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FROM GENERAL RELATIVITY TO SCALE RELATIVITY
THEORY THROUGH GROUP INVARIANCES OF SL(2,R)
TYPE
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Correlations between General Relativity and Scale Relativity theories in the
description of the gravitational systems dynamics through groups invariances of
SL(2,R) type are investigated. In this context, a new possible holographic principle
(totally different in relation to holographic principle of string theories) becomes more
suitable to operate in gravitational dynamics by means of Ernst’s type potentials.
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1. Introduction

The usual physical models (Newtonian and post-Newtonian models,
General Relativity [1-3]) used in describing the dynamics of gravitational systems
are based on the hypothesis of the differentiability of the physical quantities used
to describe its evolution. As a consequence, the validity of these models must be
understood gradually, in areas where differentiability and integrability are still
functional [1-3]. However, when discussing nonlinearity and chaoticity in the
dynamics of the gravitational system (e.g.; strange topologies such as black hole,
worm holes etc. [4]) , many differentiable and integrable mathematical procedures
are not valid. Therefore, in order to properly describe the dynamics of gravitational
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systems, it is necessary to introduce the scale resolution both into the expressions
of the physical variables as well as into the expressions of the fundamental
equations governing these gravitational systems’ dynamics [5-7].

Accepting the above affirmation, any physical variable (which might be
used in the description of gravitational systems’ dynamics), will depend on both the
usual mathematical procedures on spatial and time coordinates as well as on a scale
resolution. Specifically, instead of working with a single physical variable (a strictly
non-differentiable mathematical function), it is possible to operate only with
approximations of this mathematical function, resulting by averaging it at different
scale resolutions. Thus, any physical variable used to describe the dynamics of
gravitational systems dynamics will operate as the limit of a family of mathematical
functions, the function being non-differentiable for zero scale resolution and
differentiable for non-zero scale resolution [5-7].

This new method of describing the dynamics of complex systems, obviously
implies the development of both new geometric structures and gravitational
theories, consistent with these geometric structures, for which the laws of motion,
invariant to time coordinate transformations are also invariant to transformations
with respect to scale resolution. Such a geometric structure is the one based on the
concept of the fractal/multifractal and the corresponding physical model described
in the Scale Relativity Theory (SRT) [5]. From this perspective, holographic
implementation in the description of gravitational system dynamics will be made
explicitely based on continuous but non-differentiable curves (fractal/multifractal
curves).

In the present paper, correlations between GR and SRT theories in the
description of the gravitational systems dynamics through groups invariances of
SL(2,R) type are highlighted. In this context, a new possible holographic principle
(different than existing one [8]) becomes functional so that the above-mentioned
correlations can be reductible to Ernst’s type potentials.

2. Schrodinger type scenario and group invariances type of SL(2,R)

It is well known the fact that the dynamics gravitational systems dynamics
in the SRT [7-9] can be described through the multifractal Schrodinger
equation[6,7]:

4 2
AZ(dt)[m]‘zala“p + m(dt)[ml‘latw =0 (1)
where in Eq. (1) we used the operators:
a—aa—a aal—az (2
t_at; l_axl) l _axlz )
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In the above relations, the meaning of the used quantities is the following:

- W is the state function;

- dt is the scale resolution;

- x!is the multifractal spatial coordinate;

-t is the non-multifractal temporal coordinate with the role of an affine

parameter of the motion curves;

- A is a parameter associated to the multifractal/non-multifractal scale

transition;

- f(a) is the singularity spectrum with a singularity index of order a =

a(Dr)[9,10];

- Dg is the fractal dimension of the motion curves [9,10];

The multifractal Schrodinger equation admits, besides the clasical Galilei
group proper, an extra set of symmetries that, in general conditions, can be taken in
a form involving just one space dimension and time, as a SL(2,R) type group in two
variables with three parameters [11-13]. Limiting the general conditions, the space
dimension can be chosen as the radial coordinate in a free fall, as in the case of
Galilei kinematics, which can also be extended as such in general relativity [14,15],
for instance in the case of free fall in a Schwarzschild field.

