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PERFORMANCES STUDY OF TOMOGRAPHIC 
RECONSTRUCTION IMPLEMENTED ON NVIDIA GRAPHIC 

PROCESSOR SYSTEMS 

Adrian SIMA1 

Procesul de reconstrucţie tomografică necesită un cost computaţional foarte 
mare datorită procedurii de “proiecţie înapoi” (backprojection). În acest articol am 
implementat un astfel de algoritm de reconstrucţie pentru o geometrie paralelă 2D a 
razelor X. Implementarea a fost realizată în 4 variante: utilizând o singură unitate 
de calcul, 4 unităţi de calcul (Intel Q6600 la 2.4 GHz şi 8GB memorie ram) 
împreună cu tehnologia OpenMp, o placă video ce este compatibilă cu tehnologia 
CUDA şi utilizează memoria globală a acesteia şi ultima variantă aceeaşi placă 
video însă de data aceasta utilizând memoria texturilor. Atât implementările pe 
CPU, cât şi cele pe placa grafică folosesc datele în simplă precizie. Cel mai bun 
timp de calcul a fost obţinut în cazul utilizării plăcii video cu memoria texturilor.  

Tomographic reconstruction requires a very high computational cost due to 
its time-consuming backprojection step. In this paper, we implement 2D parallel-
beam backprojections on single core processo,on four cores of the same CPU using 
OpenMP technology and a graphics card Nvdia Tesla 870C using global memory 
and textures memory CUDA (Compute Unified Device Architecture) architecture. 
For parallel beam reconstruction, the pixel-driven backprojection program running 
on the CPU and GPU uses single-precision binary floating-point arithmetic and 
linear interpolation. With the help of the texture unit we obtained the best 
computation time. 
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1. Introduction 
 
In tomographic reconstruction, exact or approximate, analytical or iterative 

algorithms have been developed and implemented. Most of these algorithms use 
backprojection as a core operation which dominates the computational cost. 
Generally, the backprojection is a straightforward pixel-driven operation, which 
has few dependencies among different pixels and is computed as an array 
operation within a loop. With high memory bandwidth, programmable graphics 
processors can execute this operation at high speeds. Graphics applications also 
typically consist of largely independent computations and data-intensive 
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operations. Accelerating the backprojection step on graphics hardware was 
studied since 1990s [1], which employed texture mapping hardware of the 
graphics processor for the acceleration of tomographic reconstruction and the 
evolution of floating points pc graphics processing unit (GPU). With the evolution 
of graphics processors, the speed of reconstruction has been improved; however, 
their limited capabilities and inadequate programming model were a barrier to 
increasing the speed of reconstruction. 
 A recent development in this viewpoint is the release of CUDA by NVidia 
Corporation, which is a new hardware and software architecture for issuing and 
managing general computations on the GPU as a data-parallel computing device 
[2]. The aim of this paper is to implement 2D parallel beam backprojection 
algorithms through Intel uni and quad processors and CUDA for the Tesla C870 
GPU and to benchmark their performances. This GPU is is organized into 16 
highly threaded Streaming Multiprocessors (SMs). A pair of SMs form a building 
block (Fig. 1). Each SM has 8 streaming processors (SPs), for a total of 128 
(16*8). Each SP has a multiply-add (MAD) unit, and and an additional multiply 
(MUL) unit, all running at 1.35 gigahertz (GHz). This means that there are almost 
367 gigaflops for the MADs and a total of over 500 gigaflops if you include the 
MULs as well. In addition, special function units perform floating point functions 
such as SQRT and RCP SQRT as well as transcendental functions. Each GPU 
currently comes with 1.5 megabytes of DRAM. This memory space differ from 
the system memory DIMM DRAMs on the motherboard because it is essentially 
the frame buffer memory that is used for graphics. For graphics applications, it 
hold high-definition video images, and texture information for 3D rendering as in 
games. But for computing, it works like very high bandwidth off-chip cache, 
though with somewhat more latency regular cache or system memory. If the chip 
is programmed properly, the high bandwidth makes up for the large latency. 
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Fig. 1. Architecture of a CUDA-capable GPU 

