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AN APPLICATION OF SUBSTRUCTURE METHOD

Daniela DOBRE"

Lucrarea descrie unele aspecte matematice privind metoda substructurii
aplicate unui sistem elastic cu mase concentrate, supus unei miscari armonice, in
domeniul timp si frecventa.

Prin introducerea metodei substructurii devine posibila studierea unui sistem
discretizat in doua subsisteme, pentru care sunt scrise ecuatiile dinamice de
echilibru. Sistemul de ecuatii este rezolvat utilizand schema explicita Newmark de
integrare in timp, obtinandu-se astfel contributiile celor doua subsisteme.

The paper deals with the mathematical description of the substructure
method applied to an elastic lumped mass system subjected to an harmonic motion,
in time and frequency domain.

By introducing the substructure method, it becomes possible to study a
system separately in two subsystems (substructures), with an interface between
them, and for which the dynamic equilibrium equations are written. The system of
equations is solved using explicit Newmark time integration scheme, distinguishing
between the quantities coming from the substructure 1 and substructure 2.

Keywords: substructure method, equilibrium equations, numerical integration,
Fourier transform, impedances functions

Introduction

In case of omogen systems it is not necessary to make distinctions between
some component parts, but in other cases, in which these components have
different properties, the analyse on components it is useful and then the
subsequent assembling of the results (kinematics or topological partition).

The substructures are disjunctive parts, with common boundary points but,
for which internal or external (on boundaries) degrees-of-freedom are considered.
Through substructure method, generally the reduction of dynamic problem
dimensions is followed, by static or dynamic condensation, related to external
degrees-of-freedom of substructures [1, 2].
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An elastic lumped mass system in time and frequency domain

The aim of this work is to identify the influence of each substructure in the
modelling of interaction between those two substructures (subsystems) as
matrices from the split system of equations matrix. The appropriate way to do this
is to consider a n-degree-of-freedom liniar oscillator, supported on a rigid layer
(substructure 1) and resting on another layer modelled with elastic isotropic
homogenous halfspace (substructure 2), Fig.1.

The substructure 1 has a stiffness matrix [K], mass matrix [M] and
damping matrix [C], satisfying the condition
[IMTKIMT[CI=[MT'[CIIMT'[K], a necessary and sufficient condition for
the substructure to admit decomposition into classical real modes [3].

The system has n+2 significant degrees of freedom, namely, horizontal
translation of each floor, horizontal translation of the base mass and rotation of the
system in the plane of motion.

Table 1
Characteristics of the substructures
Rigid layer mass my, moment of inertia lo,
Substructure 1 Structure mass [M], (moment of inertia 1), stiffness
[K], damping [C], height H
Displacement: I I
P v(t) +ho' (t) +v, (t)
Elastic halfspace Poisson’s ratio v, mass density p, shear
Substructure 2 wave velocity ¢,
Rigid massless plate on the | its displacement compatibility with the
surface of the halfspace lower surface of the rigid basemat
Displacement: I
p v, (1) +v, (1)

The equilibrium equations of motions will be developed for the general case of n masses,
in terms of the parameters of the overall system and the unknown displacements:

V, (t) - deformation at free-field surface,
V(t) - deformation of the substructure 1 relative to the base,

Vé (t) - base displacement caused by substructure 2-substructure 1 interaction, and

6' (t) - base rotation caused by substructure 2-substructure 1 interaction.
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Fig. 1. — A lumped elastic system with n-degree-of-freedom (Substructure 1)
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Fig. 2. - Physical models to represent dynamic stiffness for Substructure 2 (translation
motion/rotational motion/coupling of horizontal and rocking motions)Substructure 1, in the time
domain
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Substructure 1, in the time domain

- all n masses are isolated in order to get the n horizontal force equilibrium
equation:

MyVA(E) + 6" - h+! 0]+ 0 (1) + kv () - 6 [V2 (1) VA ()] - K, [V (£) -V ()] = M,V

mali2(t)+8" - 2h-+ 0L (0)] ¢ b2 0 + O+ ko2 (0)-vE ()
~ealiB)+ v20)|- ka2 l)v2(0)]= —mpg .
m, [V" () +6' -nh +\'/'$ (t)]+c,[v" (1) —V"H )]+ k,[v"(t) AL —m,V,

- the entire structure is isolated from the elastic halfspace in order to get the
horizontal force and moments about the centroidal x-axis of the basemat
equilibrium equations:

MV () + 6" -h+! O]+ m, [V () + 6" -2h+V! (O] +...+
m,[V" (t)+ 6" -nh+V! ()] +
m,¥ (t) +m,V, (t) +...+ mV, (t) + my[V, (t) +V; ()] = V, (1)

