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THE GEOMETRICAL-CONVEXITY OF A FUNCTION
RELATED TO THE MINC-SATHRE RATIO

Cristinel Mortici', Mihai Postolache?

1
In this paper we give a new proof for the fact that the function I' (z) =T is
geometrically convex. As an application, we give an improvement of Minc-Sathre

inequality.
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1. Introduction

The Gamma function defined by
I'(z)= / t"letat, x>0,
0

was introduced by the mathematician Leonhard Euler in the 18th century. It serves
as a natural extension of the factorial function to complex and real numbers, playing
a main role in various branches of mathematics, including calculus, complex analysis,
and number theory.

From its elegant formulation to its surprising applications, the Gamma func-
tion continues to captivate mathematicians and scientists alike, bridging gaps be-

tween discrete and continuous structures in a profound way.
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Chu et al. [12] proved that the function
fz) =T (@)1, =>1,

is geometrically convex. As an application, they have established the following

inequality, for every z € R, z > 1:

[ (z+2)7 ) <z+2>3iﬁ
T(z+1) z+1
Its discrete form [12, rel. 1.8]:
i 1 9 4n+3
D)y nt1 4n+4
((n+ DY <n+ ) C on=1,23,..,
(nh)= n+tl

is an improvement of the Minc-Sathre inequality:
1

D)+t 1
(r+DY=7 r+l 95
(rh)r

,
Minc-Sathre inequality was first introduced in 1964 (see [16]) and since then, many

1<

improvements and additional results were stated. It is of great use in the theory
of permanents of a matrix, volume of the n-dimensional unit ball etc. See [2]-[§],
[14]-[17].

1
2. The geometric convexity of I' (z)=—T

Chu et al. [12] proved that the function

F@) =T ()71, ze(l,00)), (2.1)

is geometrically convex. Recall that a function f: I C R — (0,00) is geometrically

convex if
[ (Vxiwa) </ f (z1) f (22), (2.2)

for every x1, xo € I. This class of functions was introduced by Montel [18], then
several results were stated. See, e.g., [13], [15].
Geometrically convex functions are related to convex function in the following

way. Let us consider the logarithm in (2.2),

In f (v/a173) < 1ﬂf($1)';111f($2).

Now, by replacing x1 by e** and x2 by €2, we get

I (e75) < RAE I,
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which means that the function In f (e”) is convex. If function f is differentiable,

then this means that the derivative
e’ f'(e”)
(Inf(e") = ——5~
f(e?)
is increasing. In consequence, a differentiable function f is geometrically convex if
and only if the function
yf () z
= ) (y =e )
f(y)
is increasing. This fact was proved by Chu et al. [12], when they obtained in case
of f given by (2.1)

f (@) (z—1)°

Here, ¥ is the digamma function, i.e., the logarithmic derivative of the gamma

$f'(x) :L'(:B—l)d}(:n)—xlnl“(x).

function,
r_ I’ (x)
I'(z)

For further details, see e.g., [1, p. 258]. After some computations, it follows

(7)) -2

¢ (2) = (InT (x))

where
g(@)=x(x-1)%¢ (2) - (¢ = 1) ¢ (@) + (z+ 1) InT (z) (2.3)

Chu et al. [12] made some efforts to prove that the function g in (2.3) is positive.
We give here a direct proof of this fact.

In this sense, we use the following estimates for InT (z), ¥, and ¢’ :

1 1 1 1
InT 2 Vmr—zd 2t — — 9.4
nl'(@) > <x 2> B T o T 36043 (24)
11 1
e — — — —— 4~
Vi) < o= s 0
11 1
/ J— PR PR
Vi) > :n+2x2 6x3

These inequalities are truncated asymptotic series for these functions (e.g. [1, p.
257, 259, 260], respectively). Inequalities (2.4) are true, thanks to a basic result of
Alzer [6, Theorem 8]. More exactly, the truncated asymptotic series associated to
the Gamma function,

2n

1 1 By
F,(z)=InT(z) — <:c - 2> Inz+x— §ln27r - Zz; 2 (21 — 1) 221 (2.5)
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and
2n+1
1 1 By;
Gp(z) = —InT (z) + <x — 2) Inx —x+ §1n27r + ;21 2 @i 128 (2.6)

are completely monotonic, for every integer n > 1. Here, Bj-s are the Bernoulli

numbers, defined by the relations

For more properties, see [1, p. 804].

A real valued function w is completely monotonic if w is indefinite derivable
on its domain D and for every n € N, we have (—1)" w(™ (x) > 0, for every = € D.

Now we can see that estimates for InT' (z) and its derivatives 1, ¢’ can be
obtained from (2.5)-(2.6), using the complete monotonicity of functions £, and
Gp. The inequalities resulting from (2.5)-(2.6) are of great help in establishing
approximations for almost all functions related to the gamma function. See, e.g.,
[10], [11], [19]-[29].

