U.P.B. Sci. Bull., Series C, Vol. 73, Iss. 2, 2011 ISSN 1454-234x

PERFORMANCES STUDY OF TOMOGRAPHIC
RECONSTRUCTION IMPLEMENTED ON NVIDIA GRAPHIC
PROCESSOR SYSTEMS

Adrian SIMA!

Procesul de reconstructie tomografica necesitda un cost computational foarte
mare datoritd procedurii de “proiectie inapoi” (backprojection). In acest articol am
implementat un astfel de algoritm de reconstructie pentru o geometrie paraleld 2D a
razelor X. Implementarea a fost realizatd in 4 variante: utilizand o singurd unitate
de calcul, 4 unitati de calcul (Intel Q6600 la 2.4 GHz si 8GB memorie ram)
impreund cu tehnologia OpenMp, o placa video ce este compatibild cu tehnologia
CUDA si utilizeaza memoria globala a acesteia si ultima variantd aceeasi placa
video insa de data aceasta utilizind memoria texturilor. Atat implementarile pe
CPU, cat si cele pe placa grafica folosesc datele in simpla precizie. Cel mai bun
timp de calcul a fost obtinut in cazul utilizarii placii video cu memoria texturilor.

Tomographic reconstruction requires a very high computational cost due to
its time-consuming backprojection step. In this paper, we implement 2D parallel-
beam backprojections on single core processo,on four cores of the same CPU using
OpenMP technology and a graphics card Nvdia Tesla 870C using global memory
and textures memory CUDA (Compute Unified Device Architecture) architecture.
For parallel beam reconstruction, the pixel-driven backprojection program running
on the CPU and GPU uses single-precision binary floating-point arithmetic and
linear interpolation. With the help of the texture unit we obtained the best
computation time.

Keywords: CT reconstruction, Backprojection, Parallel beam, GPU, CUDA
1. Introduction

In tomographic reconstruction, exact or approximate, analytical or iterative
algorithms have been developed and implemented. Most of these algorithms use
backprojection as a core operation which dominates the computational cost.
Generally, the backprojection is a straightforward pixel-driven operation, which
has few dependencies among different pixels and is computed as an array
operation within a loop. With high memory bandwidth, programmable graphics
processors can execute this operation at high speeds. Graphics applications also
typically consist of largely independent computations and data-intensive

' PhD student, National Institute for Lasers, Plasma and Radiation Physics, Bucharest-Magurele,
Romania, e-mail: adi.sim@gmail.com

206 Adrian Sima

operations. Accelerating the backprojection step on graphics hardware was
studied since 1990s [1], which employed texture mapping hardware of the
graphics processor for the acceleration of tomographic reconstruction and the
evolution of floating points pc graphics processing unit (GPU). With the evolution
of graphics processors, the speed of reconstruction has been improved; however,
their limited capabilities and inadequate programming model were a barrier to
increasing the speed of reconstruction.

A recent development in this viewpoint is the release of CUDA by NVidia
Corporation, which is a new hardware and software architecture for issuing and
managing general computations on the GPU as a data-parallel computing device
[2]. The aim of this paper is to implement 2D parallel beam backprojection
algorithms through Intel uni and quad processors and CUDA for the Tesla C870
GPU and to benchmark their performances. This GPU is is organized into 16
highly threaded Streaming Multiprocessors (SMs). A pair of SMs form a building
block (Fig. 1). Each SM has 8 streaming processors (SPs), for a total of 128
(16*8). Each SP has a multiply-add (MAD) unit, and and an additional multiply
(MUL) unit, all running at 1.35 gigahertz (GHz). This means that there are almost
367 gigaflops for the MADs and a total of over 500 gigaflops if you include the
MULSs as well. In addition, special function units perform floating point functions
such as SQRT and RCP SQRT as well as transcendental functions. Each GPU
currently comes with 1.5 megabytes of DRAM. This memory space differ from
the system memory DIMM DRAMs on the motherboard because it is essentially
the frame buffer memory that is used for graphics. For graphics applications, it
hold high-definition video images, and texture information for 3D rendering as in
games. But for computing, it works like very high bandwidth off-chip cache,
though with somewhat more latency regular cache or system memory. If the chip
is programmed properly, the high bandwidth makes up for the large latency.

