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BINARY RELATIONS — ADDENDA 2

(SECTIONS, COMPOSABILITIES)

Mihai REBENCIUC!

Prima completare din aceasta parte a lucrarii se refera la sectiunea
generalizatd a unei relatii binare — in legatura cu unele proprietati relativ la relafii
§i operatii de algebrd Booleand i categoriale generalizate, respectiv cu restrictiile
si relatia indusa a  unei relatii binare. Ultima completare este dedicatd
compozabilitatilor — conditii echivalente de s-compozabilitate[1] si notiunea mai
tare de compozabilitate(dualizatd) cu unificarea unor proprietdti cunoscute si de tip
functional; rezultatele principale sunt relativ la o ierarhie a autocompozabilitatii
recurente (dualizatd) — utila in diferite abordari ale automatelor nedeterministe.

The first addendum from this part of the paper refers to the generalized
section of a binary relation - in connection with some properties relative to Boolean
algebra relations and operations  and generalized categorical operations,
respectively with the restrictions and the induced relation of a binary relation. The
last addendum is dedicated to the composabilities — equivalent conditions of w-
composability [1] and the stronger notion of (dualized) composability with the
unification of some known and functional properties; the main results are relative to
a hierarchy of the (dualized) recurrent self-composability - useful in different
approaches of non- deterministic automata.
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1. Introduction

The generalizations relative to categorical operations, restrictions and
inducement in arbitrary sets from the first part of the paper [1] are continued in
the first addendum from this part of the paper with the section of a binary relation
relative to a arbitrary set; the section of the relation Re Rel(4, B) relative to the
arbitrary set X — for short the X-section of Ris R(X)={be B/3Ix e X, (x,b) € R}

€ P(B). We retrieve the special sections such as codomain, right-segment that is
determined by un element - codom(R) = R(4), R{(x)=R({x})e P(B),
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respectively domain, left-segment that is determined by un element - dom(R)
=R'(B), R 'y»)=R'({y})e P(A). In addition we supplement the notion of

field with that of subfield where field(R) = dom(R)\ codom(R), subfield(R) =
dom(R)~ codom(R). Really the taking of the section it is done onto the set of
the parts of the source-set — more exactly it is done onto the parts of the domain
because R(X) = R(XnA) = R(Xndom(R)) and hence for R#J we have
R(X) =D iff XN dom(R)#= & ; particularly we have codom(R) = R(dom(R)) and

R(x) # @ iff x e dom(R) — and analogously for the sections of the inverse R™'.

Consequently for the taking of the generalized section we retrieve the properties
relative to the Boolean algebra relations and operations with sets and relations and
generalized composition — which is supplemented with other generalized
categorical operations(relations inducement, product). In addition the segments as
special sections preserve intersection and allow among other things the
description of the kernel and of the r -morphism (see [1]).

However, the main results are relative to the sections of the restrictions
and of the induced relation of a binary relation — with the getting of some
extensions as restrictions and induced relations.

In the second addendum from this part of the paper the equivalent
conditions of w-composability are given — which was defined in the first part of
the paper [1] and the stronger notion of (dualized) composability is defined - with
the unification of some known and functional properties and an addendum to the
domain(and dually codomain) characterization theorem [2]; in addition it is
relevant to remark the example concerning a characterization of the subtotal
relations — in point of regularity inclusively. However, the main results are
relative to a hierarchy of the (dualized) recurrent self-composability, the reduction
of “recurrent self-bicomposability” to self-bicomposability, self-composabilities
vs. recurrent w-self-composability and the univocality case.

The taking of the section onto the set of the parts of the source-set was
categorical studied in [3], [4]; the above addenda may be categorical validated in
categories with intersections and unions of “objects” [5] — analogously with the
restrictions and the inducement in (sub)objects [1], [6].

We close up with an example concerning generalized sections relative to
subtotal relations and subdiagonal relations (see example 1.1 from [1]).

Example 1.1. Let X, Y be arbitrary sets and let x, y be arbitrary elements.
For @, , € Rel (4, B) — the set of subtotal relations in A4, B relative to the set

Rel(4, B) of binary relations between 4, B we have ker o, , = (0, )" @, , =
— -1
Oy y Oy =0y, coker @y, =y (O )" =0y @y y =0, Oy ,(X) =D for

UnX =0, respectively w, ,(X)=V for UnX = and (a)U,V)’l(Y):
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w, ,(Y)=D for VY =, respectively (@, ,)" ¥)=U for VnY =D -
particularly codom(ew, ,) = dom(coker w,,) = codom(coker @, ,) = V,
@y, (x)=0 for xeU, w, ,{x)=V for xeU, dom(aw, ,) = codom(w, ,) =
dom(ker @, ,) = codom(ker @, ,) = U, (@, ,) () =w, () =D for yeV,
(w,,) " (y) =Ufor yeV, field(w, ,) = UV, subfield(w, ,) = UV and
analogously in homogeneous case Rel(4) = Rel(4, A4). In addition for
ReRel(4, B) we have Rwy , =@y g because
(Raoy , Xx) = R(@y,,(x)) = R(V) = @y g\ (X) for xeU,  respectively