  
2. CUDA programming model 

 
 From a point of viewof a CUDA programmer, the computing system 
consists of a host that is a traditional Central Processing Unit (CPU), such an Intel 
Architecture microprocessor in personal computers, and one or more devices that 
are massively parallel processors equipped with a large number of arithmetic 
execution units. In modern software applications, there are often program sections 
that exhibit rich amount of data parallelism, a property where many arithmetic 
operations can be safely performed on program data structures in a simultaneous 
manner. 
 A CUDA program consists of one or more phases that are executed on 
either the host (CPU) or a device such as a GPU. The phases that exhibit little or 
no data parallelism are implemented in host code. The phases that exhibit rich 
amount of data parallelism are implemented in the device code. The program 
supplies a single source code encompassing both host and device code. The 
NVIDIA C Compiler (NVCC) separates the two. The host code is straight ANSI 
C code and it is compiled with the host's standard C compilers and it runs as an 
ordinary process. The device code is written using ANSI C extended with 
keywords for labeling data-parallel functions, called kernels, and their associated 
data structures. The device code is typically further compiled by the NVCC and 
executed on a GPU device. The kernel functions, or simply kernels, typically 
generate a large number of threads to exploit data parallelism. CUDA threads are 
of much lighter weight than the CPU threads. CUDA programmers can assume 
that these threads take very few cycles to generate and schedule due to efficient 
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hardware support. This is in contrast with the CPU threads that typically take 
thousands of clock cycles to generate and schedule. 
 The execution of a typical CUDA program is illustrated in Fig. 2. The 
execution starts with host (CPU) execution. When a kernel function is invoked, 
the execution is moved to a device (GPU), where a large number of threads are 
generated to take advantage of abundant data parallelism. All the threads that are 
generated by a kernel during an invocation are collectively called a grid. Fig. 2 
shows the execution of two girds of threads. When all threads of a kernel 
complete their execution, the corresponding grid terminates, the execution 
continues on the host until another kernel is invoked. 
 

 
Fig. 2. Execution of a CUDA program 

 
In CUDA, host and devices have separate memory spaces. This reflects 

the reality that devices are typically hardware cards that come with their own 
Dynamic Random Access Memory (DRAM). For example, the NVIDIA TESLA 
C870 card that we use  
comes with 1500 MB (million bytes, or mega-bytes) of DRAM. In order to 
execute a kernel on a device, the programmer needs to allocate memory on the 
device and transfer the data from the host memory to the allocated device 
memory. Similarly, after device execution, the programmer needs to transfer 
result data from device back to the host and free up the device memory that is no 
longer needed. The 

CUDA runtime system provides Application Programming Interface (API) 
function calls to perform these activities. 
Fig. 3 shows an overview of the CUDA device memory model and the various 
memory types available on a device. At the bottom of the picture, we see global 
memory and constant memory. These are the memories that the host code can 
write (W) to and read (R) from. Constant memory allow read-only access by the 
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device. The concept CUDA memory model is supported by the API functions that 
can be used for allocating and de-allocating device Global Memory. 
 Once a program has allocated device memory for the data objects, it can 
request that data be transferred from the host to the device memory. This is 
accomplished by calling one of the CUDA API functions for data transfer 
between memories. Next step is the invocation of kernel functions. In CUDA, a 
kernel function specifies the code to be executed by all threads of a parallel phase. 
Since all threads of a parallel phase execute the same code, CUDA programming 
is an instance of the well-known Single-Program Multiple-Data (SPMD) parallel 
programming style, a popular programming style for massively parallel 
computing systems.  
 