Performances study of tomographic reconstruction implemented on NVIDIA graphic process...207

Host

|

Input Aslsembler

PamllelData | | Pamllel Data PamllelData | | Pamllel Data PamalielData | | ParallelData | | Parallel Data Parallel Data
Cache Cache Cache Cache Cache Cache Cache Cache

T R e R (e (i

Fig. 1. Architecture of a CUDA-capable GPU
2. CUDA programming model

From a point of viewof a CUDA programmer, the computing system
consists of a /ost that is a traditional Central Processing Unit (CPU), such an Intel
Architecture microprocessor in personal computers, and one or more devices that
are massively parallel processors equipped with a large number of arithmetic
execution units. In modern software applications, there are often program sections
that exhibit rich amount of data parallelism, a property where many arithmetic
operations can be safely performed on program data structures in a simultaneous
manner.

A CUDA program consists of one or more phases that are executed on
either the host (CPU) or a device such as a GPU. The phases that exhibit little or
no data parallelism are implemented in host code. The phases that exhibit rich
amount of data parallelism are implemented in the device code. The program
supplies a single source code encompassing both host and device code. The
NVIDIA C Compiler (NVCC) separates the two. The host code is straight ANSI
C code and it is compiled with the host's standard C compilers and it runs as an
ordinary process. The device code is written using ANSI C extended with
keywords for labeling data-parallel functions, called kernels, and their associated
data structures. The device code is typically further compiled by the NVCC and
executed on a GPU device. The kernel functions, or simply kernels, typically
generate a large number of threads to exploit data parallelism. CUDA threads are
of much lighter weight than the CPU threads. CUDA programmers can assume
that these threads take very few cycles to generate and schedule due to efficient

208 Adrian Sima

hardware support. This is in contrast with the CPU threads that typically take
thousands of clock cycles to generate and schedule.

The execution of a typical CUDA program is illustrated in Fig. 2. The
execution starts with host (CPU) execution. When a kernel function is invoked,
the execution is moved to a device (GPU), where a large number of threads are
generated to take advantage of abundant data parallelism. All the threads that are
generated by a kernel during an invocation are collectively called a grid. Fig. 2
shows the execution of two girds of threads. When all threads of a kernel
complete their execution, the corresponding grid terminates, the execution
continues on the host until another kernel is invoked.

CPU Serial Code

GPU Parallel Kernel
KernelA<<< nBIk, nTid >>>(args);

CPU Serial Code

GPU Parallel Kernel
KernelB<<< nBlk, nTid >>>(args);

Fig. 2. Execution of a CUDA program

In CUDA, host and devices have separate memory spaces. This reflects
the reality that devices are typically hardware cards that come with their own
Dynamic Random Access Memory (DRAM). For example, the NVIDIA TESLA
C870 card that we use
comes with 1500 MB (million bytes, or mega-bytes) of DRAM. In order to
execute a kernel on a device, the programmer needs to allocate memory on the
device and transfer the data from the host memory to the allocated device
memory. Similarly, after device execution, the programmer needs to transfer
result data from device back to the host and free up the device memory that is no
longer needed. The

CUDA runtime system provides Application Programming Interface (API)
function calls to perform these activities.

Fig. 3 shows an overview of the CUDA device memory model and the various
memory types available on a device. At the bottom of the picture, we see global
memory and constant memory. These are the memories that the host code can
write (W) to and read (R) from. Constant memory allow read-only access by the

Performances study of tomographic reconstruction implemented on NVIDIA graphic process...209

device. The concept CUDA memory model is supported by the API functions that
can be used for allocating and de-allocating device Global Memory.

Once a program has allocated device memory for the data objects, it can
request that data be transferred from the host to the device memory. This is
accomplished by calling one of the CUDA API functions for data transfer
between memories. Next step is the invocation of kernel functions. In CUDA, a
kernel function specifies the code to be executed by all threads of a parallel phase.
Since all threads of a parallel phase execute the same code, CUDA programming
is an instance of the well-known Single-Program Multiple-Data (SPMD) parallel
programming style, a popular programming style for massively parallel
computing systems.

