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A CHEBYSHEVE COLLOCATION METHOD FOR THE 
SOLUTION OF HIGHER-ORDER FREDHOLM-VOLTERRA 

INTEGRO-DIFFERENTIAL EQUATIONS SYSTEM 

Khosrow MALEKNEJAD1, Maryam ATTARY2  

A numerical approximation method for the solution of Fredholm-Volterra 
Integro-Differential Equations (FVIDEs) system is presented. A Chebysheve 
collocation points together the Shannon approximation is proposed to transform 
FVIDEs system to an algebraic system. The convergence analysis of the proposed 
scheme is derived. Finally, the reliability and efficiency of the method are 
demonstrated by some numerical experiments. 
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1. Introduction 
    
           Integral Equations )(IEs  and Integro-Differential Equations )(IDEs  arise 
in many mathematical modeling processes, e.g. control theory, financial 
mathematics, dynamic processes in chemical reactors, population dynamics, 
electromagnetics, heat conduction, viscoelasicity and many other practical 
applications [1, 2, 3]. 

Recently, significant progress has been made in numerical methods based 
on the Shannon wavelets. These methods are some of those very much successful 
methods for numerical solution of ODEs, PDEs and IEs. 

Several authors have investigated the numerical solvability of IDEs system 
and other related equations. Ebadi et al. [4] in 2009, solved system of nonlinear 
Volterra Integro-Differential Equations by using the Tau method. Cerdik-Yaslan 
and Akyuz-Dascioglu in [5] used Chebysheve polynomial to solve nonlinear form 
of FVIDEs system. In [6] Maleknejad et al. presented a method for solving 
FVIDEs based on the Bernstein operational matrix. Numerical solution of 
Fredholm Integro-Differential Equations by the Tau method has been proposed by 
Pour-Mahmoud et al. in [7]. In [2] Yusufoglu presented a new quadrature method 
for solving FVIDEs system. 
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In this paper we consider Fredholm-Volterra Integro-Differential 
Equations system of the form[8]: 
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Where )(tf j  is an unknown function, the functions )(tF n

ij , ),( stKij  and 

),( stGij  are defined on interval 1,1 ≤≤− st  and n
jα , n

jβ , n
jδ  and ja  are 

constants. 
In this research, we design a numerical algorithm based on the collocation 

method in Chebysheve points and the connection coefficients of the Shannon 
approximation. The outline of the paper is as follows. In Section 2, we are briefly 
introduced the Shannon wavelets family and their basic properties. These 
preliminaries allow us to design a numerical algorithm, which is implemented in 
Section 3. In Section 4, the convergence analysis of the proposed method is 
investigated. Finally, in Section 5 the method is applied to a few test examples to 
illustrate the accuracy and the implementation of the method. 

 
1. Preliminaries 

 
    We begin by recalling the definitions of the Shannon scaling functions 

and mother wavelets from [9], as follows:  
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             Where the  Sinc function is defined on the whole real line by:  
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 Also, the following equations are the Fourier transforms of (3):  
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 where the characteristic function )(ωχ  is defined as: 
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2. Outline of the method for FVIDEs system 

 
    Consider the Fredholm-Volterra Integro-Differential Equation system 

(1) where the following assumptions are satisfied [9, 10]: 
       I). Let )(0, thϕ  and )(, tkrψ  be the Shannon scaling functions and mother 
wavelets, then: 
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II). Let )(tf j  be a class of functions such that the following integral exist 
and finite: 
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Remark 1. riδ  is the Kronecker delta. 
 

2.1. Linear function approximation 
 

    In order to obtain the numerical solution )(tf j  of (1), we recall the 
following information from [9,10], that will become instrumental in establishing 
our useful formulas. 

 
Theorem 1 . If )()( 2 RLtf j ∈ , then the series  
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converges to )(tf j , with kj ,η  and kjr ,,τ  are define in (5).  
 