 

 
Fig. 3. Overview of the CUDA device memory model 

 
 The second notable extension to ANSI C is the reference to the thread 
indices of a thread. All threads execute the same kernel code. There needs to be a 
mechanism to allow them to distinguish themselves and direct themselves towards 
the particular parts of the data structure they are designated to work on. These 
keywords allow a thread to access the hardware registers associated with it at 
runtime that provides the identity to the thread. When a kernel is invoked, or 
launched, it is executed as grid of parallel threads.  
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Fig. 4.CUDA thread organization 

 
In Fig. 4, the launch of Kernel 1 creates Grid 1. Each CUDA thread grid 

typically comprises thousands to millions of lightweight GPU threads per kernel 
invocation. Creating enough threads to fully utilize the hardware often requires a 
large amount of data parallelism. Threads in a grid are organized into a two-level 
hierarchy, as illustrated in Fig. 4. For simplicity, the number of threads shown in 
Fig. 4 is set to be small. In reality, a grid will typically consist of many more 
threads. At the top level, each grid consists of one or more thread blocks. All 
blocks in a grid have the same number of threads. In Fig. 4, Grid 1 consists of 6 
thread blocks that are organized into a 2x3 two-dimensional array of threads. Each 
thread block has a unique two dimensional coordinate given by the CUDA 
specific keywords. All thread blocks must have the same number of threads 
organized in the same manner. Each thread block is in turn organized as a three 
dimensional array of threads with a total size of up to 512 threads. The 
coordinates of threads in a block are uniquely defined by three thread indices. Not 
all applications will use all the three dimensions of a thread block. In Fig. 4, each 
thread block uses only two of the dimensions and is organized into a 3x5 array of 
threads. This gives Grid 1 a total of 15*6=90 threads. 
 

3. Tomographic reconstruction principle. Implementation of parallel 
beam algorithm 

 
X-ray Computed Tomography (X-CT) is a nondestructive technique for 

visualizing interior features within solid objects, and for obtaining digital 
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information on their geometries and properties. X-CT imaging consists of 
directing X-rays through an object from multiple orientations and measuring the 
decrease in intensity along a series of linear paths. For a monochromatic X-ray 
energy beam through a homogeneous material this decrease is characterized by 
Beer's Law,  

0
dI I e μ− ⋅= ⋅                                                 (1) 

 
where I0 and I are the initial and final X-ray intensity, µ is the material's linear 
attenuation coefficient (units 1/length) and d is the length of the X-ray path. 
 

 
Fig. 5. An object, f(x, y),and its projection, Pθ(t), are shown for an angle of θ 

  
In this paper, we study the reconstruction tomography algorithm for 

parallel geometry [2]-[4]. Projections of the object are captured by a one-
dimensional sensor. For each angle θ (θ = 1..180) a projection of the object is 
acquired from the sensor(Fig. 5 - Pθ(t)). After the measurement it will result a 
picture (sinogram) with the number of pixels of the sensor size - lengthwise - and 
the number of angles used - the width. The image obtained consists of various 
levels of gray. The gray levels in the sinogram correspond to X-ray attenuation, 
which reflects the proportion of X-rays scattered or absorbed  as they pass through 
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the object. X-ray attenuation is primarily a function which depends on X-ray 
energy source and composition of the studied  material.  
 To achieve the object image is necessary to implement a backprojection 
algorithm. The Filtered Back Projection algorithm uses Fourier theory to arrive at 
a closed form solution to the problem of finding the linear attenuation coefficient 
at various points in the cross-section of an object. A fundamental result linking 
Fourier transforms to cross-sectional images of an object is he Fourier Slice 
Theorem. Let x,y represent the coordinates inside the object (Fig. 5), and f(x,y) 
the density (attenuation coefficient) in rectangular co-ordinates of the object under 
consideration at the cross-section at which the imaging has to be done. Let 
equation (3) represent the projection of the object at distance, t, from the center. 
The equation of the line AB is:  

cos sint x yθ θ= ⋅ + ⋅                                             (2) 
 Then, the projections are defined as: 

( , )
( ) ( , )

t line
P t f x y dsθ θ

= ⋅∫                                      (3) 

 It has been shown [3] that the above equation can be written using a delta 
function as: 

( ) ( ) ( ), cos sinP t f x y x y t dx dyθ δ θ θ
∞ ∞

−∞−∞

⎡ ⎤= ⋅ ⋅ + ⋅ − ⋅ ⋅⎣ ⎦∫ ∫            (4) 

This function is known as the Radon transform of f(x,y) [3]. A set of these 
functions for constant angle are the projections of the object at the cross-section. 