« Device code can: (Device) Grid
— R/W per-thread registers Block(0, 0) Block (1, 0)

— R/W per-thread local memory
| |

— R/W per-block shared memory
Thread (0, 0) Thread (1, 0)

— R/W per-grid global memory

— Read only per-grid constant
memory

 Host code can

— R/W per grid global and
constant memories

Thread (1, 0)

11

Thread (0, 0)

T 1

Host #-

’a

Fig. 3. Overview of the CUDA device memory model

The second notable extension to ANSI C is the reference to the thread
indices of a thread. All threads execute the same kernel code. There needs to be a
mechanism to allow them to distinguish themselves and direct themselves towards
the particular parts of the data structure they are designated to work on. These
keywords allow a thread to access the hardware registers associated with it at
runtime that provides the identity to the thread. When a kernel is invoked, or
launched, it is executed as grid of parallel threads.

210 Adrian Sima

Host Device

Grid 1

el Block || Block || Block
L ©o || 1.0 || 20
Block:|| Block |\ Block
(0,41 (1,1) (2.1)
’ - i
" ()
’,l Grldll \ 1‘
Kernel ! ‘,
2 s r’ '
i 1 ‘|
2 [[I{ s

Block(1, 1)

il
l

Fig. 4.CUDA thread organization

In Fig. 4, the launch of Kernel 1 creates Grid 1. Each CUDA thread grid
typically comprises thousands to millions of lightweight GPU threads per kernel
invocation. Creating enough threads to fully utilize the hardware often requires a
large amount of data parallelism. Threads in a grid are organized into a two-level
hierarchy, as illustrated in Fig. 4. For simplicity, the number of threads shown in
Fig. 4 is set to be small. In reality, a grid will typically consist of many more
threads. At the top level, each grid consists of one or more thread blocks. All
blocks in a grid have the same number of threads. In Fig. 4, Grid 1 consists of 6
thread blocks that are organized into a 2x3 two-dimensional array of threads. Each
thread block has a unique two dimensional coordinate given by the CUDA
specific keywords. All thread blocks must have the same number of threads
organized in the same manner. Each thread block is in turn organized as a three
dimensional array of threads with a total size of up to 512 threads. The
coordinates of threads in a block are uniquely defined by three thread indices. Not
all applications will use all the three dimensions of a thread block. In Fig. 4, each
thread block uses only two of the dimensions and is organized into a 3x5 array of
threads. This gives Grid 1 a total of 15*6=90 threads.

3. Tomographic reconstruction principle. Implementation of parallel
beam algorithm

X-ray Computed Tomography (X-CT) is a nondestructive technique for
visualizing interior features within solid objects, and for obtaining digital

Performances study of tomographic reconstruction implemented on NVIDIA graphic process...211

information on their geometries and properties. X-CT imaging consists of
directing X-rays through an object from multiple orientations and measuring the
decrease in intensity along a series of linear paths. For a monochromatic X-ray

energy beam through a homogeneous material this decrease is characterized by
Beer's Law,

[=1y-eHd (1)

where [and I are the initial and final X-ray intensity, p is the material's linear
attenuation coefficient (units 1/length) and d is the length of the X-ray path.

Proj ecti}/--— - T t

—

/ 1
- _ |
i
g / X
\R- - S "
—— g
o
%
L
<
\ Tx
"7&‘\\ v
2\ %
13
‘\\ -
B\
\

Fig. 5. An object, f(x, y),and its projection, Py(t), are shown for an angle of 0

In this paper, we study the reconstruction tomography algorithm for
parallel geometry [2]-[4]. Projections of the object are captured by a one-
dimensional sensor. For each angle 6 (6 = 1..180) a projection of the object is
acquired from the sensor(Fig. 5 - Py(t)). After the measurement it will result a
picture (sinogram) with the number of pixels of the sensor size - lengthwise - and
the number of angles used - the width. The image obtained consists of various
levels of gray. The gray levels in the sinogram correspond to X-ray attenuation,
which reflects the proportion of X-rays scattered or absorbed as they pass through

212 Adrian Sima

the object. X-ray attenuation is primarily a function which depends on X-ray
energy source and composition of the studied material.