(V, (t) is the base interaction shear force)
1,6' (t)+ m, -h-[V*(t) + &' -h+\'/'€;(t)]+ m, - 2h-[V*(t) + 6" -2h+\'/'§'](t)]+...+
m, -nh-[V"(t) +6' -nh+\'/‘§',(t)]+m1-h-\'/'g(t)+m2-2h-\'/'g(t)+...+

m, -nh-V, (t) =M,(t)
(M, (t) is the base interaction moment)

In the matrix form one can obtain:
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0 m,

0 m,

0 m,

m, m,

. MM+ 4+m o +my
nh  hm +2hm, +...+ nhm,
[c,+c, -, 0

-C, C,+C, —C,

0 —C;, Cy+C,
+
0 0 0
0 0 0
| 0 0 0
k +k, -k, 0
-k,  k,+k, Kk
0 -k, ky+Kk,
0 0 0 K
0 0 0
0 0 0 0
ml
m2
m3
ml‘l
m, +m, +...+m, +m,
hm, +2hm, +...+ nhm,

hm, + 2hm, +...+nhm,
h’m, +4h’m, +...+n*h’m +J, |

0 0 0]V
0 0 0}V
0 0 0|V

c, 0 O}|v()

hm,
2hm,
3hm,

nhm

n

0 0 O \'/é(t)
00 0|z
0 o]V

0 V()
0 0 [Vi(t)
0 0] |v'()
0 0 vé(t)
0 0] Hl(t)
0

0

0

0

Vo ()

M, (t)
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The system of equations is integrated with respect to time using explicit

Newmark time integration scheme with =0, y = 2 and

2
Vi, =V, +At-V, +7-\'/'i

. LAt
Via =V "‘?‘ (Vi +Vi,,)

Thus:

MV.,+Cv,, +Kv,, =P,

i+l
2
(M +C-%JVM =P, —V;- K=V, -(C+K-At)-V -(c-%JrK ATt]

Vi, = f(v;,v,,V;) and the discrete system of linear equations at time t,,, is

Ny = I:)i+1'

i+1

<l

Distinguishing between the quantities coming from the substructure 1 and

substructure 2, the system M -V, , = P, may be split into:

I\ﬁ - I\ﬁ ~ v 5 = At
:substrl substrl :substrl substr2 "substrl — _1 where M — M +C ‘71
v =
M substr 2—substr1 M substr 2—substr 2 substr2 P2
'm, 0 0 .. O] ‘'m, hm, ]
0 m O 0 m, 2hm,
substri-substrl — O 0 m3 0 substri-substr2 — m3 3hm3 !
0 0 O m, | | m,  nhm_ |

\ _NAT
M substr2—substrl M substri-substr2 ’

m +m, +..+m +m,

_ hm, + 2hm, +...+ nhm_
M =
substr 2—substr 2 hml + 2hm2 +o+ nhmn

h®m, +4h*m, +...+n’h*m_+1,
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In another simplified form, the mass matrix can be expressed as:

h
2h = =
| =41 4 H=:3n!: |\7 — Msubstrl—substrl Msubstrl—substrz
. I\zsubstr 2-substrl M substr 2—substr 2
1 nh
M Ml MH
= =T — —
M = {Ml} m,+ 1Ml I"TMH
= T = =
{MH} {ITMHY  J,+H"MH

Substructure 1, in the frequency domain, using the Fourier transforming
of n+2 equations and the impedances functions (because the stiffness and
damping properties of the substructure 2 are frequency dependent)

The Fourier transform is a mathematical technique for converting time
domain data (v(t)) to frequency domain data (V (@) ), and reversely,

+00

V(@) = [ v(t)e ™ dt

—o0

and is applied to each equilibrium equation for substructure 1.

More over, the equations of motion involve only the two substructure 2-
substructure 1 interaction degrees-of-freedom, v; (tyand @'(t), and each

impedances functions are expressed in terms of the halfspace:

(-m@”* +ci@+k, + i@ +k, )V (i) -ma’he' (i) -ma?V, (i@) -(cia+k, )V * (id) +

+ ml\fg (la) =0
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(-m,@° + ci@+k, + i@+ k, )V (i) - (c,im + k, V' (i) - m,a° 200! (id) - m,a"V, (id)
~(c,i@+k, )V3(i@) + mV, (i@) =0

(-m,@” +c i@ +k, V" (i@) - m,@*nhe' (i@) - m,&*V, (i@) - (c, i@ +k, , )V " (i&) +
+mn\79 (i®)=0

~m @’V (i@) - ma’V A (i@) -...—-m,@V " (i@) - (m@’h + m,@* 2h +...+ m @°nh) ©' (ia)
—(M@* +m@” + ..+ Mm@ +me@” )V, (@) + (M, +m, +...4+m +m, )V, (i@) =V, (i)
—mho?V(iw)-my2he?V 2(ie)-...- mgnho 2V " (iv)-

- 1h62+m2624h2+...+mn62n2hzlo%'(i@)—
—|mh®? + my2he? +...+ mnnhaz)/g' (i®)+(mgh+my2h+...+ mynh N (i®) = Mg (i®)

