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OPTIMUM DESIGN OF FUNCTIONALLY GRADED PLATES
UNDER THERMAL SHOCK

Farid Vakili-TAHAMI', Nima MAHKAM?, Arash Mohammad Alizadeh FARD?

Optimum design of a Functionally Graded plate, which is suddenly exposed
to a temperature gradient, is studied in this paper. A unique method is developed
based on the combination of both discretization and Fourier series to obtain the
time-dependent temperature and thermal stresses on the plate, by taking into
account the material distribution. The effect of Graded Material is implemented
using Mori-Tanaka method along with Fuzzy logic. Two optimization methods,
Genetic algorithm and Particle Swarm Optimization, has been used to calculate the
optimum values of volume fraction distribution to provide optimum strength ratio
along z direction of the plate.

Keywords: Functionally Graded Materials, Thermal Shock, Plate, Optimum
Mechanical Design

1. Introduction

Functionally graded materials (FGMs) are a new class of composite
materials wherein the composition of each material constituent varies gradually
with respect to spatial coordinates. Each varying composition is designed to take
advantage of its attractive features. For example, for advanced high temperature
structural applications a type of materials is required to have strength at high
temperature, creep resistance, adequate toughness and thermal shock resistance.
Ceramics possess low density, good high temperature strength and creep
resistance, whereas, their fracture toughness and thermal shock resistance are
poor. Combining ceramics and metals [1-4], provides inherent advantages of these
two kinds of materials, which has been pursued to meet the material requirements
in many applications. The concept of functionally graded materials (FGMS) is
now accepted worldwide and has been studied recently in many researches which
are going to be summarized below. Due to these applications, thermo-mechanical
behaviors of FGMs are becoming a major concern in recent research studies. For
example, Burlayenko et al. [5] have used computational simulations to investigate
thermal shock cracking by the virtual crack closure technique in a functionally
graded plate. Sofiyev [6] with the use of shear deformation theory has
investigated the thermo-elastic stability of freely supported functionally graded
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conical shells and the problem is reduced to a set of linear algebraic equations
using the Galerkin's method. Naotake Noda [7] has been studied on thermal
stresses and thermal stress intensity factors in the FGMs which are subjected to
steady temperature fields or thermal shocks. Lately, Wang et al. [8] have studied
the thermo elastic response of FG thin plates under thermal shocks in which the
material properties are assumed to vary along the lengthwise direction with a
power law. They linearized the governing equations by the layer method.
Ghiasian et al. [9] perused on one dimensional non-linear thermal condition for
FG beams via hybrid iterative central finite and Crank-Nicolson method in which
thermo mechanical properties are temperature and position dependent. Ranjbar
and Alibeigloo [10] studied analytical solution of an FG thick hollow sphere
subjected to thermo-mechanical and time dependent loads using Differential
Transform Method (DTM) and Laplace transform. Sheng-Hu Ding and Xing Li
[11] have investigated the growth of insulated interface crack subjected to a
steady-state heat flux. The problem has been solved under the assumption of plane
strain and generalized plane stress using Fourier transform. Taheri et al. [12] have
been employed the isogeometrical optimization method for functionally graded
structures in thermo-mechanical processes. This optimization method has been
applied to define volume fractions of the constituents. Kursa et al. [13]
investigated on procedure for finding an optimal content in metal-ceramic for
specific applications. Ashby [14] has provided a review paper on multi-objective
optimization methods for choosing materials for specific problem in which
compromises are required to strike a balance between gaining different goals in a
problem. A feature which distinguishes FGMs and homogeneous structures is the
thermo-mechanical properties which vary spatially on the medium. These non-
homogeneous material properties affect transient temperature and thermal stress
distributions, significantly. In addition, this spatial variation makes the problem
analyze much more intricate, thus, no exact analytical solutions have been
presented lately.

In this paper, a new method has been proposed based on the combining
discretization and Fourier series to obtain the transient temperature and stress
distribution on a FGM plate. For this purpose, a computer code has been
developed; and, it is coupled with another code which has been designed to obtain
the volume fraction distribution of the plate with the objective of optimum
distribution for the strength ratio. Two different methods of optimization
techniques have been employed with the use of control points in different
locations. In this way, the optimization will be free of any imposed predefined
material distribution functions. Cubic Hermite polynomials are used to interpolate
the volume fraction values between control points. Also, to consider the
manufacturing process, a constraint is introduced to limit the variation of the
volume fraction in adjacent layers. Material distributions in this study have been
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evaluated using both Mori-Tanaka and Fuzzy logic together with Hashin-
Schtrikman lower bonds.