To achieve the object image is necessary to implement a backprojection
algorithm. The Filtered Back Projection algorithm uses Fourier theory to arrive at
a closed form solution to the problem of finding the linear attenuation coefficient
at various points in the cross-section of an object. A fundamental result linking
Fourier transforms to cross-sectional images of an object is he Fourier Slice
Theorem. Let x,y represent the coordinates inside the object (Fig. 5), and f(x,y)
the density (attenuation coefficient) in rectangular co-ordinates of the object under
consideration at the cross-section at which the imaging has to be done. Let
equation (3) represent the projection of the object at distance, t, from the center.
The equation of the line AB is:

t=x-cos@+y-sind)
Then, the projections are defined as:
ORI ACSVREE 3)

It has been shown [3] that the above equation can be written using a delta
function as:

o0 O
) (t) = J. J f(x,y)-[(?(x-cos@Jry-sin@—t)-dx-dy] 4)
—00 —00
This function is known as the Radon transform of f(x,y) [3]. A set of these
functions for constant angle are the projections of the object at the cross-section.

f(x,y)z]E T [Sa(w)-|w|-ejzﬂ(xcongrySing) -dw]d@ 5)
0—

In the equation (5), the terms inside the square brackets (the operation
indicated by the inner integral) represents a filtering operation and evaluate the
filtered projections, and the operation being performed by the outer integral
evaluate the back-projections, which basically represents a smearing of the filtered
projections back on to the object and then finding the mean over all the angles.

The filtered back projection algorithm can therefore be thought of as a
three step process:

1. Finding the Fourier Transform (FT) in 1D of the projections.

2. Finding the filtered projections. This essentially means multiplying the
results of step 1. with a response of low pass filtering function in the
frequency domain, and then finding the inverse Fourier Transform (IFFT).
This step is essentially the same as carrying out convolution in the time
domain. It can be represented mathematically as:

Performances study of tomographic reconstruction implemented on NVIDIA graphic process...213

o0
Op (t): J. Sp (w)-|w|-ej2”Wt-dw (6)
—o0
3. Finding the back projections. This step is the smearing of the filtered
projections back on to the object, and is mathematically represented by:

f(x,y)zng(xCOS<9+ysin0)~d0 @)
0

These three steps represent the filtered back projection algorithm(Fig. 6). In the
discrete domain, the algorithm changes only slightly. The important steps are
outlined below:

1. Find the 1D FT of the projections for each angle.

2. Multiply the result of step 1 above with the response of low pass filtering
function in the frequency domain (equivalent to convolving with the
response function in the time domain).

3. Find the IFFT of the results in step 2. This gives us the filtered projections
in the discrete domain and correspond to Q(n), where the Q's are taken at
the various angles at which the projections were taken, and "n" is the ray
number at which the line projection was taken.

4. Back-project. The integral of the continuous time system now becomes a
summation, and we get:

N
T & .
S, y) == 2.0, (xcos(6;)+ ysin(6;)) ®)
P i=l
where f(x, y) is the image and Oy is the filtered projection data, 0; for i=1, 2, ..., N,
are the angles of the measured projections since the projection angles are also just
available as discrete values. The normalization in front of the sum in (9) is

accomplished by the discretization of the angle element

do —> A0 =-"— (9)
Np
Projections filtering can be done with the filters Ram-Lak, Shepp-Logan,
Hamming, Hanning, Cosine, both in Fourier space and Cartesian space.
It should be noted here that (x,y) are chosen by the program while back
projecting. So the value of xcosé&+ ysin@ may not correspond exactly to a value

of "n" for the filtered projections which may have been calculated in the previous
step. Therefore interpolation has to be done, and usually linear interpolation is
quite sufficient [3]. It may be noted that in terms of computational time, this step
consumes the maximum time (about 80%).

214 Adrian Sima

L} |
Filtering Backpraojection
— —
Process Process
|

Fig. 6. The filtered back projection algorithm

Correlation coefficient between reconstructed image and the well-known "head
phantom" is a measure of reconstruction quality(10).