For our current necessities, it is necessary to start with the finite equations
of the specific SL(2,R) group, and build gradually upon these [11,16], in order to
discover the necessary equations. Working in the variables (t,7), the finite
equations of this group are given by the transformations:
at + T

;T o 3)
yt+6 yt+46

This transformation is a realization of the SL(2,R) structure in variables
(t, ), with three essential parameters. Every vector in the tangent space SL(2,R) is
a linear combination of three fundamental vectors, the infinitesimal generators:

d d rao d d
—_ I — — 2 _ 4
5 X, t8t+26r' X;=t + tr 4)

satisfying the basic structure equations:

t >

X1:

[X1;X2] = Xy, [Xz'X3] = X3, [X3'X3] = —2X, ®)

which we take as standard commutation relations for this type of algebraic structure
throughout the present work.
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3. Gravity with an axial symmetry and group invariances of SL(2,R)

type.

We are talking here about gravity as it is presented to us in the formalism of
the theory of general relativity. The main reason is that we want to extract as much
as possible on the path of a mathematical philosophy of physics. And in general
relativity, for the first time in history, the field concept, considered on the side of
its omnipresence and permanence, was subjected by Albert Einstein to a logical
analysis based on the idea of the particle, considered in the extent to which the
aspects of point in space and moment of time are involved in its concept. The result
of this analysis is sublimated in Einstein's field equations. Rarely one can give a
general solution, with positive profit for mathematical philosophy, of these
equations. However, the vacuum and electromagnetic vacuum equations have such
a solution, which can be brought to an elegant form in the case of stationary metrics.
Frederic J. Ernst was the one who pointed out this form [17,18], for the case of the
axially symmetric field. Later both he, but especially Israel and Wilson [24], whom
we will follow here, have shown that it is possible to treat the general stationary
case in a completely analogous way. We will follow this last work here, first
because it seems a bit more explicit for what we want to bring out into evidence,
then because it apparently has a fresh idea of bypassing the related indeterminacy
of the metric tensor, leading to profitable results for mathematical philosophy. We
still follow the general idea of Ernst's original works, namely that of posing the
problem of the gravific field in connection with a variational principle, for reasons
that will be immediately highlighted.

The main point of the cited work of Israel and Wilson is that, for a stationary
space-time metric, conveniently written in the form

(ds)? = f(= f(dx" + wpdx™)? = f 7 (Ymndx™dx™) (6)

where we use the convention of summation by repeated indices of different
variance, Einstein's equations for the electromagnetic field in vacuum

take the form of the system of equations with nonlinear partial derivatives
Ve = Ve - (Ve + 2¥*VV¥)

FV2Y = V¥ - (Ve + 2¥* VW) ®)
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Let us now explain the symbols: Greek indices go from 1 to 4, while Latin
indices go from 1 to 3 and represent spatial indices. The spatio-temporal metric
tensor is defined by

Gk

9aa = [, Ymn = Jam9an — 9449mn» Wk = 9)
Gaa

and for raising and lowering the spatial indices, the metric (ymn) is used. All of
these components do not depend on the time coordinate (stationarity property). A
potential four-vector (A4,4,) = (Ay) describes the electromagnetic field whose
intensities are given by its covariant curl:

Faﬁ = Va’AB - VBAa (10)
This electromagnetic field satisfies the equation

1
4Ty = 9% FuaFug = 4 9P Fog (an

Further, G, is the Einstein tensor associated with the metric field, and
defined by

1
G;w = Ruv - EguvR (12)

with R,p the Ricci tensor of the metric, and R the scalar invariant of the curvature.
In relation to these symbols, then are defined the functions

W=A,+ib; e=f-WY+igp;i=vV—1 (13)

where @ ia a magnetic potential and ¢ an arbitrary function. Once we know the
functions €, @ and ¢, we can construct the Ricci tensor corresponding to the metric

(Vimn) by .
—szmn(]/) = EE(mvn)G* + lPV(mE : Vn)qj*

where the parentheses mean symmetrization in relation to the indices they contain.

