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EXISTENCE RESULTS FOR A SECOND-ORDER
¢-DIFFERENCE EQUATION WITH ONLY INTEGRAL
CONDITIONS

Hefeng Zhuang! and Wenjun Liu?

In this paper, we study a boundary value problem of second-
order q-difference equation with only integral conditions. By using a variety
of fixed point theorems (such as Banach’s contraction principle, Boyed and
Wong fized point theorem, Leray-Schauder nonlinear alternative, and Kras-
noselskii’s fized point theorem), we obtain some new existence results. As
applications, some examples to illustrate our results are given.
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1. Introduction

The study of ¢-difference equations, initiated by Jackson [11], Carmichael
[8], Mason [16] and Adams [1] in the first quarter of 20th century, has been
developed over years, and evolved into a multidisciplinary subject. It plays
an important role in several fields of physics such as cosmic strings and black
holes, conformal quantum mechanics, nuclear and high energy physics. In
recent years, this topic has attracted the attention of several scholars, and
a variety of new results can be found [2]-[6],[10], [14],[17]-[25]. Among these
achievements, we find that boundary value problems of ¢-difference equations
with integral conditions constitute a very interesting class of problems, and
have been studied by a number of authors [5, 10, 18, 19, 21, 22, 24].

For example, in [5], Ahmad et al. studied the boundary value problem of
nonlinear g-difference equation with nonlocal and integral boundary conditions
given by

D2u(t) = f(t,u(t)), tel,
uw(0) =up+g(u), u(l)= a/ u(s)dys, ug € R,
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where f € C(I, x R,R) such that f(¢,u(t)) is continuous at ¢t =0, I, = {¢" :
n € N}UJ{0,1}, ¢ € (0,1) is a fixed constant and u,v € I, with p < v.
By using Banach’s contraction principle and a fixed point theorem due to
O’Regan, they derived the existence of solutions.
In [19], Pongarm et al. considered sequential derivative of nonlinear ¢-
difference equation with three-point boundary conditions,
Dy(Dy + Nu(t) = f(t,u(t), telIl =[0,T]NI,,
n
u(0) =0, w(T)= a/ u(s)d,s,
0
where 0 < p,q,r < 1,f € C(IZ x R,R),0 < n < T, and A, are given con-
stants. Existence results are proved based on Banach’s contraction principle,
Krasnoselskii’s fixed point theorem, and Leray-Schauder degree theory.
However, we note that among the existing literature [5, 10, 15, 18, 19,
21, 22, 24], no one has studied the boundary value problems of second-order g¢-
difference equations with only integral conditions. So, in this paper, we discuss
the existence results for the following second-order boundary value problem:

Diu(t) + f(t,u(t)) =0, 0<t<1,
u(0) = /0 w(t)dyt, u(l) = /0 fu(t)d,t,

where f : [0, 1] xR — R is a given function. Our results are based on Banach’s
contraction principle, Leray-Schauder nonlinear alternative, Boyed and Wong
fixed point theorem, and Krasnoselskii’s fixed point theorem. To be detailed,
we first consider the related problem (3) and find out the equivalent integral
equation (4), and then define an operator F' by (12). We observe that problem
(1) has solutions if and only if the operator I has fixed points.

It is noteworthy that, if ¢ — 1, then problem (1) recaptures the following
boundary value problem:

u’'(t) + f(tu(t) =0, 0<t<l,
w(0) = /0 w(@B)dt, (1) = /0 rult)dt,

of which Guezane-Lakoud et al. [10] established the existence to nontrivial
solution by using Banach’s contraction principle and Leray-Schauder nonlinear
alternative.

The rest of this paper is organized as follows. In Section 2, we briefly
discuss about the basic definitions, some properties of g-calculus and present
a lemma that will be used throughout this paper. In Section 3, we give the
main results. Some examples illustrating the results established in this paper
are presented in the last section.

(1)

(2)

2. Preliminaries

The basic definitions and some properties of g-calculus [13] are as follows.
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Definition 2.1. For 0 < q¢ < 1, we define the g-derivative of a real valued
function u as

Dyu(t) = % t#0;  Dyu(0) = lim Dyu(t).