2. Problem Characteristics

An infinite FG plate is considered with the thickness of L and material
properties of thermal conductivity k, density p, specific heat ¢, Young’s modulus
E and Coefficient of Thermal Expansion (CTE) « which all vary on the thickness
of the plate in z direction depending on the volume fraction of materials (Figure
1). The governing equations are transient regarding the thermal shock effects. The
initial value of the temperature in the plate is assumed to be uniform. The surfaces
z=0 and z=L are suddenly exposed to constant temperatures of T, andT,

respectively. Physical properties for two constituents of the FGM are given in

Table 1.
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Figure 1. Functionally Graded plate
3. Material properties

It should be noticed that the FG structures are known as structures with
continuous properties varying functionally in the medium. Two micromechanical
formulations which are known to be used to estimate the equivalent properties
of FGM are self-consistent [15] and Mori-Tanaka [16-19] methods. Another
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method for evaluating the properties in FG structures is finite element method
[20-21]. In this study the thermal conductivity, CTE and Young’s Modulus are
determined by Mori-Tanaka method in the region where volume fraction is less
than 0.3 and greater than 0.7. Regarding the accuracy, Mori-Tanaka method is not
valid in the region between 0.3 and 0.7 and thus, we take the advantage of Fuzzy
logics to determine these properties in the region with the volume fraction

between 0.3 and 0.7.

Table 1.Material properties of the Model

- Thermal Coefficient of . Young’s
Material Sp&(;:(flc}ge at conductivity thermal expansion (ie;]rs:sy) modulus
g. (W/m.K) (10°/°C) g (GPa)
Sic C, =278 K, =2.09 a, =10 p,=3186.55  E_=442.44
Al 2024 C, =897 K, =204 a, =23 o, =2973 E, =78.05

Based on Mori-Tanaka method, Poisson’s ratio and modulus of elasticity are
introduced as equations (1) and (2):

o _3K-2u "
6K +2u

=k @)
3K +pu

in which K and g are the Bulk Modulus and shear Modulus expressed as

equations (3) and (4):
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Conductivity k and thermal expansion « are obtained by equations (6) and (7):

k—k, 3k,V

k,—k, 3k +Q1-V)(k,—k,) (6)
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In all equations (3-7), the variables with subscript 1 are known as the base
material and variables with subscript 2 are added ingredient.

In order to evaluate FG parametric values in equations (1-7) that are mentioned
before, we use y (&) which is described as equation (8);

w,() >0<£<0.3
V() :{l//z(é) —>o.7<§<1} ®)
In middle values0.3< & < 0.7, we use fuzzy interpolation (Figure 2) to determine
the value of yw (&) using y,(¢) andy,(&). In addition, we need to define data
functions with parameter ¢ by equations (9) and (10):

1 1
2(6-2)° 3(¢-3)
_ 2’ 2’ 1 9)
#mE)=—7 25 2
() =1-14(¢) (10)

in which & =0.4 is the length of interpolation interval. Foro.3<&<0.7, w (&)
is determined with equation (11);

y (&) = Gravity(y, (). v, (€) 4(€), 1,(£).€)
in which 0.3<£<0.7 (11)
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Figure 2. Data functions in Mori-Tanka method

Maximum allowable strength (S, ) for each layer along the FG plate is evaluated
using Hashin-Schtrikman lower bond [22]:

5(2)
f— 1+¥ 2L_<1&V,<1;
2 sW
S(l)
then isywis(j) 1+2V[ (7)1
S, = 342V, 342V, 3 S, (12)

s _2[ 3 3
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|if V,=1;then S}V

4. Material Distribution

In practice material distribution in FG plates is determined based on the
manufacturing process. To achieve certain design characteristics, a favorite
distribution is perused. Usually this distribution is defined based on optimization
methods. However, using predefined material distribution functions impose a
limitation for an optimum result. To overcome this shortcoming and to determine
the optimum material distribution in the plate, one can define the volume fraction
using control points. Between these control points, volume fraction can be
interpolated. With dividing FG plate in to n layers and by selecting n+1 control
points, the position of each control point is calculated by Eq. (13):

S, —¢

o t b 13
- 1 1,..N (13)
§n §b+ I (n—1), n=
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in whichg , ¢, and ¢, are positions of n’s, first and last control point on the plate.
The volume fractions to the corresponding control points are) , which the

optimization variables are. After defining the values of ) in control points, the

Hermite cubic interpolation functions are used as equations (14) to determine the
volume fraction in other points:

M=AH (D +(S, =)D +A, () + (14)
(gn+1 - gn )Sn+1H4 (§)

In equation (14), S is the distribution gradient percentage of the volume fraction
in n’s control point, the values of H are evaluated as:

$—¢ §—¢ 1 S—¢
H, ¢ =B, —|+B, —|,H,(<)==B, " ]
Snt1 ~ Sn nt1 ~ Sn Sne1 ~ Sn
15)
S—¢, S—¢, 1 S—¢, (
H,(<)=B, + B, rH4(§):__Bz[ ]
n1 " Sn Snt1 ~ Sn 3 Sn1 ~ Sn

in which B, is Bernstein polynomial:

(3-K)

Bt—stklt 16
k _[k] - ()

in which t stands for the Bernstein input variable. In Bernstein polynomial 3 and
k are to be binomial coefficient.

Also values for the distribution gradient S are expressed by equation (17):
Y
1

2 gn+1 - gn
A1 — A
S,=Lmi il p—23 N (17)
2 gn+1 _gn
—4, 30y F A
Sy = 2
gn+1 - gn

5. Governing equations

5.1 Temperature distribution

As mentioned before the governing equations for conduction field must be
transient as equation (18):
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o[k(&)oTIo¢] Gl
o7 =p(&)c(S) . (18)

We take 7 and T representing as non-dimensional time and temperature
parameters described as r=xt/L° andT =T /T, where T~ and t are
temperature and time respectively. It seems that there is no analytical solution for
this equation, therefore to obtain a semi-analytical solution; the plate is divided to
n layers in the z direction (Figure 1) in which all properties are constant. The heat
transfer coefficients are assumed to be h, and h in edge parts of the plane. The
transient heat conduction problem described in equation (18) can be described as
equations (19-24) by taking the advantage of considering FG plate consist of n
different layers:

0T 0T

k(i) —= = p(i)c(i) — 19
()852 p()()aT (19)
T =25atr=0,i=12,...n (20)
K, ‘2—? +h (T,-T,(r)) =0 at & =h, (21)

ot
kn a_gn_'_hL(Tn_TL(T)) =0 at (: :bn (22)
T, =Teyaté=b,n=12,..n-1 (23)

oT, T, .

ki£=kw a(gl) até=b,i=12,.,n-1 (24)

In which & shows a non-dimensional parameter described as z/L. Parameter & can
be evaluated considering the number of layers in region of b,=0 and b, =L/L=1,

respectively. The solution for the equations (19-22) can be described as Fourier
series shown in equations (25):

T(&.7) = (i (@, SIN@, ,&) +V, 1, COS(), ) EXP(—x (1)@ ;1 7)) + Y + |
b b

In which @, (m=1, 2, 3...) denotes eigenvalues for each layer that can be
calculated with the following condition.

(25)

i <& < Mitt
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& ... Ay
Do =0 (26)

aml '“ a‘mn

In which a;;j in the matrix are the values defined by the equations of boundary and

continuous for the considered problem.

All values of the @im andV;, are nonzero and are evaluated with solving
equation (27) :

[ARX}={B} (27)

Boundary Conditions Coeficients
Continuety Conditions Coeficients
Initial Condition Coeficientsin Layer Boundaries (28)
Initial Condition Coeficientsin Sub-layers

B= (The second side of the equations with all known values)

It can be seen that the number of unknown variables in the above equations is
more than the number of developed equations. To overcome this problem a
number of new equations is produced by introducing new sub layers based on
equation (20). The number of equations for each layer is the same as the number

of unknown parameters@; ,, , V; , and @, , (m=1, 2, 3...). The number of required
subdivisions can be calculated using following steps:

e Determine the number of layers ( n)

e Determine the satisfying number of eigenvalues (m) in equation (25)

e Determine the number of the developed equations to be solved

e Knowing that the number of all un-known parameters of equation (25)
isequal to 2xnxm,
Then, the number of sub-layers can be obtained by subtracting the
number of available equations from number of unknowns.

5.2 Stress distribution
Assuming an idealized thermal shock to happen, Erdogan and Wu [23]
have determined the thermal stresses of a fully free FG plate as equation (29):

o6 B OTENT) @
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in which T; is the initial temperature. The y and $are time dependent constants
and are calculated by equations (30) and (31):

[ou(&)ds=0 (30)
[0, (&)édé=0 (31)

Matrix method which is described in determining the temperature field, again is
used in stress analyze to evaluate the parameters y and 9. These two equations

satisfy the boundary conditions applied to the free edges of the plate. By
satisfying these two equations, all parametric values as yand 4 will be

evaluated, resulting stress distribution in the plate in all point.
6. Optimization

In this work, Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO) methods are used to obtain the desired volume fraction distribution.