( ) ( ) ( )2 cos sin

0
, j x yf x y S w w e dw d

π
π θ θ

θ θ
∞

+

−∞

⎡ ⎤= ⋅ ⋅ ⋅ ⋅⎢ ⎥⎣ ⎦∫ ∫                (5) 

 In the equation (5), the terms inside the square brackets (the operation 
indicated by the inner integral) represents a filtering operation and evaluate the 
filtered projections, and the operation being performed by the outer integral 
evaluate the back-projections, which basically represents a smearing of the filtered 
projections back on to the object and then finding the mean over all the angles.  
 The filtered back projection algorithm can therefore be thought of as a 
three step process:  

1. Finding the Fourier Transform (FT) in 1D of the projections.  
2. Finding the filtered projections. This essentially means multiplying the 

results of step 1. with a response of low pass filtering function in the 
frequency domain, and then finding the inverse Fourier Transform (IFFT). 
This step is essentially the same as carrying out convolution in the time 
domain. It can be represented mathematically as:  
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( ) ( ) 2j wtQ t S w w e dwπ
θ θ

∞

−∞

= ⋅ ⋅ ⋅∫                            (6) 

3. Finding the back projections. This step is the smearing of the filtered 
projections back on to the object, and is mathematically represented by: 

( ) ( )
0

, cos sinf x y Q x y d
π

θ θ θ θ= + ⋅∫                           (7) 

These three steps represent the filtered back projection algorithm(Fig. 6). In the 
discrete domain, the algorithm changes only slightly. The important steps are 
outlined below: 

1. Find the 1D FT of the projections for each angle.  
2. Multiply the result of step 1 above with the response of low pass filtering 

function in the frequency domain (equivalent to convolving with the 
response function in the time domain).  

3. Find the IFFT of the results in step 2. This gives us the filtered projections 
in the discrete domain and correspond to Q(n), where the Q's are taken at 
the various angles at which the projections were taken, and "n" is the ray 
number at which the line projection was taken.  

4.  Back-project. The integral of the continuous time system now becomes a 
summation, and we get: 

( ) ( )( )
1

( , ) cos sin
p

i

N

i i
p i

f x y Q x y
N θ
π θ θ

=
= ⋅ +∑                    (8) 

where f(x, y) is the image and Qθ is the filtered projection data, θi for i=1, 2, ..., Np 
are the angles of the measured projections since the projection angles are also just 
available as discrete values. The normalization in front of the sum in (9) is 
accomplished by the discretization of the angle element 

p

d
N
πθ θ→ Δ =                                             (9) 

Projections filtering can be done with the filters Ram-Lak, Shepp-Logan, 
Hamming, Hanning, Cosine, both in Fourier space and Cartesian space. 
 It should be noted here that (x,y) are chosen by the program while back 
projecting. So the value of cos sinx yθ θ+  may not correspond exactly to a value 
of "n" for the filtered projections which may have been calculated in the previous 
step. Therefore interpolation has to be done, and usually linear interpolation is 
quite sufficient [3]. It may be noted that in terms of computational time, this step 
consumes the maximum time (about 80%).  
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Fig. 6. The filtered back projection algorithm 

 
Correlation coefficient between reconstructed image and the well-known "head 
phantom" is a measure of reconstruction quality(10). 
 