The higher order q-derivatives are given by
Dju(t) = DyDy 'u(t), neN,

where Dou(t) = u(t).
The definite q-integral of a function u defined on the interval [0,T] is

given by
t 00
Iqu(t):/ Ztl—qqutq)
0 n=0

where last term is the convergent series.
If a € 10,7, then

[ u(s)dus = Lu®) = Luta) = (1= ) S [pu(by”) — au(ag™).

n=0
We note that
Dylu(z) = u(z),
and if f is continuous at x = 0, then
I,Dyu(x) = u(zx) — u(0).
The property of the product rule and the integration by parts formula are

Dy(gh)(6) = (Dyg(®)h(t) + glat) Dyh(t),
| rDsgtedt = sy = [ Dinatani

Further, reversing the order of integration is given by

// drds—// P)dgsdyr

In the limit ¢ — 1, the above results correspond to their counterparts in
standard calculus.

Lemma 2.1. Let 0 < g < 1. Then, for any y € C([0,1],R), the boundary
value problem

Diu(t) +y(t) =0, 0<t<1,
u(0) = /0 w@®dyt, (1) = /O fu(t)d,

15 equivalent to the integral equation

u(t) = — /0 (t —qs)y(s)dys + %/@ (1 —gs)y(s)dys

(3)
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_ ;)/01{ [1— (1 +q)as + qlgs)’]

q(1+q+¢?

x [¢®s+ (¢® +2¢° + 29+ 1) — (¢ + ¢ + ¢*)t] y(S)}qu- (4)

Proof. Rewriting the differential equation as DZu(t) = —y(t), then taking
double g-integral for it, we have
t s
u(t) = / / y(v)d,vd,s + art + as. (5)
0 Jo

By changing the order of g-integration, we have

t t t
u(t) = —/ / y(v)dysdgv + art + ag = —/ (t — qu)y(v)dv + art + ag. (6)
0 Jqu 0

1
Using the first integral condition, we get a, = / u(v)dyv. Substituting as in
0

(6), we have

u(t) = —/0 (t — qu)y(v)dyv + at +/0 u(v)dgv. (7)

Using the second integral condition, we have

a; = /01(1 — qu)y(v)dv + /01 vu(v)d,v — /01 u(v)d,v.

Substituting a; in (7), we obtain
ut) == [ =ashylhdys <o [ (1= as)uls)drs
bt /0 su(s)dys + (1 1) /0 u(s)d,s. (8)

Integrating (8) over [0, 1], it yields

/0 u(s)dy,s = — /O [1— (1 + q)qs + q(qs)?] y(s)dgs
+/0 (1 — as)y(s)dqs +/0 su(s)dys. (9)

Substituting (9) in (8), we get
u(t) = — /0 (t —qgs)y(s)dys + /0 (1 —¢s)y(s)dys + /0 su(s)dys

—(1-1) / 1= (14 q)gs + a(as)”] y(s)dys. (10)
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Multiplying (10) by ¢, then integrating the resultant equality over [0, 1], we
obtain

/O su(s)dys

1

T m/ (1—qs)(1— )1+ g+ ¢s)y(s)dys

- ﬁ i (1= (14 q)gs +q(gs)?] y(s)dys + %/O (1- qs)y(s)di.l)

1

Substituting (11) in (10), it yields

ult) = / (t — qs)y(s)dys + %q / (1~ gs)y(s)dys

- q(lJF—;Jrqg)/o { [1—(1+q)gs + qlgs)?]

x [¢®s + (¢ +2¢* +2¢+ 1) — (g + ¢ + ¢°)1] y(s)}dqs.
This completes the proof. 0

Let C = C(][0, 1] ,R) denotes the Banach space of all continuous functions
from [0, 1] to R endowed with the norm defined by ||u|| = sup {|u(t)|,t € [0, 1]}.
Define an operator F' : C — C by

(Fu)(t) = - / (t — 4s)f (s, ul(s))dys + %q / (1= g5)f(s,u(s))dys
- m/o { [1— (1+q)gs + qlgs)?]

X [*s+ (*+2¢° +2¢+ 1) — (¢ + ¢+ ¢°)t] f(s, u(s))}dqs. (12)

Observe that problem (1) has solutions if and only if the operator F' has fixed
points. For the sake of convenience, we set a constant A as

L 1+91-¢*)  ¢1+q)
¢ 14+q¢+¢ ql+qg+¢) (1+qg+¢?)?

q4

+ .
1+qg+¢*)1+q+¢*+¢)

3. Existence results

In this section, we will introduce our main results. Our first result is
based on Banach’s fixed point theorem.
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Theorem 3.1. Assume that f : [0,1] x R — R is a continuous function
satisfying the conditions

(Hl) |f<t7u) o f(t,’l])‘ < L|U_U’7 Vie [071] and u,v € Ra

(Hy) LA < 1,
where L is a Lipschitz constant, and A is defined by (13). Then problem (1)
has a unique solution.