As we said, F. J. Ernst [17] introduced the complex potential € for the case
especially of the gravitational field with axial symmetry. It was later proven that
spatial symmetry is not a necessary condition for the existence of such a potential
[18] but only the stationarity of the metric field (time independence). Despite this
fact, it is not possible to solve the problem of gravity in the spirit in which Einstein
first posed it [19], that is, given the energy tensor, solve the equations to find
uniquely the metric tensor. In fact, this problem has never been solved as such. The
deep reason is very simple in our opinion: the field is deprived here of what we
would call a condition of universality, this being defined as the presence of the field
in any interaction in space. More precisely, to find a solution for the gravitational

(14)
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potentials (metric tensor components), it is necessary to solve Einstein's equations
(7). However, the right side of these equations contains the energy tensor, whose
construction, although it explains the properties of interaction, requires a priori
knowledge of the metric tensor.

This problem has been repeatedly iterated in theoretical physics, in one way
or another, and among its settlement cases there are some remarkable for their
contribution to knowledge of the nature of the gravitational field [19-22]. Special
mention should be made of the conclusion that the theory of Einstein's non-
symmetric field [19] is completely equivalent to nonlinear Born-Infeld
electrodynamics [20] provided that the metric tensor be defined with an
antisymmetric part representing the electromagnetic field [21]. Indeed, the metric
tensor (gaﬁ) might not be symmetric in general, because in the metric only its
symmetrical part appears, by the very algebraic nature of the quadratic form which
represents the metric. So, if we take a general metric tensor, non-symmetric, and
accept that it is compatible with the space connection, then the antisymmetric part
of the metric is identical by its definition with the Born-Infeld electromagnetic field.
Next, the Born-Infeld equations actually represent the cancellation of the space-
time torsion covector. There is obviously very much to say about this fascinating
problem of modern theoretical physics, but we will limit now to the introduction of
what Ernst's complex potential made possible. More precisely, we will show what
this potential means for the measurement problem. Let's note that the problem of
the gravitational field could be solved if there is a logic slightly deviated from the
usual line, in the sense of allowing the metric y to be arbitrary, so that it can be
conveniently chosen. Indeed, Israel and Wilson [23] note that equations (14) should
only be taken as compatibility conditions between a specially chosen spatial metric
and the complex fields € and ¥. In the particular case of the ordinary Euclidean
space, the conditions of compatibility are simply reduced to the linear equation

1
Y =g + be, ab*+a*b=—§ (15)
and the whole construction comes back to solving the Laplace's equation
ViE=0,=(1+e)? (16)

Through equation (15), the gravitational field determines an
electromagnetic field. This field is still not a transition field, as we usually know it,
but it only reflects the property of omnipresence and permanence of the
gravitational field. In one of the now classic works, Misner and Wheeler [24]
admirably captured these attributes of the gravitational field (actually of space itself
as an active physical entity) and studied their physical significance in detail. Here
we are particularly interested in making it clear the fact that equation (14) is the
mark of a measurement process, showing its relevance for the case of the harmonic
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oscillator. Ernst himself [17] noted the fact that a functional relationship between
the complex gravitational and electromagnetic potentials solves the gravitational
field problem.

4. Ernst’s type potentials

In 1971, Ernst [18] proved that the theory providing equations (8) and (14)
above, applied to the purely gravitational case, can be obtained from the variational
principle

Y (Vi €) (Vye™) _
) fff {R(y) + 2 1) },/det (y)(d3x) =0 (17)

where R(y) is the scalar curvature of the metric y. As such it can now be seen that
in a Euclidean space this variational principle refers exclusively to Ernst's complex

potential:
(V3 €) (V€
5” {y ((e+6e)*()26)}(d3x):0 (9

In other words, only in cases where the gravitational field defines an
electromagnetic field through a linear relationship of the type (15), that
gravitational field can be described exclusively through a complex potential. Here
we will limit ourselves to this last case of the gravity field in vacuum. The line of
ideas that we have just presented opens an unexpected path for the solution of the
problem of vacuum fields, because the variational principle (18) can be constructed
in connection with the continuous group SL(2, R) that we have here in mind.