4. Implementations of backprojections algorithm-parallel beam and 
the obtained performances  

 
 For parallel beam reconstruction, we used the pixel-driven backprojection 
programs running on the CPU and GPU with single-precision binary floating-
point arithmetic and linear interpolation. It can be seen from the publications that 
GPUs are widely used for general purpose computing, beyond the original target 
of computer graphics and gaming industry. The earliest attempt to accelerate CT 
reconstruction using graphics hardware dates back to 1994, when Calbral et al. 
utilized the texture mapping hardware for reconstruction [1]. With the 
introduction of modern GPUs in the last 5 years, both analytical and iterative 
methods have been implemented on graphics hardware. 
  In this work all data from these programs are used in single precision for 
reasons of compatibility with video card([5]-[7]) and the projections were filtered 
using Shepp-Logan filter type. 
 
A. Single core CPU implementation 

In the bellow program, as in the following, N is the number of pixels of the 
image that we reconstruct, m represents the number of angles and n is the size of 
linear detector. Thus we have the size of projection image [n, m]. In the vectors R 
and IMG are stored the filtered projections and reconstructed image, respectively. 
 

for each number of angles (θ = 0 : Np) 
 for each pixel in reconstructed image on length (ix = 1:N) 
  for each pixel in reconstructed image width (iy = 1:N) 
   x = ix - N/2; 
   y = iy - N/2; 
   t = y*cos(θ) - x*sin(θ); 
   f(x,y) = f(x,y) + q(θ); 
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  end 
 end 
end 
for each pixel in reconstructed image on length (ix = 1:N) 
  for each pixel in reconstructed image width (iy = 1:N) 
   f(x,y) = f(x,y) * π/Np 
  end 
end 

The result of this program is the reconstructed image. 
B. 4 cores CPU implementation using OpenMP 

The quad-core processors together with OpenMP[6] technology allowed to 
obtain a reduced computation time(Table 1). By using of OpenMP technology, 
each "for" loop was was split up between all 4 threads. 

starting parallel zone with shared (f(x,y)) 
 omp for  
  for each number of angles (θ = 0 : Np) 
   for each pixel in reconstructed image on length (ix = 
1:N) 
    for each pixel in reconstructed image width 
(iy = 1:N) 
     x = ix - N/2; 
     y = iy - N/2; 
     t = y*cos(θ) - x*sin(θ); 
     f(x,y) = f(x,y) + q(θ); 
    end 
   end 
  end 
 omp for 
  for each pixel in reconstructed image on length (ix = 1:N) 
    for each pixel in reconstructed image width 
(iy = 1:N) 
     f(x,y) = f(x,y) * π/Np 
    end 
  end 
end parallel zone 

 
C. A first CUDA implementation using global memory 

The programming model changed with implementation of the 
reconstruction algorithm on video card with CUDA support. As mentioned in 
section 2 of this paper, the main point of this equipment is to create and use a 
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large number of threads that are grouped into blocks. This execution blocks form 
the grid. These threads are executed in parallel by the multiprocessors available on 
video card. Thus each pixel of the reconstructed image can be represented 
(parallel computed) by such a thread. Comparing the code implemented on a 
single CPU with the one implemented on the graphics card we can see that the last 
two main "for" loops representing the reconstructed image pixel indices (for (ix = 
0; ix <N; ix = ix +1) and for (iy = 0; iy < N, iy = iy +1)) have disappeared. They 
were replaced with statement of grid of threads blocks that are the indices of the 
pixels of the reconstructed image: 

int x = blockDim.x * blockIdx.x + threadIdx.x; 
int y = blockDim.y * blockIdx.y + threadIdx.y; 