6.1 Genetic algorithm

Genetic algorithm is a method of optimization based on natural selection.
This method optimizes the initial random population by a special selecting rule.
The initial population is random, which includes the information about
optimization variables (volume fraction in the control points). In the next step,
objective function is evaluated and on this basis, the population is sorted. Then,
half of the population members which are inappropriate are excluded. Among the
remaining members, the algorithm chooses some data named as parents whom
they will generate some new data. In this study, we have used the weighting
method for selecting the parents. Corresponding probability for each rank, n, is
evaluated with equation (32):

N (32)
= Zn:ln
In which N shows the number of remaining data which is equal to half of total
population.
In the next step, after selecting the parents, a new generation is to be generated by
applying continuous crossover operator so that each pair of parents generate two
new members, while total population number is fixed. Next step is to evaluate the
values of the objective function for new members. These steps are repeated till the
solution is converged. To implement the constraints (equation (33)), Penalty
function method (equations (34)) is used:
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9(x) 29, (33)

J = J+Pmax 10,[9,— 9()1} (34)

in which go is the threshold value of the constraint and ; shows the objective
function after applying the penalty function. The value of penalty coefficientP |,
is an extremely large number so that the constraint is satisfied.

6.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) method has been inspired from
ordered movements of a flocks of fishes which are based on two main opinions:
firstly, communication between different members of the population; and
secondly, fitness of each member. As a base rule of the algorithm, all members
have tendency to change their position and follow the best member with high
fitness. Also, each member is obligated to memorize its own best position. This
method works with numbers of data, named as particles. Best member of the
population is chosen to be the leader which it makes other members to move
toward it. As a result, considering the number of iteration, all of the population
gathers around the leader, which may change in each iteration. This makes the
algorithm to converge [24 - 26].

In PSO, each particle is an answer for the problem, and it is identified with
a vector which the length of it is the number of designing parameters. Initial

population is randomly produced with position of Xf.’ and speedv’. After

determining the leader, speed and position of the other particles are updated.
Equations (35), (36) and (37) are the base equations of the algorithm;

Vj‘” =QVf +¢1(gk—xf)+¢2(lik —xf) (35)
x M =x 4y (36)
$=ra ., ¢ =na (37)

in which 7 and g* are the values of the best answer for the particle i and best

answer of the all population. Similarly, €, a; and a; are the coefficient of inertia
and learning factors respectively, and ry, r. are two random parameters in the
range of zero and one. Larger coefficient of inertia results spreading the
population on a plane without considering the best experience of each particle, on
the other hand, small coefficient of inertia forbids each particle to alter and move
on its own present values. It should be considered that the magnitude of these
coefficients is less than one [25 - 27]. These values are considered to be constant



80 Farid Vakili-Tahami, Nima Mahkam, Arash Mohammad Alizadeh Fard

during the process based on equation (38) to simplify the method in contemporary
projects [25]:
O- 1
2In(2)
Parameters a, and a, are the values which show how much each particle will alter

based on the best personal and population experience (leader). The sum of all
these values should be less than 4. Equations (39) and (40) show the suggested
values given in references [24] and [25];

a =a,=2 (39)

~0.721 (38)

a, =a,=0.5+In(2)~1.193 (40)

After updating speed, each particle will move to its new position. If the
updated position is the best position which the particle had experienced, the
position will be collected as the best position till the next one occurs. Moreover, if
the updated position is the best position among the all population it will be chosen
as the leader. At the end, the position of the leader will be selected as the final
answer for the algorithm.

6.3 Optimization formulation

To be able to evaluate the values of the optimum variables, the objective
function and problem constraints are introduced as equations (41) and (42);

(4,8
Obj =mm[ | (;V—SF)d(f] (41)

A —A,|<dh i1=12,..,n (42)

In which o is the value of stress in each layer and SF is to be ideal safety factor.
The value of the objective function is to be minimized in order to have uniform
factor of safety based on the maximum allowable strength in each layer. Also,

equation (42) constraints the change of the volume fraction value in i™ layer
comparing to the neighboring layers in the range of £o4.

