-

2.3. The Algorithm

Here we summarize the previous results for constructing the Shannon
approximate solution of (1) as the following:

I. Choose N,M,I,m, then input constants and functions: ¢, (t), v, (1), Fij”(t),
Klj(tls)’ G”(t’s)i g|(t)1 a?y ﬁr’ 5?, aj’ kz_M,,M y |"=0,,N y
i,j=1,.,1,n=0,.,m.

1. Compute 3¢ and x{’" by using Theorem 2, and obtain Y' (t) and Q| ; ().

I11. Compute I; and g, in Chebysheve points, then obtain 7., and z, ., from

i ! i rjk

(15)and TIx=g,, i=1,.,1,.

. . . M N M
IV. Substituting »;, and z,;, in Y. 7@ O)+F> D T D),
j=1,...,1 and an approximate solution of (1) will be obtained.

3. Convergence analysis

The aim of this section is to provide a convergence analysis of the
presented method for the FVIDEs system (1). Our strategy is mainly based on
Theorem 4.2 from our recent paper [9].

Theorem 3. Consider the FVIDEs system (1). Assume that f,(t),
i=1,.,1 be the approximate solutions of the system (1) and #;, and 7, ; are

given by (5). If fj‘”) (t) e L,(R), then the obtained approximation solutions of the

proposed method converges to the exact solutions.
Proof. Note that

N-1 o«

Z (£, ), @0, (1)@, (1) + D Z (F,0).w O, (1)

k r=0k=

z i<f .0, O, (0.

=—ook=

£,

As stated in [9, pp. 2675], we have
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DTS S (F (0 (), (1)~ f,(1)]

r=-ow k=-w

—> 0, asN — oo,
2

or
fim | 2 (F, 000,05 O+ X (F,Ow, OwBO-120] >0

2
Due to definitions of #;,, z,;, and relation (8), we can write:

o0 © N-1 o« 0
’!‘im |: an,k Zlglfr?)%,h )+ z ZTr,j,k ZKIES)rer,h(t):| = fj(n) ®).
2% k=- h=-o r=0k=—w h=—o0

Finally, the proof follows immediately from above relation and Theorem 1.

5. Numerical results

The numerical algorithm based on the Shannon approximation together
with a Chebysheve collocation points described in Section 3 has been
implemented to the following problems, taken from [8]:

5.1. Example 1:

£+ 120+ £,29@) +e f,(t) = fl(sinh(s) f,(s) + cosh(s) f,(s))ds
+ J:et’S f,(s)ds—1-te' —2e™,
fO@) —e £,9) - £,O@) +th,(t)+ f,(t) = J._ll(3es f (s)—ts" f,(s))ds

! =S —t t+2
+ j_l(—sfl(s) +e " f,(s))ds—6—-t—te” +te'*?,

(16)
with the mixed conditions

fLm=e™, ,(0=1, f,(0=1, f,(-1)=ef,(-1)=e, f,(1)=e,
and the exact solution f (t)=e™, f,(t)=¢".
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5.2. Example 2:

£O () + 119 (1) + 35, 1) = [ (t=9)1,(5) +17 T, (9))ds
+ [ 4t (5) - T, (9))ds + 20 4 27 + % _3,
P00 - (20 +1,0+ 1,0) = [ (@57,(5)+ (s* - 40 T, (s))ds

t 2
+L6 f, (s)ds +5t° —15t2 — 8t +5

(17)
with the mixed conditions
f9(0) - f,(1) = -1, 2f,()+ f,(-1) =1,
and the exact solution f,(t) =t*+3t, f,(t) =4t*-1.

