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PREDA-MITITELU DUALITY FOR MULTIOBJECTIVE

VARIATIONAL PROBLEMS

Ştefan Mititelu1, Mihai Postolache2

Folosind condiţii de eficienţă normală, ı̂n această lucrare, introducem un dual
tip Preda-Mititelu pentru o problemă variaţională multiobiectiv. Apoi, folosind
ipoteze de (ρ, b)-quasiinvexitate, enunţăm şi demonstrăm teoreme de dualitate
slabă, directă şi reciprocă.

Based on the normal efficiency conditions for a multiobjective variational prob-
lem, in this work we consider a Preda-Mititelu type dual, and under some as-
sumptions of (ρ, b)-quasiinvexity, weak, direct and converse duality theorems are
introduced and proved.
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1. Introduction and problem statement

The first result on the necessity of optimal solutions of scalar variational prob-
lems was established by Valentine [18] in 1937. The papers of Mond and Hanson [10],
Mond, Chandra and Husain [11], Mond and Husain [12], Preda [16] developed the
duality of the scalar variational problems involving convex and generalized convex
functions. Mukherjee and Purnachandra [13], established weak efficiency conditions
and developed different types of dualities for multiobjective variational problems
under various types of generalized convex functions. Kim and Kim [2] used the
efficiency property of the nondifferentiable multiobjective variational problems in
duality theory.

In this work, we use the notion of normal efficient solution introduced by
Mititelu [5] and establish certain new results of Preda-Mititelu duality type [3], [15]
for multiobjective variational problems using (ρ, b)-quasiinvexity assumptions.

For related but different results obtained by other authors on this topic, we
address the reader to [14] by Ariana Pitea, C. Udrişte and Şt. Mititelu.

In Rn, the n-dimensional Euclidean space, consider the vectors v = (v1, . . . , vn)
and w = (w1, . . . , wn). We recall that the relations v = w, v < w, v 5 w, v ≤ w are
defined as follows:

v = w ⇔ vi = wi, i = 1, n; v < w ⇔ vi < wi, i = 1, n;
v 5 w ⇔ vi 5 wi, i = 1, n; v ≤ w ⇔ v 5 w and v ̸= w.
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Let I = [a, b] be a real interval and f = (f1, . . . , fp) : I × Rn × Rn → Rp,
g = (g1, . . . , gm) : I × Rn × Rn → Rm and h = (h1, . . . , hq) : I × Rn × Rn → Rq be
two times differentiable functions.

Consider a vector-valued function f(t, x, ẋ), where t ∈ I, x : I → Rn and

ẋ =
dx

dt
. Denote by fx and fẋ the p × n matrices of first-order partial derivatives

with respect to x and ẋ respectively, that is fx = (f1x, f2x, . . . , fpx)
′ and fẋ =

(f1ẋ, f2ẋ, . . . , fpẋ)
′, with

fix =

(
∂fi
∂x1

, . . . ,
∂fi
∂xn

)
and fiẋ =

(
∂fi
∂ẋ1

, . . . ,
∂fi
∂ẋn

)
, i = 1, 2, . . . , p.

By analogy, gx, hx and gẋ, hẋ denote the p × n, n × n, q × n matrices of the
first order partial derivatives of g and h respectively, with respect to x and ẋ.

Let X denote the space of piecewise smooth (continuously differentiable) func-

tions x with the norm ∥x∥ = ∥x∥∞+∥Dx∥∞, where the differential operator D =
d

dt

is given by u = Dx ⇔ x(t) = x(a) +

∫ t

a
u(s)ds, excepting the discontinuities, where

x(a) is a given boundary value.
Important note. To simplify the presentation, in our subsequent theory, we

shall set

πx(t) = (t, x(t), ẋ(t)), πx0(t) = (t, x0(t), ẋ0(t)), πy(t) = (t, y(t), ẏ(t)).

Introduce the following multiobjective variational problem

(MP)


min

∫ b

a
f(πx(t))dt =

(∫ b

a
f1(πx(t))dt, . . . ,

∫ b

a
fp(πx(t))dt

)
subject to

x(a) = a0, x(b) = b0,
g(πx(t)) 5 0, h(πx(t)) = 0, t ∈ I,

and denote

D = {x ∈ X |x(a) = a0, x(b) = b0, g(πx(t)) 5 0, h(πx(t)) = 0, ∀t ∈ I}

the set of all feasible solutions of problem (MP).