7. Validation

To validate the solution method, the temperature distribution along the z
direction of a FG plate as a result of thermal shock in a harsh environment is
obtained and compared with those reported by Wang et al. [28]. For this purpose
or model verification, one-dimensional transient temperature distribution given by
Wang for TiC and Ni has been used. Physical properties for TiC and Ni are given
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in Table 2. Convection coefficients of the outer surfaces of the plate: h, andh_ are

infinite in two sides, and the plate and boundary conditions are symmetric with
respect to longitudinal axis. Two sides of the plate have been exposed to sudden
temperature change in the very beginning of the heat conduction process. Results
of both solution methods, those obtained with the proposed method and those
reported by Wang [28], are shown in figure 3 and good agreement is observed.

1 -.“. T T T T T T T T T
o 0.8 —— Method used in this paper -
2 0\~ e Wang [28]
2
§os6- .
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=
£ 04- 1
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o
5
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; | | | | T e ,
0 005 01 015 02 025 03 035 04 045 05

Figure 3. Results validation; Transient temperature distribution in a homogeneous layer.

Table 2.Material properties of the verified model

- Thermal Coefficient of . Young’s
. Densit
Material Spg‘;::'cé‘;at conductivity  thermal expansion /Cn:sy modulus
¢ (W/m.K) (10°/°C ) (g/em”) (GPa)
TiC C, =134 K, =25.1 a, =1.4 p. =4.94 E. =320
Ni C, =4395  «, =905 a, =133 ., =8.89 E, =206

8. Results of optimum material distribution

Firstly, the temperature distribution for a FG Al2024/SiC plate,
manufactured by Erdemir et al [29], is calculated using the proposed solution
method. The results are obtained for a FG plate with h, and h_equal to infinity and

initial temperature of 25 centigrade degrees. Figure 4 and 5 show the convergence
rate for GA and PSO respectively. These figures show that both solutions
converge beyond 40 iterations the influence of provision lambda is noticeable in
both two methods. Value of safety factor SF=S /o obtained from these
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optimization methods, and are shown in Figures 6 and 7 which are to be uniform
in all over the plate as the optimization goal. It can be seen in these figures that
PSO have resulted a better SF distribution for the plate than GA but with higher
number of generations which as a sequence it needs more time to result a precise
answer for the problem.

Maximum allowable stress for the pure aluminum and ceramic are
assumed to be 112.3 MPa and 490.3 MPa, respectively. The distribution of the
volume fraction along the z direction of the plate with non-dimensional

parameterb, for FG plate is illustrated in figures 8 and 10 for both methods. In

Figures 9 and 11 the stress distribution on FG plate due to the thermal shock with
oA =0.45 is presented by considering the time. As it can be seen from these
figures PSO method provides more uniform stress distribution all over the plate
rather than GA method.

7 T T r ! ' L L
—A=15%
------ 51=25 %
------------ SA=35%
_ ~emm §0=45 %
2
I3]
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>
L
o 6F |
2
g
2,
(@)
5.5+ |
5 L r L L L [ f
0 0 2 3 40 5 60 70 8

Generation

Figure 4. GA convergence rate in the FG plate with different range of lambda.
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Figure 5. PSO convergence rate in the FG plate with different range of lambda.
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Figure 8. Volume fraction distribution along the z direction of FG plate with different
range of lambda provision in genetic algorithm method.
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Figure 9. Stress distribution along the z direction of FG plate under thermal shock with

volume fraction resulted with genetic algorithm method. ¢ Indicate small time pass after shock is
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Figure 10. Volume fraction distribution along the z direction of FG plate with different
range of lambda provision in PSO optimization method.
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Figure 11. Stress distribution along the z direction of FG plate under thermal shock with
volume fraction resulted with PSO method. ¢ Indicate small time pass after shock.

9. Conclusion

Transient thermal shock effect on a FG plate has been studied in this
paper. Two different sides of the plate undergo a sudden temperature gradient. A
computer code has been developed to obtain the temperature distribution along
the z direction of the plate. The method is based on the combining discretization
and Fourier series in space and time domain. Equivalent material properties have
been evaluated with hybrid use of Mori-Tanaka and Fuzzy logic with considering
Hashin-Schtrikman lower bonds. To evaluate the accuracy of the solution method,
the results of this method are compared with the available data in the literature. A
good agreement is observed.
This computer code is extended with the use of two different optimization
methods: GA and PSO, which determine the FGM volume fraction distribution to
provide optimum strength ratio along the plate. For this purpose, material
distribution across the z direction of the plate is obtained in control points.
Volume fraction distribution across the plate is interpolated using cubic Hermite
polynomials which have been calculated using Bernstein polynomial. The results
show the flexibility of the proposed method compared to other methods which use
predefined volume fraction functions.
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