Proof. We transform problem (1) into a fixed point problem v = Fu, where
F : C — C is defined by (12). Assume that sup |f(¢,0)] = M, and choose a

t€[0,1]
constant R satisfying

MA
1— LA
First, we will show that FBr C Bg, where Bg = {u € C: ||u|| < R}.
For any u € Bg, we have

R> (14)

[ Ful|
t 1 _|_q 1
< sup (t —gs)(L||ul]| + M)dys + —— [ (1 —qs)(L|ul| + M)d,s
te[0,1] | Jo q 0
U S /1 { [1—(1+q)gs + qlgs)?]
q1+q+¢*) Jy

x [®s+ (¢* +2¢* + 29+ 1) — (¢ + ¢* + ¢*)t] (L]jul| + M)}dqs

<1+ q 1+9(1-¢*) ¢*1+q)?
q 1+q¢+¢ ql+qg+¢*) (1+q+q¢*)?

<

4

q
+ X (LR+ M
(1+q+fx1+q+f+@%) ( )

=(LR+ M)A <R.
Therefore F'Br C Bp.

Next, we will show that F' is a contraction. For any u,v € C and for
each t € [0, 1], we have

t 1+q 1
IFu—Foll < sup {Llu—ol [ (¢ =a9)dys + Llu— o] 52 [ (1= gs)d,s
t€[0,1] 0 qa Jo

1 ! 2
—i—LHu—va/o [[1—(1+Q)q5+9(q3)]

<[5+ (42 424D (4 + )] [

<LAllu—vl.

As LA < 1, F is a contraction. Thus, the conclusion of the theorem follows
by Banach’s contraction mapping principle. This completes the proof. O
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Remark 3.1. In Theorem 3.1, if ¢ — 1, then A = %. Problem (1) reduces to
Problem (2) and Problem (2) has a unique solution.

Next, we prove the existence of solutions of problem (1) by using the
following Leray-Schauder nonlinear alternative:

Theorem 3.2. (Nonlinear Alternative for Single Valued Maps) [9] Let E be a
Banach space, C be a closed convex subset of E, U be an open subset of C, and
0 € U. Suppose that F : U — C is a continuous, compact (that is, F(U) is a
relatively compact subset of C) map. Then, either

(1) F has a fized point in U or

(2) there is a u € OU (the boundary of U in C) and X € (0,1) with
u=\F(u).
Theorem 3.3. Assume that:

(H3) there ezists a continuous nondecreasing function ¢ : [0,00) —
(0,00) and a function p € L' ([0, 1] ,RT) such that | f(t,u)| < p(t)Y(||ul]), for
each (t,u) € [0,1] x R;

(Hy) there exists a constant M > 0 such that

1

where ol = | p(s)dys £0.

0
Then problem (1) has at least one solution.

> 1,
(l[ul)llpll A

Proof. We define F': C — C as in (12). The proof consists of several steps.
(1) F maps bounded sets into bounded sets in C([0, 1], R).
Let By ={u € C([0,1],R) : ||u|]| < K} be a bounded set in C([0,1],R)
and u € Bg. Then we have

| Fu(t)| S/O (t —qs)|f(s,uls))dgs + —— Sl (I—QS)If(S,U(S))quS

0
1

+ m/ﬂ { [1— (14 q)gs + qlgs)?]

X [®s + (¢ +2¢° +2¢+ 1) — (q+ @+ )t] | f(s,u(s ))I}ds

14+¢q

<oUDlels [ (= as)dos-+ ol (50) [0 = as)dye
Yl el / {1 s oo

q(1+q+q*) Jo
X [*s+ (" +2¢° +2¢+1) — (¢ + ¢ + )t }dqs

=([[ul)lIpll A
Thus

[Ful] < ¢ (K)|pl A
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(2) F maps bounded sets into equicontinuous sets of C([0, 1], R).
Let ry,79 € [0,1],71 < 73 and Bg be a bounded set of C([0,1],R) as
before, then for u € Bj, we have

| Fu(ry) — Fu(ry)|

< [l + [ o= a9y

T1

1 | /01 { [1 —(1+q)gs + CI(QS)Q}

+—
q(1+q+¢*

X (q+ ¢+ ) Irs — n|p<s>¢<K>}dqs-

As r9 — r; — 0, the right-hand side of the above inequality tends to zero
independently of u € Bg. Thus F is equicontinuous. As [ satisfies the above
assumptions, it follows by the Arzela-Ascoli theorem that F': C([0,1],R) —
C([0,1],R) is completely continuous.