4. Implementations of backprojections algorithm-parallel beam and
the obtained performances

For parallel beam reconstruction, we used the pixel-driven backprojection
programs running on the CPU and GPU with single-precision binary floating-
point arithmetic and linear interpolation. It can be seen from the publications that
GPUs are widely used for general purpose computing, beyond the original target
of computer graphics and gaming industry. The earliest attempt to accelerate CT
reconstruction using graphics hardware dates back to 1994, when Calbral et al.
utilized the texture mapping hardware for reconstruction [1]. With the
introduction of modern GPUs in the last 5 years, both analytical and iterative
methods have been implemented on graphics hardware.

In this work all data from these programs are used in single precision for
reasons of compatibility with video card([5]-[7]) and the projections were filtered
using Shepp-Logan filter type.

A. Single core CPU implementation

In the bellow program, as in the following, N is the number of pixels of the
image that we reconstruct, m represents the number of angles and # is the size of
linear detector. Thus we have the size of projection image [n, m]. In the vectors R
and IMG are stored the filtered projections and reconstructed image, respectively.

for each number of angles (0 =0 : N,)
for each pixel in reconstructed image on length (ix = 1:N)
for each pixel in reconstructed image width (iy = 1:N)
X =14 - N/2;
y =1y - N/2;
t =y*cos(0) - x*sin(0);
f(x,y) = f(x,y) + q(0);

Performances study of tomographic reconstruction implemented on NVIDIA graphic process...215

end
end
end
for each pixel in reconstructed image on length (ix = 1:N)
for each pixel in reconstructed image width (i, = 1:N)
f(X7Y) = f(Xsy) * TE/Np
end
end
The result of this program is the reconstructed image.
B. 4 cores CPU implementation using OpenMP

The quad-core processors together with OpenMP[6] technology allowed to
obtain a reduced computation time(Table 1). By using of OpenMP technology,
each "for" loop was was split up between all 4 threads.

starting parallel zone with shared (f(x,y))
omp for
for each number of angles (0 =0 : N)
for each pixel in reconstructed image on length (ix =

1:N)
for each pixel in reconstructed image width
(iy = 1:N)
X =1ix - N/2;
y =1y - N/2;
t =y*cos(0) - x*sin(0);
f(x,y) = f(x,y) + q(0);
end
end
end
omp for
for each pixel in reconstructed image on length (ix = 1:N)
for each pixel in reconstructed image width
(iy = 1:N)

fx,y) = f(x,y) * n/N,
end
end
end parallel zone

C. A first CUDA implementation using global memory

The programming model changed with implementation of the
reconstruction algorithm on video card with CUDA support. As mentioned in
section 2 of this paper, the main point of this equipment is to create and use a

216 Adrian Sima

large number of threads that are grouped into blocks. This execution blocks form
the grid. These threads are executed in parallel by the multiprocessors available on
video card. Thus each pixel of the reconstructed image can be represented
(parallel computed) by such a thread. Comparing the code implemented on a
single CPU with the one implemented on the graphics card we can see that the last
two main "for" loops representing the reconstructed image pixel indices (for (ix =
0; ix <N, ix = ix +1) and for (iy = 0; iy < N, iy = iy +1)) have disappeared. They
were replaced with statement of grid of threads blocks that are the indices of the
pixels of the reconstructed image:
int x = blockDim.x * blockldx.x + threadldx.x;
int y = blockDim.y * blockldx.y + threadldx.y;
Variable blockDim.x and blockDim.y " represent the threads block size on the x
and y axis. "blockldx.x" and "blocldx.y" are variables designating indices of the
blocks of threads within the grid. Grid can have no more than two dimensions:
blockDim.x ,blockDim.y. Indices within each thread block are represented by the
variables: threadldx.x, threadldx.y. So for an image reconstruction will now use a
grid of threads of execution that will have the same size as the reconstructed
image and each pixel of the image will be computed by one thread of execution.
For the samples code C and code D we used the variable imgD_f for storage of
projections and imgD for reconstructed image. The grid size is given in main
program, before starting of reconstruction subroutine.
dim3 bloc_i(16,16,1);
dim3 grid i(N /bloc_i.x, N/ bloc_i.y);
interpolare<<<grid_i,bloc_i>>>(...);
Dimensions of a execution block are established in the main program, in our case,
this block is composed of a 16x16 threads. Grid itself is also a structure formed
from such blocks. Depending on the desired reconstructed image size, grid size
may vary. In our case this grid is N/ 16 x N/ 16 (we have to reconstruct an image
consisting of NxN pixels, and one single block can reconstruct a sub imagine of
16x16 pixels). Because we used a global memory video card, the program
performance is not remarkable (Table 1) and we are referring here to the
reconstruction time.
GPU function declaration
x = gpu x grid declaration
y = gpu y grid declaration
for each number of angles (6 =0 : N,)
xx=x+0.5-N/2;
yy =y +0.5-N/2;
t=yy *cos(0) - xx*sin(0);
sum = sum + q(0);
end