Using the complex impedance functions (frequency dependent, having the
form G(ia,) =G (a,) +iG'(a,)), the interaction forces acting on substructure 1
are given in the frequency domain by:

{—Vo(ia) G (1@) G, (@) | (v (i@)|
= , L.e.
_Mo(lé)} Gglvé (|5) Gglgl (|5) @I (Ia_))

i Gll GlZ Gln G1,n+1 Gl,n-¢—2 ] Vl(la_))
GZl GZZ G2n GZ,n+1 G2,n+2 V ? (|5)
G, G, .. G, Gy G, |IV'G@)|

Gn+1,1 Gn+1,2 Gn+1,n Gn+1,n+1 Gn+1,n+2 VgI (lﬁ)

_Gn+2,l Grzz - Gian Grona  Ghizne 110" (i@)

m, 0
m, 0
= mn V, (i@) + 0 , where
m +m,+..+m +m, V, (i@)
hm, +2hm, +...+nhm, M, (io)
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—2 . — P
G, =—ma° +cjio+Kk +c,io+KkK,
G, =—(Cio+k,) =G,
G;=..=G,=0
—2
Gy =—Ma
Gl,n+2 = —m@zh
—2 - — P
G,, =—m,0" +C,io +K, +Cjio + K,
G,y =—(Ciim+k;)
Gy =.=Gy, =0
—2
GZ,n+1 =-Mm,»
G, ,.p =—M,@°2h
G,=..=G,,=0
Gn,n—l = _(Cn—lia + kn—l)
—2 -
G,,=—Mma" +clio+Kk,
2
Gn,n+l = mna)
G, p.p =—M,@°Nh
2
Gy =M@
2
Gy =—M@
2
Gn+1,n =-m,w
B 2 -
Grnn =—(M+..+m +m))@ +Gvg,vg (i@)
_ —2 i=
Gprine =—(Mh+m,2h+..+mnh)&® + G,y (i@)
Gn+2,1 = —m@zh
G2, =—M,@°2h
G2, =—M,@°nh

®

wezn = —(Mh+..+m nh)@° +G,, (i0)

Gponie = —(Mh? +m,2°h? + .+ mn’h? +1))@° +G,,,, (i)
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For substructure 2,

. . . . or,
In dynamics, the dimensionless frequency a, is introduced, a, =—2,
c

S

with rq representing a characteristic length and cs the shear-wave velocity from the
motion, ¢, = /—, G shear modulus. Using the static-stiffness coefficient K , is
yo)

formulated the dynamic stiffness coeficient, S(ao):
S(a,) = K[k(a,) +ia,c(ay)]

The spring with the stiffness k(a,) governs the force, which is in phase
with the displacement, and the damping coefficient c(a,)describes the force
which is 90° out of phase. The dynamic-stiffness coefficient S(a,) can be
interpreted as a spring with the frequency-dependent coefficient Kk(a,)and a

dashpot in parallel with the frequency-dependent coefficient 5 Kc(a,) , Fig. 3.
c

S

-

= |
i cgsee e

Fig. 3. - Interpretation of dynamic-stiffness coefficient for harmonic excitation as spring and as
dashpot in parallel with frequency-dependent coefficients

Using cones to model the halfspace, there are the following expressions
for stiffness and damping (Fig. 2) [1]:

Gz, ¢l - Z, C
k (a)=1-—S023": ¢ LS5
orlz( O) T ro C2 a0 orlz(ao) ro c
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(for the horizontal motion, ¢ = ¢, G = 0 for all v, for the vertical motion, ¢

=cp,G=0foru£%andc=2csandG¢0for%£u£%)

4G, z, 1 a
krot (ao) _1_§_€r_0_2 g_g 02 ’
0 ( ro j 2
+a;
ZOCs
Z,C a’
Cor (B) =2 v

(for the torsional motion, ¢ = ¢;, G = 0 for all v, for the rocking motion, ¢

=cp, G =0 for us% andc=2csand G =0 for %SUS%)

Also, for stiffness and damping there are the following formulae:

8 4.6 8Gr? 0.4
k. =—=Gr;c,., =——pCli:k =—2_:c =——pcr
oriz 2—U 0 oriz 2_010 s'0 rot 3(1_0) rot 1—Up s'0
Conclusions

The theoretical analysis of a lumped elastic system with n degree-of-
freedom supported by a rigid layer resting on an elastic halfspace is presented.
The quantities coming from the substructure 1 and the substructure 2 are put into
evidence, being determined the matrices for and at the interface from the both
structures. This aspect is important from mathematical point of view, but
important too from practical point of view for the possibility to combine the
numerical simulation of the analytical part of the system with the effective
laboratory testing of the remaining part of the system.

The theoretical point of view is going to be continued with some
numerical studies related to the substructure 2-substructure 1 interaction, using the
computer modeling of different systems.
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