(3) Let A € (0,1) and let u = AF'u. Then, for ¢ € [0, 1], we have

u(t)] = AFu(t)|

< [ a1 utoDldys + L [ 1= a9) 0t s

! )/01{ [1— (14 q)gs + q(gs)?]

Tt
X [@s+ (@ + 2 +2¢+ 1) — (¢ + @ + )] | £(s,u(s))] }dqs
<Y ([lulDllpll A,

and consequently

R
Ol =

In view of (Hy), there exists M such that ||u|| # M. Let us set

U={ueC(0,1,R):|u] < M}.

Note that the operator F' : U — C([0,1],R) is continuous and completely
continuous (which is well known to be compact restricted to bounded sets).
From the choice of U, there is no u € 0U such that u = AFu for some A € (0,1).
Consequently, by the nonlinear alternative of Leray-Schauder type, we deduce
that F has a fixed point u € U, which is a solution of problem (1). This
completes the proof. ([l
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Remark 3.2. In Theorem 3.3, if ¢ — 1, then A = % and M satisfies
36 M

6Ty ([[ulD Pl 11

to Problem (2) and Problem (2) has at least one solution.

1
> 1, where ||pll;. = / p(s)ds # 0. Problem (1) reduces
0

The third result is based on Boyed and Wong fixed point theorem below.

Definition 3.1. [22] Let E be a Banach space and let A : E — E be a mapping.
A is said to be a nonlinear contraction if there exists a continuous nondecreas-
ing function ¥ : Rt — RY such that ¥(0) =0 and ¥(p) < p for all p > 0 with
the following property:

[Az — Ay[| < W(l|lz —yl)), Vo,y cE.

Lemma 3.1. (Boyed and Wong) [7] Let E be a Banach space and let A E — E
be a nonlinear contraction. Then, A has a unique fized point in E.

Theorem 3.4. Suppose that
(Hs) there exists a continuous function h : [0,1] — R™ such that

£(t2) — F(t.)] < h(t) oY

G+ —y
for allt € [0,1] and x,y > 0, where

1+2¢ [*
—; q/ (1 —gs)h(s)dys +
0

x [¢*s + (¢® +2¢° +2q + 1)] h(s)}dqs.

G:

1 ) /01 { [1— (1+q)gs +qlgs)?]

q(1+q+¢?

Then, problem (1) has a unique solution.

Proof. Let the operator F': C — C be defined as in (12). We define a contin-
uous nondecreasing function ¥ : Rt — R by

Gp
U(p)=——, Vp>0,
(p) Gr, P2
such that U(0) = 0 and ¥(p) < p, for all p > 0. Let u,v € C. Then, we get
(s, us)) — S, 0(s))] < hs) o U
’ ’ - G+lu—ov|
Thus
1 14q [
|Fu(t) — Fo(t)] §{/ (1 —gs)h(s)d,s + —/ (1 —gs)h(s)d,s
0 q 0
1 ! 5
—_ 1—(1+ s+ S
ﬂ1+q+¥)A “ (1+q)gs + a(gs)?]
2 3 2 [u— |
x [¢*s+ (¢® +2¢° +2g + 1)] h(s)] dqs} X rEEa—
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_ Gllu—|

G+ flu—vl’

This implies that || Fu—Fv|| < ¥(|lu—wv]||). Hence, F'is a nonlinear contraction.

Therefore, by Lemma 3.1, the operator F' has a unique fixed point in C, which
is a unique solution of problem (1). O

Vt € [0,1].

1

1
Remark 3.3. In Theorem 3.4, if ¢ — 1, then G = §/ (1 —s)(s* + 5s +

0
3)h(s)ds. Problem (1) reduces to Problem (2) and Problem (2) has a unique
solution.

As the fourth result, we prove the existence of solutions of (1) by using
Krasnoselskii’s fixed point theorem below.

Theorem 3.5. [12] Let K be a bounded closed convex and nonempty subset of
a Banach space X. Let A, B be operators such that:

(1) Az + By € K whenever z,y € K,

(2) A is compact and continuous,

(3) B is a contraction mapping.

Then, there exists z € K such that z = Az + Bz.