Variable blockDim.x and blockDim.y " represent the threads block size on the x 
and y axis. "blockIdx.x" and "blocIdx.y" are variables designating indices of the 
blocks of threads within the grid. Grid can have no more than two dimensions: 
blockDim.x ,blockDim.y. Indices within each thread block are represented by the 
variables: threadIdx.x, threadIdx.y. So for an image reconstruction will now use a 
grid of threads of execution that will have the same size as the reconstructed 
image and each pixel of the image will be computed by one thread of execution. 
For the samples code C and code D we used the variable imgD_f for storage of 
projections and imgD for reconstructed image. The grid size is given in main 
program, before starting of reconstruction subroutine. 
  dim3 bloc_i(16,16,1); 
  dim3 grid_i(N / bloc_i.x, N / bloc_i.y); 
  interpolare<<<grid_i,bloc_i>>>(...); 
Dimensions of a execution block are established in the main program, in our case, 
this block is composed of a 16x16 threads. Grid itself is also a structure formed 
from such blocks. Depending on the desired reconstructed image size, grid size 
may vary. In our case this grid is N / 16 x N / 16 (we have to reconstruct an image 
consisting of NxN pixels, and one single block can reconstruct a sub imagine of 
16x16 pixels). Because we used a global memory video card, the program 
performance is not remarkable (Table 1) and we are referring here to the 
reconstruction time. 

GPU function declaration 
 x = gpu x grid declaration 
 y = gpu y grid declaration 
 for each number of angles (θ = 0 : Np) 
  xx = x + 0.5 - N/2; 
  yy = y + 0.5 - N/2; 
  t = yy *cos(θ) - xx*sin(θ); 
  sum = sum + q(θ); 
 end 
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 sum = sum *  π/Np 

 f(x,y) = sum; 
end Gpu function 

 
D. CUDA Implementation using texture space memory 

Another way is to implement this algorithm using texture memory. The 
texture memory space is cached so a texture fetch costs one memory read from 
device memory only on a cache miss, otherwise it just costs one read from the 
texture cache. The texture cache is optimized for 2D spatial locality, so threads of 
the same warp that read texture addresses that are close together will achieve best 
performance. Another quality of the texture unit is that it knows how to make an 
interpolation of data: nearest neighbor and linear interpolation. So we tried an 
improvement of reconstruction time using texture memory for storing projection 
data already filtered. Computation of texture address was performed by texture 
unit using a linear interpolation method. Because of these hardware abilities the 
reconstruction time was substantially improved (Table 1) comparing with the 
other implementations. 
We attached to the texture unit a CUDA array in which is stored the filtered 
projections. We used a two-dimensional texture (N pixels on Ox and Oy N pixels) 
and the mode of address was set on "clamp." Also we used texture in the non-
normalized form. 

2D GPU texture unit declaration 
GPU function declaration 
 x = gpu x grid declaration 
 y = gpu y grid declaration 
 tex _x = x - N/2; 
 tex_y  = y - N/2; 
 for each number of angles (θ = 0 : Np) 
  t =  tex_y * cos() - tex_x *sin(); 
  sum = sum + unit_texture2D(t, θ) 
 end 
 sum = sum * π/Np; 

 f(x,y) = sum; 
end Gpu function 

 
5. Results 

 
Backprojections alogorithm is used for achieving of the reconstructed 

images from the filtered projections with the following sizes: 711x1800, 
1419x1800, 1453x1800, 2833x1800, 2901x1800 and 5797x1800 pixels. They 
represent both the number of angles at which projections were taken from 0 to 
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179.9 with a step of 0.1 degree and the number of pixels of a single projection. 
The obtained reconstructed images have the following sizes: 500x500, 
1000x1000, 1024x1024, 2000x2000, 2048x2048, 4000x 4000 pixels and represent 
Sheep-Logan Phantom. For implementation of the backprojection algorithm we 
used a single core processor (Intel Q6600 2.4 GHz, 8 GB RAM.), four cores of 
the same CPU using OpenMP technology, a graphics card Nvidia Tesla 870C 
using only global memory and textures memory. 