We consider FVIDE system (16) for numerical implementation of
proposed method. In this equation, we have |=2. Thus, the numbers of
unknowns 7;, and 7, ;,  are I(2M +1)(N +2) =2(2M +1)(N +2). For ease of

exposition, we take M =N =1. So, we have to evaluate the following unknowns,
for j=1,2, k=-1,0,1and r =0,1 as:

Mo,-1 o0 1Mo1 117121 M0 M1
00,1 1%000 1%001 To1-1 1T010 P01l

Ti0,-1 %100 %1010 %11,-1 %110 o T111c

Actually, we need 18 equations for solving this test problem. As we
expected,
there are 6 relations with respect to the mixed conditions. Now, we compute
Chebysheve
points as follows:

p=I(2M+1)(N+2)-ml|,
x=0,...p-1,

X
t =cog—).
=00t %)

(19)
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Approximate and exact solutions for (16).

Approximate Exact

X t, solution solution

fl(tx) fl(tx)

0 cos(0) 0.367870781 | 0.367879441
27

2 COS(H) 0.431169512 | 0.431169699
A

4 COS(H) 0.660066148 | 0.660066287
6r

6 COS(H) 1.152937034 | 1.152939581
8r

8 COS(H) 1.924874416 | 1.924874429
10z

10 COS(T) 2.61037499 2.61037261

Table 2. Approximate and exact solutions for (16).

Approximate Exact
X t, solution solution
f2 (t X ) f2 (t X )

1z

1 COS(H) 261037291 | 2.61037261
3T

3 COS(H) 1.924873081 | 1.924874429
5

5 COS(H) 1.152939580 | 1.152939581
1

7 Cos (H) 0.660066102 | 0.660066287

9 cos(~=—) 0.431162039 | 0.431169699
117

11 COS(H) 0.367879159 | 0.367879441

Therefore, we can write
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0 Vs 2r
t, =cos(—) ,t, =cos(—) ,t, =cos(— ,t, = cos(—),
0 =COS(7) .t =00s() ity = cos( gl) s = cos()
4 o T i
t, = cos(—) ,t; =cos(—) ,t, =cos(— .t = cos(—),
4 (811) 5 (%1) 6 (%) 7 (ﬂ,);
7T Vs T
t; =cos(—) ,t, =cos(—) ,t, =cos(—-) ,t, =cos(—-).
8 (11) 9 (11) 10 (11) 11 (11)
Substituting these points in (13) and according to the mixed conditions, 18

equations are obtained. By solving these relations, we can computed unknown
component of »;, and 7, ;, . Finally, the approximate solutions of (16) will be

obtained by the following equations:

f,) = Z’h,k%,k O+ zzfr,l,kv/r,k ®,

r=0k=-1
1 1 1
f,(t) = an,k¢0,k t)+ Zzz—r,z,kl/jr,k (®).

k=-1 r=0k=-1
the computational results of Example 1, for M=N=1 in Chebycheve points,
have been reported in Table 1 and 2. Table 3 and 4, represented the error estimates
of the proposed method for different values of M and N . The maximum errors

listed, show that we can achieve to good numerical results with small N and M .

Table 3.
Numerical results for(16)
Maximal error Maximal error
M N f,(t) f,(t)
2 3 1.02E-8 1.78E-8
3 4 1.87E-9 2.17E-10
4 6 2.59E-12 1.06E-12
5 7 1.14E-14 1.67E-15
5 8 3.34E-16 2.93E-17
Table 4.
Numerical results for(17)
Maximal error Maximal error
M N f(t) f,(t)
2 4 3.45E-10 2.88E-9
4 5 2.90E-13 3.56E-13
5 7 0.98E-14 1.23E-15
6 5 1.49E-16 1.09E-16
8 6 1.94E-18 0.48E-17
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4. Conclusions

In this research, we have applied the Shannon approximation for solving
FVIDEs system. Shannon approximation method has become very popular in
solving initial and boundary value problems of ordinary or partial differential
equations as well as the approximate solution of integral equations. Also, the
method employed here can be probably extended to investigate the approximate
solution of other classes of IDEs. We have shown that the proposed method has
produced highly numerical results.
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