Theorem 3.6. Assume that f : [0,1] x R — R is a continuous function
satisfying (Hy) and the following assumption holds:
(Hs) |f(t,u)] < pu(t), Y(t,u) € [0,1] xR, and p € L'([0, 1], R).
If
L{1+ (1+q)(1-¢% q ¢’(1+¢q)?
¢ q+q+q)  (A+qA+q+¢) (I+g+q?)?
4

q } <1, (15)

_|_
I+a+)(1+q+¢+¢°)
then problem (1) has at least one solution on [0, 1].

Proof. Setting m[ax} \p(t)| = ||| and choosing a constant R > ||u||A, where A
tel0,1

is given by (13), and define Bp = {u € C : ||u|| < R}.
We define the operators F; and F5 on the ball By as

(Fru)(t) = — / (= gs) (s, u(s))dys

(Fou)(1) :1%”1 [ 1= a9 5.5

- m%} { [1—(1+q)gs + qlgs)?]

X [*s+ (¢° +2¢° +2¢+1) — (g + ¢ + )] f(5, U(S))}dq&
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For u,v € Bg, we have
| Fru + Fyvl| <[|u[|A < R.

Therefore, Flu + Fyv € Bg. In view of condition (15), it follows that F; is a
contraction mapping.

Next, we will show that F} is compact and continuous. The continuity of
f together with the assumption (Hg) implies that the operator Fj is continuous

and uniformly bounded on Br. We define sup lf(t,w)|] = fige < 00.
(t,u)€[0,1]x B
Then, for t1,t, € [0,1] with ¢; <ty and u € Bg, we have

|Fiu(ty) — Fru(ty)] =|— /0 2(752 —qs)f(s,u(s))dys + /0 1(t1 —q5)f(s,u(s))dys

_ /0 (s — g8) (5, u(s))dys — /0 'ty — g9) £ (5, u(5))dys

= /0 1(752 —t1) f(s,u(s))dys + / 2(?52 —qs)f(s,u(s))dys

t1

t1 to
Sfmaoc </ <t2 - 2fl)qu + / |t2 - qs] dqs) .
0 t1

Actually, as t5 — t; — 0, the right-hand side of the above inequality tends
to be zero. So F} is relatively compact on Bg. Hence, by the Arzela-Ascoli
Theorem, F} is compact on Bgr. Thus all the assumption of Theorem 3.5 are
satisfied and the conclusion of Theorem 3.5 implies that problem (1) has at
least one solution on [0, 1]. This completes the proof. O

Remark 3.4. In Theorem 3.6, if ¢ — 1, then

1, 0+l -a) q ¢’(1+q)*
g ql+q+¢*)  (A+9(A+qg+q¢) (1+q+q*)?
4
q _ 61

+ .
14+qg+¢®)(1+qg+¢>+4¢%) 36

Problem (1) reduces to Problem (2) and Problem (2) has at least one solution.

4. Examples
Example 4.1. Consider the following boundary value problem:
9 e sin’t
15 1 + ecos’t

w(0) = /0 wBd,t, u(l) = /0 (bt

Déu(t)—i— u(t) =0, 0<t<l,
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—sin?t

Here, f(t,u(t)) = % We find that

1
1+6c052t’q_ 2’
1 q I+9d-¢)  Fd+9)?

g 14+q+¢ ql+qg+¢) (1+q+¢?)?

q4

+
I+q+P) I +qg++¢)
~3.8965

find that LA =~ 0.7793 < 1. Hence, by Theorem 3.1, problem (16) has a unique

solution on [0, 1].

1
Since, |f(t,u) — f(t,v)] < = |lu—v|, then (Hy) is satisfied with L = % We

Example 4.2. Consider the following boundary value problem:

t+1 1
D%u(t)+(2++—|)|’u’ 5=0 0<t<l
p o ) (17)
u(0) = / u(t)dyt, wu(l) = / tu(t)d,t.
0 0
t+1 1 1
Here, f(t,u(t)) = (2—i—+—|)u|‘u| + 54= 35 Choosing h(t) =t + 1, we find that

o U202 +a+¢)+¢ +2¢ +29+1
q(1+q)(1+q+q)
¢ +q'—2¢° -4 —2¢— 1 ¢ +3¢" +2¢° + ¢
(1+q+¢*)? I+g+)1+q+¢+q*)
N gt +q3—|—2(]2+2q—i-1
I+g+A)1+qg++¢+q") q(1+q+q?)
~7.9158
(t+1)|u—v

. Therefore, by Theorem 3.4, prob-

H tu) = f(t,v)] <
ere, |f(t,u) = f{t,v)] < 7.9158 + |u — |

lem (17) has a unique solution on [0, 1].
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