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FROM GENERAL RELATIVITY TO SCALE RELATIVITY 
THEORY THROUGH GROUP INVARIANCES OF SL(2,R) 

TYPE 
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Viorel-Puiu PAUN6,7 

Correlations between General Relativity and Scale Relativity theories in the 
description of the gravitational systems dynamics through groups invariances of 
SL(2,R) type are investigated. In this context, a new possible holographic principle 
(totally different in relation to holographic principle of string theories) becomes more 
suitable to operate in gravitational dynamics by means of Ernst’s type potentials.  

Keywords: Scale Relativity, gravitational systems dynamics, SL(2,R) group 
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1. Introduction 

The usual physical models (Newtonian and post-Newtonian models, 
General Relativity [1-3]) used in describing the dynamics of gravitational systems 
are based on the hypothesis of the differentiability of the physical quantities used 
to describe its evolution. As a consequence, the validity of these models must be 
understood gradually, in areas where differentiability and integrability are still 
functional [1-3]. However, when discussing nonlinearity and chaoticity in the 
dynamics of the gravitational system (e.g.; strange topologies such as black hole, 
worm holes etc. [4]) , many differentiable and integrable mathematical procedures 
are not valid. Therefore, in order to properly describe the dynamics of gravitational 
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systems, it is necessary to introduce the scale resolution both into the expressions 
of the physical variables as well as into the expressions of the fundamental 
equations governing these gravitational systems’ dynamics [5-7]. 

Accepting the above affirmation, any physical variable (which might be 
used in the description of gravitational systems’ dynamics), will depend on both the 
usual mathematical procedures on spatial and time coordinates as well as on a scale 
resolution. Specifically, instead of working with a single physical variable (a strictly 
non-differentiable mathematical function), it is possible to operate only with 
approximations of this mathematical function, resulting by averaging it at different 
scale resolutions. Thus, any physical variable used to describe the dynamics of 
gravitational systems dynamics will operate as the limit of a family of mathematical 
functions, the function being non-differentiable for zero scale resolution and 
differentiable for non-zero scale resolution [5-7]. 

This new method of describing the dynamics of complex systems, obviously 
implies the development of both new geometric structures and gravitational 
theories, consistent with these geometric structures, for which the laws of motion, 
invariant to time coordinate transformations are also invariant to transformations 
with respect to scale resolution.  Such a geometric structure is the one based on the 
concept of the fractal/multifractal and the corresponding physical model described 
in the Scale Relativity Theory (SRT) [5]. From this perspective, holographic 
implementation in the description of gravitational system dynamics  will be made 
explicitely based on continuous but non-differentiable curves (fractal/multifractal 
curves).   
 In the present paper, correlations between GR and SRT theories in the 
description of the gravitational systems dynamics through groups invariances of 
SL(2,R) type are highlighted. In this context, a new possible holographic principle 
(different than existing one [8]) becomes functional so that the above-mentioned 
correlations can be reductible to Ernst’s type potentials. 

2. Schrödinger type scenario and group invariances type of SL(2,R)  

It is well known the fact that the dynamics gravitational systems dynamics 
in the SRT [7-9] can be described through the multifractal Schrödinger 
equation[6,7]: 

𝜆𝜆2(𝑑𝑑𝑑𝑑)�
4

𝑓𝑓(𝛼𝛼)�−2𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙Ψ + 𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑡𝑡Ψ = 0 (1) 

where in Eq. (1) we used the operators: 

