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THE GEOMETRICAL-CONVEXITY OF A FUNCTION

RELATED TO THE MINC-SATHRE RATIO

Cristinel Mortici1, Mihai Postolache2

In this paper we give a new proof for the fact that the function Γ (x)
1

x−1 is

geometrically convex. As an application, we give an improvement of Minc-Sathre

inequality.
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1. Introduction

The Gamma function defined by

Γ (x) =

∫ ∞

0
tx−1e−tdt, x > 0,

was introduced by the mathematician Leonhard Euler in the 18th century. It serves

as a natural extension of the factorial function to complex and real numbers, playing

a main role in various branches of mathematics, including calculus, complex analysis,

and number theory.

From its elegant formulation to its surprising applications, the Gamma func-

tion continues to captivate mathematicians and scientists alike, bridging gaps be-

tween discrete and continuous structures in a profound way.
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Chu et al. [12] proved that the function

f (x) = Γ (x)
1

x−1 , x > 1,

is geometrically convex. As an application, they have established the following

inequality, for every x ∈ R, x ≥ 1:

Γ (x+ 2)
1

x+1

Γ (x+ 1)
1
x

<

(
x+ 2

x+ 1

) 4x+3
4x+4

.

Its discrete form [12, rel. 1.8]:

((n+ 1)!)
1

n+1

(n!)
1
n

<

(
n+ 2

n+ 1

) 4n+3
4n+4

, n = 1, 2, 3, ...,

is an improvement of the Minc-Sathre inequality:

1 <
((r + 1)!)

1
r+1

(r!)
1
r

<
r + 1

r
, r = 1, 2, 3... .

Minc-Sathre inequality was first introduced in 1964 (see [16]) and since then, many

improvements and additional results were stated. It is of great use in the theory

of permanents of a matrix, volume of the n-dimensional unit ball etc. See [2]-[8],

[14]-[17].

2. The geometric convexity of Γ (x)
1

x−1

Chu et al. [12] proved that the function

f (x) := (Γ (x))
1

x−1 , x ∈ (1,∞) , (2.1)

is geometrically convex. Recall that a function f : I ⊆ R → (0,∞) is geometrically

convex if

f (
√
x1x2) ≤

√
f (x1) f (x2), (2.2)

for every x1, x2 ∈ I. This class of functions was introduced by Montel [18], then

several results were stated. See, e.g., [13], [15].

Geometrically convex functions are related to convex function in the following

way. Let us consider the logarithm in (2.2),

ln f (
√
x1x2) ≤

ln f (x1) + ln f (x2)

2
.

Now, by replacing x1 by ex1 and x2 by ex2 , we get

ln f
(
e

x1+x2
2

)
≤ ln f (ex1) + ln f (ex2)

2
,
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which means that the function ln f (ex) is convex. If function f is differentiable,

then this means that the derivative

(ln f (ex))′ =
exf ′ (ex)

f (ex)

is increasing. In consequence, a differentiable function f is geometrically convex if

and only if the function

y 7→ yf ′ (y)

f (y)
, (y = ex)

is increasing. This fact was proved by Chu et al. [12], when they obtained in case

of f given by (2.1)

x
f ′ (x)

f (x)
=
x (x− 1)ψ (x)− x ln Γ (x)

(x− 1)2
.

Here, ψ is the digamma function, i.e., the logarithmic derivative of the gamma

function,

ψ (x) = (ln Γ (x))′ =
Γ′ (x)

Γ (x)
.

For further details, see e.g., [1, p. 258]. After some computations, it follows(
x
f ′ (x)

f (x)

)′
=

g (x)

(x− 1)3
,

where

g (x) = x (x− 1)2 ψ′ (x)−
(
x2 − 1

)
ψ (x) + (x+ 1) ln Γ (x) (2.3)

Chu et al. [12] made some efforts to prove that the function g in (2.3) is positive.

We give here a direct proof of this fact.

In this sense, we use the following estimates for ln Γ (x) , ψ, and ψ′ :

ln Γ (x) >

(
x− 1

2

)
lnx− x+

1

2
ln 2π +

1

12x
− 1

360x3
, (2.4)

ψ (x) < lnx− 1

2x
− 1

12x2
+

1

120x4
,

ψ′ (x) >
1

x
+

1

2x2
+

1

6x3
.

These inequalities are truncated asymptotic series for these functions (e.g. [1, p.

257, 259, 260], respectively). Inequalities (2.4) are true, thanks to a basic result of

Alzer [6, Theorem 8]. More exactly, the truncated asymptotic series associated to

the Gamma function,

Fn (x) = lnΓ (x)−
(
x− 1

2

)
lnx+ x− 1

2
ln 2π −

2n∑
i=1

B2i

2i (2i− 1)x2i−1
(2.5)
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and

Gn (x) = − ln Γ (x) +

(
x− 1

2

)
lnx− x+

1

2
ln 2π +

2n+1∑
i=1

B2i

2i (2i− 1)x2i−1
(2.6)

are completely monotonic, for every integer n ≥ 1. Here, Bj-s are the Bernoulli

numbers, defined by the relations

t

et − 1
=

∞∑
j=0

Bj
tj

j!
, |t| < 2π.

The first Bernoulli numbers are:

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = − 1

30
. . . .

For more properties, see [1, p. 804].

A real valued function w is completely monotonic if w is indefinite derivable

on its domain D and for every n ∈ N, we have (−1)nw(n) (x) ≥ 0, for every x ∈ D.