2. Previous results

In this section, we recall some definitions and auxiliary results that will be
needed later in our discussion of efficiency conditions and Preda-Mititelu duality [3],
[15] for problem (MP).

Definition 2.1. ([1]) A feasible solution x0 ∈ D is an efficient solution of problem
(MP) if there is no x ∈ D, x ̸= x0, such that∫ b

a
f(πx(t))dt ≤

∫ b

a
f(πx0(t))dt.

For problem (MP) we quote the following result of efficiency
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Theorem 2.1. (necessary efficiency conditions for (MP)) ([3], [?]) Let
x0 ∈ D be an efficient solution of problem (MP). Then there exist a vector λ0 ∈ Rp

and piecewise smooth functions µ0 : I → Rm and ν0 : I → Rq which satisfy

(MV)



λ0 ′fx(πx0(t))+µ0(t)′gx(πx0(t))+ν0(t)′hx(πx0(t))

=
d

dt

[
λ0 ′fẋ(πx0(t)) + µ0(t)′gẋ(πx0(t)) + ν0(t)′hẋ(πx0(t))

]
µ0(t)′g(πx0(t)) = 0, µi(t) = 0, ∀t ∈ I,

λ0 = 0.

Definition 2.2. x0 ∈ D is called normal efficient solution of problem (MP) if
λ0 ≥ 0, or equivalent if e′λ0 = 1, where e = (1, . . . , 1) ∈ Rp.

Now, let us consider ρ be a real number and b : X ×X → [0,∞) a functional.
Denote

H(x) =

∫ b

a
h(πx(t))dt.

Definition 2.3. The function H is (strictly) (ρ, b)-quasiinvex at the point x0 if there
exist vector functions η : I ×Rn ×Rn → Rq, with η(πx(t)) = 0 for x(t) = x0(t), and
θ : X ×X → Rn such that for any x (x ̸= x0),

H(x) 5 H(x0) ⇒ b(x, x0)

∫ b

a

[
η′hx(πx0(t)) + (Dη)′hẋ(πx0(t))

]
dt

(<) 5 −ρb(x, x0)
∥∥θ(x, x0)∥∥2.

Definition 2.4. The function H is monotonic (ρ, b)-quasiinvex at the point x0 if
there exist vector functions η : I ×Rn×Rn → Rq with η(πx(t)) = 0 for x(t) = x0(t),
and θ : X ×X → Rn such that for any x (x ̸= x0),

H(x) = H(x0) ⇒ b(x, x0)

∫ b

a

[
η′hx(πx0(t)) + (Dη)′hẋ(πx0(t))

]
dt

= −ρb(x, x0)
∥∥θ(x, x0)∥∥2.

3. Multiobjective Preda-Mititelu duality for (MP)

Let {J1, . . . , Jr} be a partition of the set J = {1, . . . ,m} and {S1, . . . , Sr}
a partition of S = {1, . . . , q}. Consider the functions y ∈ X and the piecewise
nonsmooth functions µ : I → Rm and ν : I → Rq. The Lagrangian associated to
(MP) is

L(πy(t)) = f(πy(t)) +
[
µ(t)′g(πy(t)) + ν(t)′h(πy(t))

]
e,

where L = (L1, . . . , Lp) and for i = 1, p,

Li(πy(t)) = fi(πy(t)) + µ(t)′g(πy(t)) + ν(t)′h(πy(t)).



78 Ştefan Mititelu, Mihai Postolache

The multiobjective dual Preda-Mititelu problem [3], associated to (MP), is
the next multiobjective variational problem:

(MPD)



Maximize

∫ b

a
L(πy(t))dt =

(∫ b

a
L1(πy(t)), . . . ,

∫ b

a
Lp(πy(t))dt

)
subject to

y(a) = y0, y(b) = b0,

λ′fy(πy(t)) + µ(t)′gy(πy(t)) + ν(t)′hy(πy(t))

=
d

dt

{
λ′fẏ(πy(t))+µ(t)′gẏ(πy(t))+ν(t)′hẏ(πy(t))

}
µJα(t)

′gJα(πy(t)) = 0, νSα(t)hSα(πy(t)) = 0, α = 1, r, t ∈ I,

λ ≥ 0, e′λ = 1, µ(t) = 0, t ∈ I.