𝜕𝜕𝑡𝑡 =
𝜕𝜕
𝜕𝜕𝑡𝑡

,𝜕𝜕𝑙𝑙 =
𝜕𝜕
𝜕𝜕𝑥𝑥𝑙𝑙

 ,𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙 =
𝜕𝜕2

𝜕𝜕𝑥𝑥𝑙𝑙2
 (2) 
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In the above relations, the meaning of the used quantities is the following:  
- 𝛹𝛹 is the state function; 
- 𝑑𝑑𝑑𝑑 is the scale resolution;  
- 𝑥𝑥𝑙𝑙 is the multifractal spatial coordinate;  
- 𝑡𝑡 is the non-multifractal temporal coordinate with the role of an affine 

parameter of the motion curves; 
- 𝜆𝜆 is a parameter associated to the multifractal/non-multifractal scale 

transition;  
- 𝑓𝑓(𝛼𝛼) is the singularity spectrum with a singularity index of order 𝛼𝛼 =

𝛼𝛼(𝐷𝐷𝐹𝐹)[9,10];  
- 𝐷𝐷𝐹𝐹 is the fractal dimension of the motion curves [9,10]; 
The multifractal Schrödinger equation admits, besides the clasical Galilei 

group proper, an extra set of symmetries that, in general conditions, can be taken in 
a form involving just one space dimension and time, as a SL(2,R) type group in two 
variables with three parameters [11-13]. Limiting the general conditions, the space 
dimension can be chosen as the radial coordinate in a free fall, as in the case of 
Galilei kinematics, which can also be extended as such in general relativity [14,15], 
for instance in the case of free fall in a Schwarzschild field.  
 For our current necessities, it is necessary to start with the finite equations 
of the specific SL(2,R) group, and build gradually upon these [11,16], in order to 
discover the necessary equations. Working in the variables (𝑡𝑡, 𝑟𝑟), the finite 
equations of this group are given by the transformations: 

𝑡𝑡 →
𝛼𝛼𝛼𝛼 + 𝛽𝛽
𝛾𝛾𝛾𝛾 + 𝛿𝛿

;  𝑟𝑟 →
𝑟𝑟

𝛾𝛾𝛾𝛾 + 𝛿𝛿
 (3) 

This transformation is a realization of the SL(2,R) structure in variables 
(𝑡𝑡, 𝑟𝑟), with three essential parameters. Every vector in the tangent space SL(2,R) is 
a linear combination of three fundamental vectors, the infinitesimal generators: 

𝑋𝑋1 =
𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝑋𝑋2 = 𝑡𝑡
𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝑟𝑟
2
𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝑋𝑋3 = 𝑡𝑡2
𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑡𝑡𝑡𝑡
𝜕𝜕
𝜕𝜕𝜕𝜕

 (4) 

satisfying the basic structure equations: 

[𝑋𝑋1,𝑋𝑋2] = 𝑋𝑋1, [𝑋𝑋2,𝑋𝑋3] = 𝑋𝑋3, [𝑋𝑋3,𝑋𝑋3] = −2𝑋𝑋2 (5) 

which we take as standard commutation relations for this type of algebraic structure 
throughout the present work. 
 
 



96     R.-V. Ababei, M.-Al. Paun, M. Frasila, C. M. Rusu, V.-Al. Paun, M. Agop, V.-P. Paun 

3. Gravity with an axial symmetry and group invariances of SL(2,R) 
type.  

We are talking here about gravity as it is presented to us in the formalism of 
the theory of general relativity. The main reason is that we want to extract as much 
as possible on the path of a mathematical philosophy of physics. And in general 
relativity, for the first time in history, the field concept, considered on the side of 
its omnipresence and permanence, was subjected by Albert Einstein to a logical 
analysis based on the idea of the particle, considered in the extent to which the 
aspects of point in space and moment of time are involved in its concept. The result 
of this analysis is sublimated in Einstein's field equations. Rarely one can give a 
general solution, with positive profit for mathematical philosophy, of these 
equations. However, the vacuum and electromagnetic vacuum equations have such 
a solution, which can be brought to an elegant form in the case of stationary metrics. 
Frederic J. Ernst was the one who pointed out this form [17,18], for the case of the 
axially symmetric field. Later both he, but especially Israel and Wilson [24], whom 
we will follow here, have shown that it is possible to treat the general stationary 
case in a completely analogous way. We will follow this last work here, first 
because it seems a bit more explicit for what we want to bring out into evidence, 
then because it apparently has a fresh idea of bypassing the related indeterminacy 
of the metric tensor, leading to profitable results for mathematical philosophy. We 
still follow the general idea of Ernst's original works, namely that of posing the 
problem of the gravific field in connection with a variational principle, for reasons 
that will be immediately highlighted. 