Performances study of tomographic reconstruction implemented on NVIDIA graphic process...217

sum = sum * 7/N,
f(x,y) = sum;
end Gpu function

D. CUDA Implementation using texture space memory
Another way is to implement this algorithm using texture memory. The
texture memory space is cached so a texture fetch costs one memory read from
device memory only on a cache miss, otherwise it just costs one read from the
texture cache. The texture cache is optimized for 2D spatial locality, so threads of
the same warp that read texture addresses that are close together will achieve best
performance. Another quality of the texture unit is that it knows how to make an
interpolation of data: nearest neighbor and linear interpolation. So we tried an
improvement of reconstruction time using texture memory for storing projection
data already filtered. Computation of texture address was performed by texture
unit using a linear interpolation method. Because of these hardware abilities the
reconstruction time was substantially improved (Table 1) comparing with the
other implementations.
We attached to the texture unit a CUDA array in which is stored the filtered
projections. We used a two-dimensional texture (N pixels on Ox and Oy N pixels)
and the mode of address was set on "clamp." Also we used texture in the non-
normalized form.
2D GPU texture unit declaration
GPU function declaration
x = gpu x grid declaration
y = gpu y grid declaration
tex x=x-N/2;
tex y =y-N/2;
for each number of angles (0 =0 : N,)
t= tex_y * cos() - tex_x *sin();
sum = sum + unit_texture2D(t, 0)

end
sum = sum * /N,
f(x,y) = sum;

end Gpu function
5. Results

Backprojections alogorithm is used for achieving of the reconstructed
images from the filtered projections with the following sizes: 711x1800,
1419x1800, 1453x1800, 2833x1800, 2901x1800 and 5797x1800 pixels. They
represent both the number of angles at which projections were taken from 0 to

218 Adrian Sima

179.9 with a step of 0.1 degree and the number of pixels of a single projection.
The obtained reconstructed images have the following sizes: 500x500,
1000x1000, 1024x1024, 2000x2000, 2048x2048, 4000x 4000 pixels and represent
Sheep-Logan Phantom. For implementation of the backprojection algorithm we
used a single core processor (Intel Q6600 2.4 GHz, 8 GB RAM.), four cores of
the same CPU using OpenMP technology, a graphics card Nvidia Tesla 870C
using only global memory and textures memory.

Table 1 presents both reconstruction times of the initial phantom image
and correlation coefficient of the reconstructed image compared with original
image. We mention that the computing time was registered since the beginning of
the program until its full completion; this time includes the time for calculating
the reconstruction image and the time required to achieve operations and read /
write of the data input / output Image correlation factor obtained in relation to the
initial phantom image represents the percentage of similarity of two images. This

factor was calculated by the following formula for each reconstruction in part:

VB S)

corr =

|:N12, .Zi(firec

)2_(§:rﬁnm)2}05.{Aﬁ.zzi(ﬁph)z_(EZrﬁph)z}

0.5

(10)

Where f;“ represents the pixel value of reconstructed image, /7" is the pixel value
from the phantom image and N, is the total number of pixels.

Table 1

Reconstruction times of the initial phantom image and correlation coefficient of the
reconstructed image compared with original image.