Now we can see that estimates for ln Γ (x) and its derivatives ψ, ψ′ can be

obtained from (2.5)-(2.6), using the complete monotonicity of functions Fn and

Gn. The inequalities resulting from (2.5)-(2.6) are of great help in establishing

approximations for almost all functions related to the gamma function. See, e.g.,

[10], [11], [19]-[29].

The polygamma functions ψ(n) (x) , n = 0, 1, 2, 3, . . . are the derivatives of

ψ (x) . The functions ψ, ψ′, ψ′′, ... are also called the di-, tri-, and tetra-gamma

functions, ..., respectively. By succesively differentiate the completely monotonic

functions Fn and Gn the following asymptotic series for ψ(n) (x) can be obtained:

ψ(n) (x) ∼ (−1)n−1

(n− 1)!

xn
+

n!

2xn+1
+

∞∑
j=1

B2j
(2j + n− 1)!

(2j)!x2j+n

 , x→ ∞.

See, e.g., [1, p. 260]. By using the inequalities (2.4) (consequences of (2.5)-(2.6)),

we get g (x) > h (x), where

h (x) = x (x− 1)2
(
1

x
+

1

2x2
+

1

6x3

)
−
(
x2 − 1

)(
lnx− 1

2x
− 1

12x2
+

1

120x4

)
+(x+ 1)

((
x− 1

2

)
lnx− x+

1

2
ln 2π +

1

12x
− 1

360x3

)
.

It remains to show that h (x) > 0. First, remark that

h′′ (x) =
P (x)

30x6
,
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where P (x) = 5− x+ 13x2 − 15x3 − 15x4 + 15x5. As

P (x) = 15 (x− 1)5 + 60 (x− 1)4 + 75 (x− 1)3 + 28 (x− 1)2 − 5 (x− 1) + 2,

it results that P (x) > 0.

Thus h′′ > 0, so h′ is strictly increasing.

We have h′ (1.1) = 4.2218... × 10−3 > 0, and using the monotonicity of h′, it

results that h′ > 0, on (1.1,∞) . Further, h is strictly increasing.

But h (2) = 2.3099... × 10−2 > 0, so h > 0 on (2,∞) and we are done: g > 0

and
(
xf ′(x)

f(x)

)′
> 0. That is f is geometrically convex on (2,∞).

3. The Minc-Sathre inequality

Let us consider the family of inequalities:

((n+ 1)!)
1

n+1

(n!)
1
n

<

(
n+ 2

n+ 1

) 4n+a
4n+4

, n = 1, 2, 3, . . . , (3.1)

where a is a real parameter. Chu et al. proved (3.1) in [12, rel. 1.8] in case a = 3.

We prove in this paper an improvement of (3.1). More precisely, we show that

(3.1) is also true for a = 0.

Theorem 3.1. For every integer n ≥ 18, we have

((n+ 1)!)
1

n+1

(n!)
1
n

<

(
n+ 2

n+ 1

) n
n+1

. (3.2)

(this inequality is reversed for n = 1, 2, 3, . . . , 17). Moreover, inequality (3.2) holds

true even for the real values n = x ∈ [18,∞).

Proof. We mention that the inequality (3.2) can be directly verified for 1 ≤ n ≤ 17,

using a computer software for symbolic comutation. We prove that (3.2) holds true

for every real number n = x ≥ 18.

In this sense, let us consider the real variable x ≥ 18.We use the following inequality:

(Γ (x+ 2))
1

x+1

(Γ (x+ 1))
1
x

<
2x+ 1

2x− 1

(√
2πx exp

(
2

3x
− 1

4x2

)) −1
x(x+1)

, x ≥ 1,

which is the left-hand side of an inequality stated by Chen and Mortici [9, rel. 57].

Now it suffices to show that:

2x+ 1

2x− 1

(√
2πx exp

(
2

3x
− 1

4x2

)) −1
x(x+1)

<

(
x+ 2

x+ 1

) x
x+1

,
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or, by raising to the x (x+ 1)-th power:

(
2x+ 1

2x− 1

)x(x+1)(√
2πx exp

(
2

3x
− 1

4x2

))−1

<

(
x+ 2

x+ 1

)x2

.

By taking the logarithm, we have to prove that z (x) < 0, where

z (x) = x (x+ 1) ln
2x+ 1

2x− 1
−

(
1

2
ln 2πx+

2

3x
− 1

4x2

)
− x2 ln

x+ 2

x+ 1
.

We have

z′′′ (x) =
Q (x)

x5 (2x+ 1)3 (2x− 1)3 (x+ 2)3 (x+ 1)3
,

where

Q (x) = −64x14 + 544x13 + 1744x12 − 168x11 − 8820x10

−22 332x9 − 26 779x8 − 10 565x7 + 7343x6

+6801x5 − 804x4 − 2058x3 − 316x2 + 184x+ 48.

This Q (x) is negative for x ≥ 11, since it can be represented as a polynomial of 14th

degree, in powers of (x− 11) ≥ 0, with all coefficients negative:

Q (x) = −64 (x− 11)14 − 9312 (x− 11)13 − 625 168 (x− 11)12 − · · · .

It follows that z′′′ < 0. Hence z′ is strictly concave, and taking into account that

limx→∞ z′ (x) = 0, we deduce that z′ < 0.

Finally, z is strictly decreasing, with z (18) = −1.4528 . . .×10−2 < 0. It results that

z (x) < 0, for every x ∈ (18,∞). □

Remark 3.1. Some computations in this work were performed using the Maple

software.

4. Conclusions

In this paper we provided a new proof for the fact that the function Γ (x)
1

x−1

is geometrically convex. As an application, we obtained an improvement of Minc-

Sathre inequality.
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