The main point of the cited work of Israel and Wilson is that, for a stationary 
space-time metric, conveniently written in the form 

 

(𝑑𝑑𝑑𝑑)2 = 𝑓𝑓(= 𝑓𝑓(𝑑𝑑𝑥𝑥4 + 𝜔𝜔𝑚𝑚𝑑𝑑𝑥𝑥𝑚𝑚)2 − 𝑓𝑓−1(𝛾𝛾𝑚𝑚𝑚𝑚𝑑𝑑𝑥𝑥𝑚𝑚𝑑𝑑𝑥𝑥𝑛𝑛) (6) 

where we use the convention of summation by repeated indices of different 
variance, Einstein's equations for the electromagnetic field in vacuum 
 

𝐺𝐺𝛼𝛼𝛼𝛼 = −8𝑇𝑇𝛼𝛼𝛼𝛼 (7) 

take the form of the system of equations with nonlinear partial derivatives 
∇2𝜖𝜖 = ∇𝜖𝜖 ⋅ (∇𝜖𝜖 + 2Ψ∗∇Ψ)

𝑓𝑓∇2Ψ = ∇Ψ ⋅ (∇𝜖𝜖 + 2Ψ∗∇Ψ) (8) 
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Let us now explain the symbols: Greek indices go from 1 to 4, while Latin 
indices go from 1 to 3 and represent spatial indices. The spatio-temporal metric 
tensor is defined by 

𝑔𝑔44 = 𝑓𝑓,  𝛾𝛾𝑚𝑚𝑚𝑚 = 𝑔𝑔4𝑚𝑚𝑔𝑔4𝑛𝑛 − 𝑔𝑔44𝑔𝑔𝑚𝑚𝑚𝑚,  𝜔𝜔𝑘𝑘 =
𝑔𝑔4𝑘𝑘
𝑔𝑔44

 (9) 

and for raising and lowering the spatial indices, the metric (𝛾𝛾𝛾𝛾𝛾𝛾) is used. All of 
these components do not depend on the time coordinate (stationarity property). A 
potential four-vector (𝑨𝑨,𝐴𝐴4) ≡ �𝐴𝐴𝛾𝛾� describes the electromagnetic field whose 
intensities are given by its covariant curl: 

𝐹𝐹𝛼𝛼𝛼𝛼 = ∇𝛼𝛼𝐴𝐴𝛽𝛽 − ∇𝛽𝛽𝐴𝐴𝛼𝛼 (10) 

This electromagnetic field satisfies the equation 

−4𝜋𝜋𝑇𝑇𝜇𝜇𝜇𝜇 ≡ 𝑔𝑔𝛼𝛼𝛼𝛼𝐹𝐹𝜇𝜇𝜇𝜇𝐹𝐹𝜈𝜈𝜈𝜈 −
1
4
𝑔𝑔𝜇𝜇𝜇𝜇𝐹𝐹𝛼𝛼𝛼𝛼𝐹𝐹𝛼𝛼𝛼𝛼 (11) 

Further, 𝐺𝐺𝛼𝛼𝛼𝛼 is the Einstein tensor associated with the metric field, and 
defined by 

𝐺𝐺𝜇𝜇𝜇𝜇 ≡ 𝑅𝑅𝜇𝜇𝜇𝜇 −
1
2
𝑔𝑔𝜇𝜇𝜇𝜇𝑅𝑅 (12) 

with 𝑅𝑅𝛼𝛼𝛼𝛼 the Ricci tensor of the metric, and 𝑅𝑅 the scalar invariant of the curvature.  
In relation to these symbols, then are defined the functions 