We denote by ϖ(x) the value of problem (MP) at x ∈ D and by δ(y, λ, µ, ν)
the value of dual (MPD) at (y, λ, µ, ν) ∈ ∆, where ∆ is the domain of (MPD). We
assume that the elements of ∆ and D are corresponding.

Theorem 3.1. (weak duality) Let x ∈ D and (y, λ, µ, ν) ∈ ∆. Assume satisfied
the following conditions:

a) For each i = 1, p, the integral

∫ b

a
Li(πx(t))dt is strictly (ρi, b)-quasiinvex at

y with respect to η and θ.

b)

p∑
i=1

λiρi = 0.

Then ϖ(x) ≤ δ(y, λ, µ, ν) is false.

Proof. We proceed by reductio ad absurdum. Suppose there exist points x ∈ D

and (y, λ, µ, ν) ∈ ∆ such that ϖ(x) ≤ δ(y, λ, µ, ν). Hence,∫ b

a
f(πx(t))dt ≤

∫ b

a
L(πy(t))dt,

or componentwise ∫ b

a
fi(πx(t))dt ≤

∫ b

a
Li(πy(t))dt, i = 1, p. (3.1)

But µ(t)′g(πx(t)) 5 0, and ν(t)′h(πx(t)) = 0, ∀t ∈ I. Using (3.1), we obtain∫ b

a
[fi(πx(t)) + µ(t)′g(πx(t)) + ν(t)′h(πx(t))]dt ≤

∫ b

a
Li(πy(t))dt, i = 1, p,

that is ∫ b

a
Li(πx(t))dt ≤

∫ b

a
Li(πy(t))dt, i = 1, p. (3.2)

According to hypothesis a), for i = 1, p, (3.2) implies

b(x, y)

∫ b

a
η′
[
Liy(πy(t)) +Dη′Liẏ(πy(t))

]
dt < −ρb(x, y)∥θ(x, y)∥2. (3.3)
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Multiplying (3.3) by λi = 0, e′λ = 1 and summing after i, we obtain

b(x, y)

∫ b

a
η′
[
λ′Ly(πy(t)) + (Dη′)λ′Lẏ(πy(t))

]
dt

< −
( p∑

i=1

λiρi

)
b(x, y)∥θ(x, y)∥2.

Therefore, b(x, y) > 0 and taking into account the first constraint of dual (MPD),
this inequality becomes

0 < −∥θ(x, y)∥2
( p∑

i=1

λiρi

)
,

which gets 0 < 0, that is false.

Corollary 3.1. (weak duality) Let x ∈ D and (y, λ, µ, ν) ∈ ∆. Suppose:

a) the integral

∫ b

a
λ′L(πx(t))dt is strictly (ρ, b)-quasiinvex at y with respect to

η and θ.
b) ρ = 0.
Then ϖ(x) ≤ δ(y, λ, µ, ν) is false.

Theorem 3.2. (weak duality) Let x ∈ D and (y, λ, µ, ν) ∈ ∆. Assume satisfied
the following conditions:

a) For each i = 1, p, and t ∈ I,

fi
(
πx(t)

)
5 fi

(
πy(t)

)
⇒

∫ b

a

[
η′fix

(
πy(t)

)
+ (Dη)′fiẋ

(
πy(t)

)]
dt 5 0.

b) For each α = 1, r, either

(b1) all the integrals

∫ b

a

[
µJα(t)

′gJα
(
πx(t)

)
+ νKα(t)

′hKα

(
πx(t)

)
dt are (ρα, b)-

quasiinvex (and one of them being strictly (ρα, b)-quasiinvex) at y with respect to η
and θ;

(c1)
r∑

α=1

ρα = 0;

or

(b2) all the integrals

∫ b

a
µJα(t)

′gJα
(
πx(t)

)
dt are (ρ1α, b)-quasiinvex (one of

them being strictly (ρ1α, b)-quasiinvex) at y and integrals

∫ b

a
νKα(t)

′hKα

(
πx(t)

)
dt

are monotonic (ρ2α, b)-quasiinvex at y, all with respect to η and θ;

(c2)

r∑
α=1

(ρ1α + ρ2α) = 0.

Then ϖ(x) ≤ δ(y, λ, µ, ν) is false.