CUDA - CUDA - global | CPU - 4 cores
texture . CPU - 1 core
. memory with OpenMP .
L. reconstruction . . reconstruction
SIZE of parallel projection . reconstruction | reconstruction .
. time[ms] . . time[ms]
/reconstructed image . time[ms] time[ms] .
/ correlation . . / correlation
/ correlation / correlation
factor factor
factor factor
S 711 1800/1 500 500 109/0.96 531/0.98 1546/ 0.95 5812/0.95
S 1419 1800/1 1000 1000 328/0.98 2062 /0.99 6187/0.97 23500/0.97
S 1453 1800/1 1024 1024 343/0.98 2140/0.99 6468 /0.97 24671/0.97
S 2833 1800/1 2000 2000 1156 /0.99 8078 /0.99 24500/ 0.99 93656/ 0.99
S 2901 1800/1 2048 2048 1203 /0.99 8515/0.99 26000/ 0.99 98500/ 0.99
S 5797 1800/1_4096 4096 4656 /0.99 34390/0.99 102546/ 0.99 389531/0.99

Performances study of tomographic reconstruction implemented on NVIDIA graphic process...219

Shep-Logan
Phantom

Fig. 7. Reconstruction results and initial Shepp-Logan Phantom

One can observe that the best time of reconstruction is achieved if the
texture memory is used; from the image above (Fig. 7) and the study of
correlation coefficients result that no visible differences between accomplished
reconstructions in the four cases and initial Shepp-Logan Phantom. It changes the
reconstruction time, which is 83 times lower for GPU texture in comparison with
the single CPU computation for a 4096 x 4096 pixel image. In Table 2 we present
the accelerating factors of the reconstruction time for each size of reconstructed
image separately. It was assumed that the reconstruction values for GPU - texture
issetto 1.

Table 2
Accelerating factors of the reconstruction time for each size of reconstructed image
separately
SIZE of reconstructed CPU -4 cores | CUDA - global CUDA -
. CPU - 1 core .

image with OpenMP memory texture
I 500 500 1 4.87 14.18 53.32
1 1000 1000 1 6.27 18.86 71.64
1 1024 1024 1 6.24 18.86 71.93
1 2000 2000 1 6.99 21.19 81.02
1 2048 2048 1 7.08 21.61 81.88
1 4096 4096 1 7.38 22.02 83.66

220 Adrian Sima

6. Conclusion

In this work we made a comparison quality / reconstruction time to
implement a parallel beam tomographic reconstruction from different
programming environments CPU, GPU. All reconstructions were performed with
single-precision binary floating-point arithmetic and linear interpolation of the
projections data. Best reconstruction time was obtained for CUDA with texture
memory. Though it has been used a video card with average performances
(TESLA C870 - using the first version of CUDA) it obtained an acceleration by a
factor of 83x over the time of image reconstruction made on a powerful computer.

REFERENCES

[1] B. Cabral, N. Cam, J. Foran, “Accelerated volume rendering and tomographic reconstruction
using texture mapping hardware,” 1994 Symp. Volume Visualization, pp. 91-98, 1994

[2] Jiang Hsieh, "Computed Tomography: Principles, Design, Artifacts, and Recent Advances,
Second Edition", SPIE Publications, 2009

[3] Avinash C. Kak, M. Slaney, "'Principles of Computerized Tomographic Imaging', ch. 3
http://www.slaney.org/pct/pet-toc.html

[4] D. Kirk, Wen-mei Hwu, "Programming Massively Parallel Processors: A Hands-on Approach",
Elsevier Science Ltd 2010

[5] J. Sanders, E. Kandrot, "CUDA by Example. An Introduction to General-Purpose GPU
Programming", Addison-Wesley, 2010

[6] NVidia Corporation, “NVidia CUDA Compute Unified Device Architecture Programming
Guide”
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_Pr

ogrammingGuide.pdf
[7] NVidia Corporation, http://www.nvidia.com/docs/10/43395/C870-BoardSpec_BD-03399-

001_v04.pdf
[8] T. Mattson, et al “Patterns for Parallel Programming,” Addison Wesley, 2005.