Table 1 presents both reconstruction times of the initial phantom image 
and correlation coefficient of the reconstructed image compared with original 
image. We mention that the computing time was registered since the beginning of 
the program until its full completion; this time includes the time for calculating 
the reconstruction image and the time required to achieve operations and read / 
write of the data input / output Image correlation factor obtained in relation to the 
initial phantom image represents the percentage of similarity of two images. This 
factor was calculated by the following formula for each reconstruction in part: 

 

( ) ( ) ( )
( ) ( ) ( ) ( )

2

0.50.5 2 22 22 2

ph phrec rec
p i ii ii i i

ph phrec rec
p i i p i ii i i i

N f f f f
corr

N f f N f f

⋅ ⋅ − ⋅
=

⎡ ⎤⎡ ⎤
⋅ − ⋅ ⋅ −⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑ ∑
  

(10) 
 
Where fi

rec represents the pixel value of reconstructed image, fi
ph is the pixel value 

from the phantom image and Np is the total number of pixels. 
 

Table 1 
Reconstruction times of the initial phantom image and correlation coefficient of the 

reconstructed image compared with original image. 

SIZE of parallel projection 
/reconstructed image 

CUDA - 
texture 

reconstruction 
time[ms] 

/ correlation 
factor 

 

CUDA - global 
memory 

reconstruction 
time[ms] 

/ correlation 
factor 

CPU - 4 cores 
with OpenMP 
reconstruction 

time[ms] 
/ correlation 

factor 

CPU - 1 core 
reconstruction 

time[ms] 
/ correlation 

factor 

S_711_1800/I_500_500 109 / 0.96 531 / 0.98 1546 / 0.95 5812 / 0.95 
S_1419_1800/I_1000_1000 328 / 0.98 2062 / 0.99 6187 / 0.97 23500 / 0.97 
S_1453_1800/I_1024_1024 343 / 0.98 2140 / 0.99 6468 / 0.97 24671 / 0.97 
S_2833_1800/I_2000_2000 1156 / 0.99 8078 / 0.99 24500 / 0.99 93656 / 0.99 
S_2901_1800/I_2048_2048 1203 / 0.99 8515 / 0.99 26000 / 0.99 98500 / 0.99 
S_5797_1800/I_4096_4096 4656 / 0.99 34390 / 0.99 102546 / 0.99 389531 / 0.99 
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Fig. 7. Reconstruction results and initial Shepp-Logan Phantom 
 

One can observe that the best time of reconstruction is achieved if the 
texture memory is used; from the image above (Fig. 7) and the study of 
correlation coefficients result that no visible differences between accomplished 
reconstructions in the four cases and initial Shepp-Logan Phantom. It changes the 
reconstruction time, which is 83 times lower for GPU texture in comparison with 
the single CPU computation for a 4096 x 4096 pixel image. In Table 2 we present 
the accelerating factors of the reconstruction time for each size of reconstructed 
image separately. It was assumed that the reconstruction values for GPU - texture 
is set to 1. 

Table 2 
Accelerating factors of the reconstruction time for each size of reconstructed image 

separately 
SIZE of reconstructed 

image CPU - 1 core CPU - 4 cores 
with OpenMP  

CUDA - global 
memory  

CUDA - 
texture 

I_500_500 1 4.87 14.18 53.32 
I_1000_1000 1 6.27 18.86 71.64 
I_1024_1024 1 6.24 18.86 71.93 
I_2000_2000 1 6.99 21.19 81.02 
I_2048_2048 1 7.08 21.61 81.88 
I_4096_4096 1 7.38 22.02 83.66 
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6. Conclusion 
 

In this work we made a comparison quality / reconstruction time to 
implement a parallel beam tomographic reconstruction from different 
programming environments CPU, GPU. All reconstructions were performed with 
single-precision binary floating-point arithmetic and linear interpolation of the 
projections data. Best reconstruction time was obtained for CUDA with texture 
memory. Though it has been used a video card with average performances 
(TESLA C870 - using the first version of CUDA) it obtained an acceleration by a 
factor of 83x over the time of image reconstruction made on a powerful computer. 
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