Ψ ≡ 𝐴𝐴4 + 𝑖𝑖Φ;  𝜖𝜖 ≡ 𝑓𝑓 − Ψ∗𝜓𝜓 + 𝑖𝑖𝑖𝑖;  𝑖𝑖 = √−1 (13) 

where 𝛷𝛷 ia a magnetic potential and 𝜙𝜙 an arbitrary function. Once we know the 
functions 𝜖𝜖,𝛷𝛷 and 𝜙𝜙, we can construct the Ricci tensor corresponding to the metric 
(𝛾𝛾𝑚𝑚𝑚𝑚) by 

−𝑓𝑓2𝑅𝑅𝑚𝑚𝑚𝑚(𝛾𝛾) =
1
2
𝜖𝜖(𝑚𝑚∇𝑛𝑛)𝜖𝜖∗ + Ψ∇(𝑚𝑚𝜖𝜖 ⋅ ∇𝑛𝑛)Ψ∗

+Ψ∗∇(𝑚𝑚𝜖𝜖∗ ⋅ ∇𝑛𝑛)Ψ− (𝜖𝜖 + 𝜖𝜖∗)∇(𝑚𝑚Ψ ⋅ ∇𝑛𝑛)Ψ∗
 (14) 

where the parentheses mean symmetrization in relation to the indices they contain. 
As we said, F. J. Ernst [17] introduced the complex potential 𝜖𝜖 for the case 

especially of the gravitational field with axial symmetry. It was later proven that 
spatial symmetry is not a necessary condition for the existence of such a potential 
[18] but only the stationarity of the metric field (time independence). Despite this 
fact, it is not possible to solve the problem of gravity in the spirit in which Einstein 
first posed it [19], that is, given the energy tensor, solve the equations to find 
uniquely the metric tensor. In fact, this problem has never been solved as such. The 
deep reason is very simple in our opinion: the field is deprived here of what we 
would call a condition of universality, this being defined as the presence of the field 
in any interaction in space. More precisely, to find a solution for the gravitational 
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potentials (metric tensor components), it is necessary to solve Einstein's equations 
(7). However, the right side of these equations contains the energy tensor, whose 
construction, although it explains the properties of interaction, requires a priori 
knowledge of the metric tensor. 

This problem has been repeatedly iterated in theoretical physics, in one way 
or another, and among its settlement cases there are some remarkable for their 
contribution to knowledge of the nature of the gravitational field [19-22]. Special 
mention should be made of the conclusion that the theory of Einstein's non-
symmetric field [19] is completely equivalent to nonlinear Born-Infeld 
electrodynamics [20] provided that the metric tensor be defined with an 
antisymmetric part representing the electromagnetic field [21]. Indeed, the metric 
tensor �𝑔𝑔𝛼𝛼𝛼𝛼� might not be symmetric in general, because in the metric only its 
symmetrical part appears, by the very algebraic nature of the quadratic form which 
represents the metric. So, if we take a general metric tensor, non-symmetric, and 
accept that it is compatible with the space connection, then the antisymmetric part 
of the metric is identical by its definition with the Born-Infeld electromagnetic field. 
Next, the Born-Infeld equations actually represent the cancellation of the space-
time torsion covector. There is obviously very much to say about this fascinating 
problem of modern theoretical physics, but we will limit now to the introduction of 
what Ernst's complex potential made possible. More precisely, we will show what 
this potential means for the measurement problem. Let's note that the problem of 
the gravitational field could be solved if there is a logic slightly deviated from the 
usual line, in the sense of allowing the metric 𝛾𝛾 to be arbitrary, so that it can be 
conveniently chosen. Indeed, Israel and Wilson [23] note that equations (14) should 
only be taken as compatibility conditions between a specially chosen spatial metric 
and the complex fields 𝜖𝜖 and 𝛹𝛹. In the particular case of the ordinary Euclidean 
space, the conditions of compatibility are simply reduced to the linear equation 