Proof. It is sufficient to prove the version with hypotheses (a)+(b1)+(c1). We
proceed by contradiction. Suppose there exist x ∈ D and (y, λ, µ, ν) ∈ ∆ such that
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ϖ(x) ≤ δ(y, λ, µ, ν), therefore for all i = 1, p, we have∫ b

a
f
(
πx(t)

)
dt ≤

∫ b

a
L
(
πy(t)

)
dt,

or componentwise ∫ b

a
fi
(
πx(t)

)
dt ≤

∫ b

a
Li

(
πy(t)

)
. (3.4)

But µ(t)′g
(
πx(t)

)
≤ 0, ν(t)′h

(
πx(t)

)
= 0, ∀t ∈ I and from (3.4) it follows∫ b

a
Li

(
πx(t)

)
dt 5

∫ b

a
Li

(
πy(t)

)
dt, i = 1, p. (3.5)

From the constraints of D and ∆, we have∫ b

a

[
µJα(t)

′gJα
(
πx(t)

)
+ νSα(t)

′hSα

(
πx(t)

)]
dt

5
∫ b

a

[
µJα(t)

′gJα
(
πy(t)

)
+ νSα(t)

′hSα

(
πy(t)

)]
dt (3.6)

and according to b), we obtain

b(x, y)

∫ b

a
η
[
µJα(t)

′(gJα)x
(
πy(t)

)
+ νSα(t)

′(hSα)x
(
πy(t)

)]
dt

+b(x, y)

∫ b

a
Dη′

[
µJα(t)

′(gJα)x
(
πy(t)

)
+ νSα(t)

′(hSα)x
(
πy(t)

)]
dt

5 −ραb(x, y)∥θ(x, y)∥. (3.7)

Summing side by side after α = 1, r in (3.6) and (3.7), and a), we obtain∫ b

a

[
fi
(
πx(t)

)
+ µ(t)′g

(
πx(t)

)
+ ν(t)′h

(
πx(t)

)]
dt

5
∫ b

a

[
fi
(
πy(t)

)
+ µ(t)′g

(
πy(t)

)
+ ν(t)′h

(
πy(t)

)]
dt,

(that is (3.5)), which implies

b(x, y)

∫ b

a
η
[
fix

(
πy(t)

)
+ µ(t)′gx

(
πy(t)

)
+ ν(t)′hx

(
πy(t)

)]
dt

+b(x, y)

∫ b

a
Dη′

[
fiẋ

(
πy(t)

)
+ µ(t)′gẋ

(
πy(t)

)
+ ν(t)′hẋ

(
πy(t)

)]
dt

< −
( r∑

α=1

ρα

)
b(x, y)∥θ(x, y)∥2

or, shortly,∫ b

a

{
η
[
Lix

(
πy(t)

)
+(Dη′)

[
λ′Liẋ

(
πy(t)

)]}
dt <−

( r∑
α=1

ρα

)
b(x, y)∥θ(x, y)∥2, (3.8)
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where b(x, y) > 0. Therefore, from (3.5) with x(t) ̸= y(t) and (3.8) we see that

integrals

∫ b

a
Li

(
t, x(t), µ(t), ν(t)

)
dt, i = 1, p, are strictly

( r∑
α=1

ρα, b
)
-quasiinvex at y

with respect to η and θ.
Multiplying (3.8) by λi and summing after i = 1, p, we obtain∫ b

a

{
η
[
λ′Lx

(
πy(t)

)
+(Dη′)

[
λ′Lẋ

(
πy(t)

)]}
dt <−

( r∑
α=1

ρα

)
b(x, y)∥θ(x, y)∥2.

Taking into account the first constraint of problem (MPD), the above relation

becomes 0 < −∥θ(x, y)∥2
( r∑

α=1

ρ′α

)
and with (c1), it follows 0 < 0, that is false.

According to Theorem 3.1, the supposition made at the beginning is false.

