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MODELLING THE HYPERBOLOID ELASTIC SHELL

Carlo CATTANI, Paul E. STERIAN?

In articol se abordeazd ecuatiile de stare fard momente ale unei pdnze
elastice hiperboloidale care este obtinutd ca o suprafatd de revolutie. Sunt cercetate
conditiile de compatibilitate care sunt utilizate ulterior pentru obtinerea unei clase
de solutii analitice. Modelele pe calculator prezentate ale problemelor corespun-
zdtoare cu conditii initiale §i de frontierd date evidentiaza unele efecte neliniare
cum ar fi curbarea suprafetei de unda care se propaga.

This paper deals with the momentless state equations of a hyperboloid elastic
shell which is obtained as a surface of revolution. The compatibility conditions are
investigated and used to derive a class of analytical solutions. A computer model of
given initial-boundary problems show some nonlinear effects such as the bending of
the wave propagation surface.
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1. Introduction

The theory of shells has been deeply investigated in the last 50 years in
many different fields from theoretical to applicative ones: Engineering
applications, radio towers, biological, bio-mechanics etc. [1-10].

The main directions refer to the geometrical structure of the shell: of
revolution (cylinder, ellipse, spherical, hyperboloid), with small defects etc. Some
attention was paid to cylindrical shells (see e.g. [11, 17] and the references there)
while hyperboloid shells were very little investigated.

Hyperboloid shells have some different behaviour respect to other
revolution surface shells, but the most important is that they are more stable under
infinitesimal variation of the metrics like e.g. light wind load. Therefore they have
some applications in cooling towers (for nuclear plants).

In the following we will consider the fundamental elastic equations on the
hyperboloid shell and by using the compatibility conditions we will define a class
of solutions [12-16]. The solutions will be investigated by adding some initial-
boundary conditions and some nonlinear effects of the wave propagation will be
shown by using computer modelling.
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2. Momentless state equations of a hyperboloid shell

In the following the fundamental equations of an elastic shell having the
form of a hyperboloid revolution surface are considered. The shell is assumed to
be unbounded (with respect to the symmetry axis) and the equations are referred
to a local frame made by the normal (to surface) vector n and two tangent vectors
t1, t2 and a local system of coordinates (Fig. 1): 0<r<2 7, — 7 <6< 7.
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Fig. 1. Hyperboloid (left) with the local frame and coordinates on its surface.

The equations of equilibrium of the hyperboloid shell in the momentless
theory of shells are [16-18]

1% 090y gy, 1 S . _
Root R bRV pingorte = O
108 ,,ctgd 1 o7, _
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E+E = 4,

where R,, R, (both negative) are the main Gaussian curvatures, 7, , 7,, S are

the tangent and normal components of stress, ¢;, ¢,, ¢,are superficial loadings
on the tangent and normal directions respectively.

By neglecting 7, and defining
U =T, R,sin?0 , V =S Rsin*@ (2.2)

we obtain the equivalent system
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The solution of this system in the special case that the unknown functions
are assumed to be periodic could be found by using the Galerkin method and
Fourier expansions.

In the more general case when the initial conditions are localized or not
periodic the solution could be easily obtain by the Galerkin method and the
wavelet series expansions [18].

3. Compatibility conditions and analytical solutions

From (2.3) it is
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and by further derivatives,
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so that for the integrability conditions on ¥ () there follows:
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(3.1)
Let us solve first the homogeneous problem:
2 2 2 2
chosH%U+stin g lzj— 62 Z lzj =0
R, 0 R 0° sind ot (3.2)
By assuming
Uy (0’7-) :X(H)Y<T) (3.3)
the general solution is
X(#) = Clog tang +C,
Y(1) = AT+4, (3.4)
so that Eq. (3.3) gives
Uy (0,7)=(4, T+AZ)[C1 log tang +C2]
(3.5)

and finally, by considering the inhomogeneous equation, we have as integral of

(3.2):

Uo,7)= (4 T+A2)[C1 log|tan —

0
> —|—C2] +BT+B,

%(— 3¢,€0520+2¢g, sin20—4q,0)
12 (3.6)

Under the same hypothesis (2.4), from the second equation (2.3) and the

_|_

above, we get:
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V(0,7)= —lquiR2 0+£(]2R1R22 sin20 +D,R, log cot?| - lDZR2 log? tan 2
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Egs. (3.6), ( 3.7) give the analytic solution of system (2.5) which fulfils the
compatibility conditions (3.1).

4. Computer Modelling

Let us consider the solutions (3.3), (3.5) by removing the singularities

U(0,7)= (4 7+4,) + Rifz (— 3g,c0820+2¢q, sin20—4q,0)

1 1 )
V{0, 7)= —=q,RR, 0+=¢q,RR. sin20
< ) 2 27 2 4 272 (41)
R’ R . R’
7§D2 7—2 - 372q15|n36 +q1+R72D4 T +D1
1

1

under the boundary conditions:
U(0,0)=¥(0,27)=0, U(0,27)=V(0,0)=1,
and the following values of the curvatures and parameters

R=-39,R=-52 ¢=00L, ¢,=¢,=7.

The initial conditions imply the following values of the integration
constants:
1 RR,

Alzz A, = 4 q9, Di=D,=1, D, =

R +27Rgq,
27R;

so that we can model the surfaces of solutions.
From Figs. 2, 3 it can be seen the solution for the functions U (6,7), V(0,7).

The solution ¥ (#,7) shows the nonlinear effect of surface bending due to the
presence of the nonlinear terms 7> [19-20].
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Fig. 3. Sections for the solution U (6, 7) (left column)and ¥ (6, 7).
As a second example let us take the axisymmetric tangent loading [19]
_sinz6
70

9, =4, , q,=0,

so that Eq. (4.1) become

Ul 7)=(A4T+4,) + Rk, (—3cos20+2sin20—4 0) sin m
12 0
2 3 o H 2
v(6.7)= _szD2 2 R725|n7r08in39 +sm7r9+R72D4 - 4D,
2R, 3 7 ™ R,

This loading is a localized function of &, e.g. with max value in the origin
and slow decay to O, as it usually happens when on the surface there is a
localized pressure in correspondence to a given value of 6.
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Together with this kind of loading we assume also that the same value of
the boundary conditions of the previous example hold thus obtaining the surfaces
of Figs. 4, 5.

As already shown in [19-21], the surface V(6,7) shows a strong

nonlinear effect of resonance with increasing amplitude which is combined with
the surface bending.

Fig. 5. Sections for the solution U (6, 7) (left column) and ¥ (¢, 7) in presence of a localized
load.

5. Conclusions

In this paper we have derived a class of functions which are solution of the
elastic hyperboloid shella. We have also shown by using a computer modelling
the existence of some nonlinear effects as the bending of the solution as well as its
increasing amplitude.
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