Richard Matzner and Charles Misner observed [25] that the principle
variational (18) is actually a response to what, in somewhat more contemporary
terms, constitutes the problem of harmonic applications, the modern version of
Dirichlet's ancient problem, a fact explicitly recognized a little later by Misner
himself [16]. From this point of view, equation (18) describes a harmonic
application from Euclidean space to SL(2, R). This fact is much more palpable if,
instead of the Ernst € potential, we use as a field variable h = i€, so that equation

(18) becomes
my(y..h)(V, h*
5m {V ((h_z*()z )} (d®) =0 (19)

Obviously, this variational equation describes a harmonic application
between the usual Euclidean space of metric (¥,,) and the higher complex plane
the Poincaré representation of the hyperbolic plane with the metric given by
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(dh)(dh*) (dw)? + (dv)? )

(ds)*> = —4 (h = h)2 = vz ,h=u+iv (20)
known as the invariant metric of the SL(2,R) group [26]. This is the main idea
contained in Ernst's approach, as well as the reason why we follow it closely.

The complex potential h is somewhat closer to how this geometry is built,
and this from several points of view. The most important of these is its possible
physical meaning. Indeed, equation (13) gives us, for the case of the null
electromagnetic field (pure gravitational field):

h=—-¢+if (21)
so that the real part of the potential is arbitrary, while the imaginary part
V=f = Gaa (22)

always has the attractive aspect of being positive with a fixed point of unity (the
speed of light in a vacuum). These are essential qualities required by the geometry
of the Poincaré half-plane. By himself this fact, the Poincaré metric is physically
legitimized. Another attractive theoretical point of this potential is that the
differential equations corresponding to the variational principle (19) known as the
"Ernst equations" of the problem - take the shape

(h — h*)(V2R) = 2(VRh)(Vh) (23)

and complex conjugate, obviously, and can be easily solved with the help of
Laplace's equation. More precisely, the solution of equation (16) can be written in
the form

_cosh 1 — e “sinh
tcosh Y + e~@sinh ¢’
with a real and arbitrary. Therefore, here the solution to the problem of the
stationary gravitational field is also reduced to solving Laplace's equation in the
usual space of our experience, just like in classical Newtonian theory. In Figure 1
is presented the dependence of Re(4)=F(w,t) as a function of dimensionless w and
t for coth(y)=1.3 [26-30]. Such behaviors can be found in gravitational systems
dynamics such as irregular-shaped celestial bodies.

Vi =0 24)



From general relativity to scale relativity theory through group invariances of SL(2,R) type 101

F(a,1) Double Period Dynamic F(at)

0.8800

Double Period Dynami

0.7920

0.7040
08180
05280
| 04200
03520
02640

o (a.u.)

0.1780

0.08800

0.000

5.0 10.0 150 20.0
Time (a.u.)
(a) (b)

Double Period Dynamic ——F

RERRRERERN
oo [N

0.4+

F (o.t)

0.2 1

T T T T T
0 5 10 15 20

Time (a.u.)

(c) (d)

Fig. 1 a-d: The “double period dynamic modes” of gravitational system dynamics are
presented: (a) - 3D diagram, (b) - contour plot, (c) - time series and (d) - reconstituted attractor for
scale resolutions given by ®max.

The software programs used to represent the four diagrams in Figure 1 (a-
d) were developed and successfully used in previous works of the multifractal
analysis field in various interest topics [31-35].

5. Conclusions

In this paper, correlations between the Space-Time Theory and the Scale
Relativity Theory have been established. In such context, a new holographic
principle based on depiction of gravitational system dynamics by means of
fractal/multifractals curves becomes functional.
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Then any description of gravitational systems dynamics though SRT and
GR implies a special group invariances of SL(2,R) type. Moreover, the
compatibility of descriptions in these two instances (GR and SRT) is dictated by
Ernst’s type potentials. In particular, for gravitation dynamics on Peano’s type
curves (i.e., non-differentiable curves in fractal dimensions Dr=2) at Compton scale
resolution correlation between Quantum Mechanics and published GR works.

Finally, our theoretic model can be validated for gravitational dynamics of
irregular-shaped celestial bodies (in our case from doubling period gravitational
dynamics).
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