Definition 1 . The derivatives of )(tf j  are computed in terms of the 

Shannon wavelets as 
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             Definition 2 . )()(
0, tn

kϕ  and )()(
, tn
krψ  are defined by  
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      Remark 2. α , β , κ  and ϑ  are defined as the connection coefficients of 
the Shannon wavelets. 

 
Theorem 2 . Values of connection coefficients are: 
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         Using above statements, we have:  
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2.2. The Chebysheve collocation scheme 
 

   This subsection is devoted to applying the Chebysheve collocation 
method to numerically solve the FVIDEs system. To do so, we consider a 
collocation method including the Shannon wavelets approximation representation 
of the equation. 

  We define a finite truncated series of )(tf j  and )()( tf n
j  by  
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             Considering the system (1) with respect to (11) and (12), we obtain: 
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Defining:  
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Note that, there are 2)1)((2 ++ NMl  unknowns components, so for 
solving (1) we need 2)1)((2 ++ NMl  equations. Using the given notation and 

substituting )
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(cos==
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xtt x
π , 10,...,= −px , mlNMlp −++ 2)1)((2= , in (13), 

this relation can be transformed to the  
following matrix form: 
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 where lj 1,...,= , 11 ≤≤− c . 
Relation (13) in Chebysheve points and mixed conditions give 

mlNMl −++ 2)1)((2  and ml  equations, respectively. Therefore, 
2)1)((2 ++ NMl  equations are obtained whose solution give the unknown 

components of the kj ,η  and kjr ,,τ .  
Actually, the desired approximation to the solution )(tf j  of (1) can be 

obtained from  
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2.3. The Algorithm 

 
Here we summarize the previous results for constructing the Shannon 

approximate solution of (1) as the following: 
I. Choose ,,,, mlMN  then input constants and functions: )(0, tkϕ , )(, tkrψ , )(tF n

ij , 
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jδ , ja , MMk ,...,= − , Nr 0,...,= , 

lji 1,...,=, , mn 0,...,= .      
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(15) and     ,= igxiΓ    ,1,...,= li . 
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3. Convergence analysis 

 
 The aim of this section is to provide a convergence analysis of the 

presented method for the FVIDEs system (1). Our strategy is mainly based on 
Theorem 4.2 from our recent paper [9].  

Theorem 3. Consider the FVIDEs system (1). Assume that )(tf j , 
li 1,...,=  be the approximate solutions of the system (1) and kj ,η  and kjr ,,τ  are 

given by (5). If )()( 2
)( RLtf n

j ∈ , then the obtained approximation solutions of the 
proposed method converges to the exact solutions.  

   Proof. Note that  
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Finally, the proof follows immediately from above relation and Theorem 1.   
 
      5. Numerical results 

 
The numerical algorithm based on the Shannon approximation together 

with a Chebysheve collocation points described in Section 3 has been 
implemented to the following problems, taken from [8]: 

 
5.1. Example 1: 
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 with the mixed conditions 
 1

1 =(1) −ef , 1=(0)1f , 1=(0)2f , efef =1)(,=1)( 21 −− , ef =(1)2  , 
 and the exact solution tetf −=)(1 , tetf =)(2 . 
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5.2. Example 2: 
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We consider FVIDE system (16) for numerical implementation of 

proposed method. In this equation, we have 2=l . Thus, the numbers of 
unknowns kj ,η  and kjr ,,τ  are  .2)1)(2(2=2)1)((2 ++++ NMNMl  For ease of 
exposition, we take 1== NM . So, we have to evaluate the following unknowns, 
for 1,2=j , 1,0,1= −k  and 0,1=r  as:                                          
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       Actually, we need 18  equations for solving this test problem. As we 
expected,  
there are 6  relations with respect to the mixed conditions.  Now, we compute 
Chebysheve 
 points as follows: 
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⎪

⎨

⎧
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p
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π