Corollary 3.2. (weak duality) Let x ∈ D and (y, λ, µ, ν) ∈ ∆ and assume
satisfied the following conditions:

a) For all t ∈ I, we have

λ′f
(
πx(t)

)
5 λ′f

(
πy(t)

)
⇒

∫ b

a

[
ηλ′fx

(
πy(t)

)
+ (Dη)′λ′fẋ

(
πy(t)

)]
dt 5 0.

b) For each α = 1, r, either

(b1) all the integrals

∫ b

a

[
µJα(t)

′gJα
(
πx(t)

)
+ νKα(t)

′hKα

(
πx(t)

)
dt are (ρα, b)-

quasiinvex (and one of them being strictly (ρα, b)-quasiinvex) at y with respect to η
and θ;

(c1)
r∑

α=1

ρα = 0;

or

(b2) all the integrals

∫ b

a
µJα(t)

′gJα
(
πx(t)

)
dt are (ρ1α, b)-quasiinvex (one of

them being strictly (ρ1α, b)-quasiinvex) at y and integrals

∫ b

a
νKα(t)

′hKα

(
πx(t)

)
dt

are monotonic (ρ2α, b)-quasiinvex at y, all with respect to η and θ;

(c2)
r∑

α=1

(ρ1α + ρ2α) = 0.

Then ϖ(x) ≤ δ(y, λ, µ, ν) is false.

Proof. It follows from the proof of Theorem 3.2.

Corollary 3.3. (weak duality) Let x ∈ D and (y, λ, µ, ν) ∈ ∆′ and assume
satisfied the following conditions:

a) For i = 1, p, α = 1, p, the implication holds:

fi
(
πx(t)

)
5 fi

(
πy(t)

)
⇒∫ b

a

{
η
[
µα(t)

′gJαy
(
πy(t)

)
+ νSα(t)

′hSαẏ

(
πy(t)

)]
+(Dη)′

[
µα(t)

′gJαy
(
πy(t)

)
+ νSα(t)

′hSαẏ

(
πy(t)

)]}
dt = 0.
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b) For each α = 1, r, either

(b1) all the integrals

∫ b

a

[
µJα(t)

′gJα
(
πx(t)

)
+ νKα(t)

′hKα

(
πx(t)

)
dt are (ρα, b)-

quasiinvex (and one of them being strictly (ρα, b)-quasiinvex) at y with respect to η
and θ;

(c1)

r∑
α=1

ρα = 0;

or

(b2) all the integrals

∫ b

a
µJα(t)

′gJα
(
πx(t)

)
dt are (ρ1α, b)-quasiinvex (one of

them being strictly (ρ1α, b)-quasiinvex) at y and integrals

∫ b

a
νKα(t)

′hKα

(
πx(t)

)
dt

are monotonic (ρ2α, b)-quasiinvex at y, all with respect to η and θ;

(c2)

r∑
α=1

(ρ1α + ρ2α) = 0.

Then ϖ(x) ≤ δ(y, λ, µ, ν) is false.

Proof. The first constraint of (MPD) and Theorem 3.2 are used.

Theorem 3.3. (direct duality) Let x0 be a normal efficient solution for (MP)
and suppose satisfied the hypotheses of Theorem 3.1. Then there are λ0 ∈ Rp and the
piecewise smooth functions µ0 : I → Rm and ν0 : I → Rq such that (x0, λ0, µ0, ν0) is
an efficient solution to dual (MPD) and ϖ(x0) = δ(x0, λ0, µ0, ν0).

Proof. According to Theorem 2.1 and Definition 2.3 conditions (MV) are
satisfied. Also ν0(t)′h

(
πx0(t)

)
= 0. Then (x0, λ0, µ0, ν0) ∈ ∆. Moreover,∫ b

a
f
(
πx0(t)

)
dt =

∫ b

a

[
f
(
πx0(t)

)
+ µ0(t)′g

(
πx0(t)

)
+ ν0(t)′h

(
πx0(t)

)]
dt = 0,

that is ϖ(x0) = δ(x0, λ0, µ0, ν0).

Corollary 3.4. (direct duality) Let x0 a normal efficient solution for (MP) and
suppose satisfied the hypotheses of Corollary 3.1. Then there are λ0 ∈ Rp and the
piecewise smooth functions µ0 : I → Rm and ν0 : I → Rq such that (x0, λ0, µ0, ν0) is
an efficient solution to dual (MPD) and ϖ(x0) = δ(x0, λ0, µ0, ν0).

Theorem 3.4. (direct duality) Let x0 a normal efficient solution for (MP) and
suppose satisfied the hypotheses of Theorem 3.2. Then there are λ0 ∈ Rp and the
piecewise smooth functions µ0 : I → Rm and ν0 : I → Rq such that (x0, λ0, µ0, ν0) is
an efficient solution to dual (MPD) and ϖ(x0) = δ(x0, λ0, µ0, ν0).