Ψ = 𝑎𝑎 + 𝑏𝑏𝑏𝑏,  𝑎𝑎𝑏𝑏∗ + 𝑎𝑎∗𝑏𝑏 = −
1
2

 (15) 

and the whole construction comes back to solving the Laplace's equation 

∇2𝜉𝜉 = 0,  𝜉𝜉 ≡ (1 + 𝜖𝜖)−1 (16) 

Through equation (15), the gravitational field determines an 
electromagnetic field. This field is still not a transition field, as we usually know it, 
but it only reflects the property of omnipresence and permanence of the 
gravitational field. In one of the now classic works, Misner and Wheeler [24] 
admirably captured these attributes of the gravitational field (actually of space itself 
as an active physical entity) and studied their physical significance in detail. Here 
we are particularly interested in making it clear the fact that equation (14) is the 
mark of a measurement process, showing its relevance for the case of the harmonic 
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oscillator. Ernst himself [17] noted the fact that a functional relationship between 
the complex gravitational and electromagnetic potentials solves the gravitational 
field problem. 

4. Ernst’s type potentials 

In 1971, Ernst [18] proved that the theory providing equations (8) and (14) 
above, applied to the purely gravitational case, can be obtained from the variational 
principle 

𝛿𝛿�  �𝑅𝑅(𝛾𝛾) + 2
𝛾𝛾𝑚𝑚𝑚𝑚(∇𝑚𝑚𝜖𝜖)(∇𝑛𝑛𝜖𝜖∗)

(𝜖𝜖 + 𝜖𝜖∗)2
��det (𝛾𝛾)(𝑑𝑑3𝑥𝑥) = 0 (17) 

 
where 𝑅𝑅(𝛾𝛾) is the scalar curvature of the metric 𝛾𝛾. As such it can now be seen that 
in a Euclidean space this variational principle refers exclusively to Ernst's complex 
potential: 

𝛿𝛿�  �
𝛾𝛾𝑚𝑚𝑚𝑚(∇𝑚𝑚𝜖𝜖)(∇𝑛𝑛𝜖𝜖∗)

(𝜖𝜖 + 𝜖𝜖∗)2
� (𝑑𝑑3𝑥𝑥) = 0 (18) 

 
In other words, only in cases where the gravitational field defines an 

electromagnetic field through a linear relationship of the type (15), that 
gravitational field can be described exclusively through a complex potential. Here 
we will limit ourselves to this last case of the gravity field in vacuum. The line of 
ideas that we have just presented opens an unexpected path for the solution of the 
problem of vacuum fields, because the variational principle (18) can be constructed 
in connection with the continuous group SL(2, R) that we have here in mind. 

Richard Matzner and Charles Misner observed [25] that the principle 
variational (18) is actually a response to what, in somewhat more contemporary 
terms, constitutes the problem of harmonic applications, the modern version of 
Dirichlet's ancient problem, a fact explicitly recognized a little later by Misner 
himself [16]. From this point of view, equation (18) describes a harmonic 
application from Euclidean space to SL(2, R). This fact is much more palpable if, 
instead of the Ernst 𝜖𝜖 potential, we use as a field variable ℎ ≡ 𝑖𝑖𝑖𝑖, so that equation 
(18) becomes 

𝛿𝛿�  �
𝛾𝛾𝑚𝑚𝑚𝑚(∇𝑚𝑚ℎ)(∇𝑛𝑛ℎ∗)

(ℎ − ℎ∗)2
� (𝑑𝑑3𝑥𝑥) = 0 (19) 