The polygamma functions (™ (z), n = 0, 1, 2, 3, ... are the derivatives of
¥ (z). The functions v, ¢/, ¢”, ... are also called the di-, tri-, and tetra-gamma
functions, ..., respectively. By succesively differentiate the completely monotonic
functions F,, and G, the following asymptotic series for 1)) () can be obtained:

[e.9] .
)y L qyn—1 (n—1)! n! (2j+n—1)!
) (z) ~ (1) ot + Sy + E 3237@].)!3;2]4” , X — 00.
i=1

See, e.g., [1, p. 260]. By using the inequalities (2.4) (consequences of (2.5)-(2.6)),
we get g () > h(z), where

11 1
2
(22D - — - = 4=
(= )<nx 2z 12x2+120x4)
1 1 1 1
1 ~ Jlz—z+ ln2r+ — ——— .
+(‘T+)(<x 2) nro et mET T, 360a:3>

It remains to show that h () > 0. First, remark that

W (@) = ];0(::6)’
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where P (x) =5 — x + 1322 — 1523 — 152 + 152°. As
P)=15x-1°+60(xz—-1)"+75(x—-1)>+28(x—-1)> =5 —1)+2,

it results that P (x) > 0.

Thus h” > 0, so I/ is strictly increasing.

We have h'(1.1) = 4.2218... x 1073 > 0, and using the monotonicity of &', it
results that A’ > 0, on (1.1,00) . Further, h is strictly increasing.

But h(2) = 2.3099... x 1072 > 0, so A > 0 on (2,00) and we are done: g > 0

, /
and (m J}((:)) ) > 0. That is f is geometrically convex on (2, 00).

3. The Minc-Sathre inequality

Let us consider the family of inequalities:

(n+D))FT (42 o
. < . n=1,2,3,..., (3.1)
(n!)n n+1

where a is a real parameter. Chu et al. proved (3.1) in [12, rel. 1.8] in case a = 3.
We prove in this paper an improvement of (3.1). More precisely, we show that

(3.1) is also true for a = 0.

Theorem 3.1. For every integer n > 18, we have

((nt+ 1))t <n+2>ni1. 5.

(this inequality is reversed for n = 1,2,3,...,17). Moreover, inequality (3.2) holds

true even for the real values n =z € [18,00).

Proof. We mention that the inequality (3.2) can be directly verified for 1 <n < 17,
using a computer software for symbolic comutation. We prove that (3.2) holds true
for every real number n = x > 18.

In this sense, let us consider the real variable x > 18. We use the following inequality:
1 -1
r 2))=+1 2 1 2 1 z(@+1)
(L{z+2) — < T V2rnxzexp | — — —5 , xT>1,
(C(z+1))= 2¢ — 1 3z 4x2

which is the left-hand side of an inequality stated by Chen and Mortici [9, rel. 57].

Now it suffices to show that:

—1 x
2 1 2 1 o(z+1) 2\ =+1
G (\/27rxexp < >> < <x+ > ,

20 — 1 3z 4x2 r+1
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or, by raising to the x (z + 1)-th power:

22 + 1)) *@ D 2 1\\' [z+r2\"
V2 = = .
<2£L’ — 1> TP\ 3z T 42 “\z +1

By taking the logarithm, we have to prove that z () < 0, where

20 +1 (1 2 1 0, T+2
z () :x(x—i-l)anm_l — (21n27rx—|—3x—4$2> —x 1nx+1.
We have
Z/l/ ($) — Q (.T
252z + 1320 12 (@ +2°% @+ 1)
where
Q(z) = —642" +5442" +17442" — 1682 — 882027

—2233229 — 26 7792° — 1056527 + 73432°
+68012° — 804x* — 205823 — 31622 + 184z + 48.

This @ (z) is negative for z > 11, since it can be represented as a polynomial of 14th

degree, in powers of (z — 11) > 0, with all coefficients negative:
Q(z) = —64 (2 —11)" - 9312 (x — 11)"® — 625168 (z — 11)** — ...

It follows that 2z’ < 0. Hence 2’ is strictly concave, and taking into account that
lim, 0 2’ (2) = 0, we deduce that 2’ < 0.

Finally, z is strictly decreasing, with z (18) = —1.4528...x 1072 < 0. It results that
z (z) < 0, for every x € (18, 00). O

Remark 3.1. Some computations in this work were performed using the Maple

software.

4. Conclusions

1
In this paper we provided a new proof for the fact that the function I' (x)#—1
is geometrically convex. As an application, we obtained an improvement of Minc-

Sathre inequality.
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