Corollary 3.5. (direct duality) Let x0 a normal efficient solution for (MP) and
suppose satisfied the hypotheses of Corollary 3.2. Then there are λ0 ∈ Rp and the
piecewise smooth functions µ0 : I → Rm and ν0 : I → Rq such that (x0, λ0, µ0, ν0) is
an efficient solution to dual (MPD) and ϖ(x0) = δ(x0, λ0, µ0, ν0).

Corollary 3.6. (direct duality) Let x0 a normal efficient solution for (MP) and
suppose satisfied the hypotheses of Corollary 3.3. Then there are λ0 ∈ Rp and the
piecewise smooth functions µ0 : I → Rm and ν0 : I → Rq such that (x0, λ0, µ0, ν0) is
an efficient solution to dual (MPD) and ϖ(x0) = δ(x0, λ0, µ0, ν0).
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Theorem 3.5. (converse duality) Let (x0, λ0, µ0, ν0) be an efficient solution of
the dual (MPD) and suppose satisfied the following conditions:

i) x0 ∈ D.

ii) For each i = 1, p integrals

∫ b

a
Li

(
πx(t)

)
dt are strictly (ρi, b)-quasiinvex at

x0 with respect to η and θ.
Then x0 is an efficient solution to (MP). Moreover, ϖ(x0) = δ(x0, λ0, µ0, ν0).

Proof. On the contrary, suppose that x0 is not an efficient solution to (MP)
and then we shall find a contradiction. Then, there exists x ∈ D such that,
ϖ(x) ≤ δ(x0, λ0, µ0, ν0). Following the proof of Theorem 3.1 with (x0, λ0, µ0, ν0)
instead of (y, λ, µ, ν), we obtain

0 < −
( p∑

i=1

λiρi

)∥∥θ(x, x0)∥∥2,
which yelds 0 < 0. Consequently, supposition above made is false.

Corollary 3.7. (converse duality) Let (x0, λ0, µ0, ν0) be an efficient solution of
the dual (MPD) and suppose satisfied the following conditions:

i) x0 ∈ D.

ii) Integral

∫ b

a
λ′L

(
πx(t)

)
dt is strictly (ρ, b)-quasiinvex at x0 with respect to η

and θ and ρ = 0.
Then x0 is an efficient solution to (MP). Moreover, ϖ(x0) = δ(x0, λ0, µ0, ν0).

Theorem 3.6. (converse duality) Let (x0, λ0, µ0, ν0) be an efficient solution of
the dual (MPD) and suppose satisfied the following conditions:

i) x0 ∈ D.
ii) The hypotheses a)-b) of Theorem 3.2 hold for (y, λ, µ, ν)=(x0, λ0, µ0, ν0).
Then x0 is an efficient solution to (MP). Moreover, ϖ(x0) = δ(x0, λ0, µ0, ν0).

Corollary 3.8. (converse duality) Let (x0, λ0, µ0, ν0) be an efficient solution of
the dual (MPD) and suppose satisfied the following conditions:

i) x0 ∈ D.
ii) The hypotheses a)-b) of Corollary 3.2 hold for (y, λ, µ, ν)=(x0, λ0, µ0, ν0).
Then x0 is an efficient solution to (MP). Moreover, ϖ(x0) = δ(x0, λ0, µ0, ν0).

Corollary 3.9. (converse duality) Let (x0, λ0, µ0, ν0) be an efficient solution of
the dual (MPD) and suppose satisfied the following conditions:

i) x0 ∈ D.
ii) The hypotheses a)-b) of Corollary 3.3 hold for (y, λ, µ, ν)=(x0, λ0, µ0, ν0).
Then x0 is an efficient solution to (MPD) and ϖ(x0) = δ(x0, λ0, µ0, ν0).

4. Conclusion

Based on the normal efficiency conditions for a multiobjective variational prob-
lem, we introduced a Preda-Mititelu type dual, and under some assumptions of
(ρ, b)-quasiinvexity, weak, direct and converse duality theorems are introduced and
proved. The present study completes several results included in [3] and [14]. For
other advances on this subject, the reader is encouraged to study [1]÷[18].
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