 (19) 
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Table 1. 
Approximate and exact solutions for (16). 

    
  x   

 
  xt   

Approximate 
solution 

)(1 xtf    

Exact 
 solution 

)(1 xtf  
 

0 
 
(0)cos  

 
0.367870781 

 
0.367879441 

 
2 )

11
2(cos π

 
 

0.431169512 
 

0.431169699 

 
4 )

11
4(cos π

 
 

0.660066148 
 

0.660066287 

 
6 )

11
6(cos π

 
 

1.152937034 
 

1.152939581 

 
8 )

11
8(cos π

 
 

1.924874416 
 

1.924874429 

 
10 )

11
10(cos π

 
 

2.61037499 
 

2.61037261 

   
  

Table 2. Approximate and exact solutions for (16). 
 
  x  

 
  xt  

Approximate 
solution 

)(2 xtf  

Exact 
 solution 

)(2 xtf  
 
1 )

11
1(cos π

 
 

2.61037291 
 

2.61037261 

 
3 )

11
3(cos π

 
 

1.924873081 
 

1.924874429 

 
5 )

11
5(cos π

 
 

1.152939580 
 

1.152939581 

 
7 )

11
7(cos π

 
 

0.660066102 
 

0.660066287 

 
9 )

11
9(cos π

 
 

0.431162039 
 

0.431169699 

 
11 )

11
11(cos π

 
 

0.367879159 
 

0.367879441 

 
  Therefore, we can write 
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).
11

11(cos=,)
11

10(cos=,)
11
9(cos=,)

11
8(cos=

),
11
7(cos=,)

11
6(cos=,)

11
5(cos=,)

11
4(cos=

),
11
3(cos=,)

11
2(cos=,)

11
(cos=,)

11
0(cos=

111098

7654

3210

ππππ

ππππ

πππ

tttt

tttt

tttt

 
Substituting these points in (13) and according to the mixed conditions, 18 

equations are obtained. By solving these relations, we can computed unknown 
component of kj ,η  and kjr ,,τ . Finally, the approximate solutions of (16) will be 
obtained by the following equations:  

 
).()(=)(

),()(=)(

,,2,

1

1=

1

0=
0,2,

1

1=
2

,,1,

1

1=

1

0=
0,1,

1

1=
1

tttf

tttf

krkr
kr

kk
k

krkr
kr

kk
k

ψτϕη

ψτϕη

∑∑∑

∑∑∑

−−

−−

+

+
 

the computational results of Example 1, for M=N=1 in Chebycheve points, 
have been reported in Table 1 and 2. Table 3 and 4, represented the error estimates 
of the proposed method for different values of M  and N . The maximum errors 
listed, show that we can achieve to good numerical results with small N  and M . 

 
                              Table 3.  

Numerical results for(16) 
 

M  
 

N  
Maximal error 

)(1 tf  
Maximal error 

)(2 tf  
2 3 1.02E-8 1.78E-8 
3 4 1.87E-9 2.17E-10
4 6 2.59E-12 1.06E-12
5 7 1.14E-14 1.67E-15 
5 8 3.34E-16 2.93E-17 

   
                                Table 4.  

Numerical results for(17) 
 

M  
 

N  
Maximal error 

)(1 tf  
Maximal error 

)(2 tf  
2 4 3.45E-10 2.88E-9 
4 5 2.90E-13 3.56E-13 
5 7 0.98E-14 1.23E-15 
6 5 1.49E-16 1.09E-16 
8 6 1.94E-18 0.48E-17 
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4. Conclusions 
 

 In this research, we have applied the Shannon approximation for solving 
FVIDEs system. Shannon approximation method has become very popular in 
solving initial and boundary value problems of ordinary or partial differential 
equations as well as the approximate solution of integral equations. Also, the 
method employed here can be probably extended to investigate the approximate 
solution of other classes of IDEs. We have shown that the proposed method has 
produced highly numerical results.   
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