Obviously, this variational equation describes a harmonic application 
between the usual Euclidean space of metric (𝛾𝛾𝑚𝑚𝑚𝑚) and the higher complex plane 
the Poincaré representation of the hyperbolic plane with the metric given by 
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(𝑑𝑑𝑑𝑑)2 = −4
(𝑑𝑑ℎ)(𝑑𝑑ℎ∗)
(ℎ − ℎ∗)2

≡
(𝑑𝑑𝑑𝑑)2 + (𝑑𝑑𝑑𝑑)2

𝑣𝑣2
,  ℎ = 𝑢𝑢 + 𝑖𝑖𝑖𝑖 (20) 

known as the invariant metric of the SL(2, R) group [26]. This is the main idea 
contained in Ernst's approach, as well as the reason why we follow it closely. 

The complex potential ℎ is somewhat closer to how this geometry is built, 
and this from several points of view. The most important of these is its possible 
physical meaning. Indeed, equation (13) gives us, for the case of the null 
electromagnetic field (pure gravitational field): 

ℎ = −𝜙𝜙 + 𝑖𝑖𝑖𝑖 (21) 

so that the real part of the potential is arbitrary, while the imaginary part 

𝑣𝑣 ≡ 𝑓𝑓 = 𝑔𝑔44 (22) 

always has the attractive aspect of being positive with a fixed point of unity (the 
speed of light in a vacuum). These are essential qualities required by the geometry 
of the Poincaré half-plane. By himself this fact, the Poincaré metric is physically 
legitimized. Another attractive theoretical point of this potential is that the 
differential equations corresponding to the variational principle (19) known as the 
"Ernst equations" of the problem - take the shape 

(ℎ − ℎ∗)(∇2ℎ) = 2(∇ℎ)(∇ℎ) (23) 

and complex conjugate, obviously, and can be easily solved with the help of 
Laplace's equation. More precisely, the solution of equation (16) can be written in 
the form 
 

ℎ = −𝑖𝑖
cosh 𝜓𝜓 − 𝑒𝑒−𝑖𝑖𝑖𝑖sinh 𝜓𝜓
cosh 𝜓𝜓 + 𝑒𝑒−𝑖𝑖𝑖𝑖sinh 𝜓𝜓

,  ∇2𝜓𝜓 = 0 (24) 

with 𝛼𝛼 real and arbitrary. Therefore, here the solution to the problem of the 
stationary gravitational field is also reduced to solving Laplace's equation in the 
usual space of our experience, just like in classical Newtonian theory. In Figure 1 
is presented the dependence of Re(h)=F(ω,t) as a function of dimensionless  ω and 
t for coth(ψ)=1.3 [26-30]. Such behaviors can be found in gravitational systems 
dynamics such as irregular-shaped celestial bodies. 
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(a) (b) 

  
(c) (d) 

Fig. 1 a-d: The “double period dynamic modes” of gravitational system dynamics are 
presented: (a) - 3D diagram, (b) - contour plot, (c) - time series and (d) - reconstituted attractor for 

scale resolutions given by ωmax. 

The software programs used to represent the four diagrams in Figure 1 (a-
d) were developed and successfully used in previous works of the multifractal 
analysis field in various interest topics [31-35]. 

5. Conclusions  

In this paper, correlations between the Space-Time Theory and the Scale 
Relativity Theory have been established. In such context, a new holographic 
principle based on depiction of gravitational system dynamics by means of 
fractal/multifractals curves becomes functional.  
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Then any description of gravitational systems dynamics though SRT and 
GR implies a special group invariances of SL(2,R) type. Moreover, the 
compatibility of descriptions in these two instances (GR and SRT) is dictated by 
Ernst’s type potentials. In particular, for gravitation dynamics on Peano’s type 
curves (i.e., non-differentiable curves in fractal dimensions DF=2) at Compton scale 
resolution correlation between Quantum Mechanics and published GR works.  

Finally, our theoretic model can be validated for gravitational dynamics of 
irregular-shaped celestial bodies (in our case from doubling period gravitational 
dynamics). 
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