(Ray, , Xx) = @y g (x) =D for xe¢U-and analogously @, ,R= Dy

particularly we have R@,,,,x) = @ otomny R = @uom(ry. codomery - FOT Ay € Rel(4) -
the set of subdiagonal relation in A relative to Rel(4) we have
Ay, (X)=(A,) " (X)=UNX - particularly dom(A,, ) = codom(A,, ) = field(A,,)
= subfield(A,) = U, A, {(x)=(A,) {(x)=D for xe U, respectively A,(x)=
(Ay){xy={x} for xeU.

2. Sections

Observation 2.1.i (Boolean algebra relation and operation) The taking of
the sections u: P(4) — P(B), X = R,(X), R, € Rel(4,B)and p: Rel(4,

B) — P(B), R R(X,) are order morphisms and they only are the superior

semilattice morphisms; consequently the taking of the corresponding generalized
sections preserve the inclusion and the union(as Boolean algebra relation and
operation). In addition, we have C,,,,z,R(X) < R(CX) where X e P(4),

Cevdomry R(X) € CR(X), respectively CR(X,) < (CR)(X,) where X, N4+
(see [7]).

ii (generalized composition) In the case of the taking of the generalized
section and of the generalized composition the behaviour towards composition it
is preserved too — for Re Rel(4, B), SeRel(C, D) and the set X we have (SR)(X)
= S(R(X)) (see [7]).

iii (inclusion preserving vs. equality preserving) The inclusion preserving
by the taking of the sections — and by restrictions and inducement in sets [1] and
by generalized categorical operations and the corresponding equality preserving
are connected (according to elementary axioms of the system ZFC, see [7]).

Theorem 2.1 (inclusion, intersection) Let be the relations R, Se Rel(4, B)
and the following statements:
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ir) SCR,

sec) for each X, S(X) < R(X),

seg)for each x, S(x) < R(x).

We have the equivalences ir<> sec<>seg (inclusion preserving and
reflecting), respectively the equality (RN S){(x) = R{(x) N S{x) (intersection
preserving).

Proof. We have the implications ir=sec=seg (by definition and
according to the observation 2.1.i); consequently, it suffices to prove the
implication seg—>ir — which results from (x,y)eS iff yeS(x) implies
v e R(x) iff (x,y)eR. The equality follows from ye R{(x)NS(x) #Q iff
(x,y)e RN S iff y e (RN S)Kx) = ; in the empty case the equality is obtained
by reductio ad absurdum — according to the inclusion (R N S)x) < R(x) N S(x)
(see observation 2.1.1).

Theorem 2.2 (inducement, product) Let ReRel(4, B), SeRel(C, D) be
relations and let U, X, Y, Z be arbitrary sets; we have (R, S)(X) < R(X)xS(X),
(R,S)'(¥YxZ)=R'(Y)NnS'(Z), respectively (RxS)UxX)=RU)xS(X)
and analogously for the sections of the inverse.

Proof. For inducement (and analogously for product) we have (b,d) e
(R, S)(X) # O iff there exists x € X such that (x, (b, d)) € (R, S) iff there exists
xe X, (x,b)e R and (x,d) € S implies there exists x € X, (x, b) € R and there
exists xe X, (x,d)eS iff (b,d)e R(X)xS(X)=#J, respectively xe€
(R, S) ' (Yx Z) # @ iff there exists (y,z)eYxZ, (x,(y,z))e(R,S) iff there
are yeY,zeZ, (x,y)eR and (x, z) € S iff there exists yeY, (x, y) € R and
there exists ze Z, (x,z)eS iff xe R (Y)nS ' (2)#D.

Corollary 2.1 ((co)dom) We have codom(R, S)ccodom(R)xcodom(S),
dom(R, S) = dom(R)dom(S), respectively (co)dom(RxS) = (co)dom(R) x

(co)dom(S).
Observation 2.2 (descriptions with segments) Let be Re Rel (4, B) and the

associated power relation 7R eRel(P(4), P(B)) which is defined by
(X, Y)e’Riff for each ae X, beY, (a,b)eR and
{(D,Y), (X, D), (D, D)}c’R where X eP’(4), Y e P’(B) (see[7]).

i (kernel) We have ker R = {(a, a’) edom(R)"/R(a) " R{(a") # B} and
dually - coker R = {(b, ") ecodom(R)’/R™ (Y "R (b"Y =D} (see [1]); in the
special case R right-univocal relation (R partial function) the condition becomes
the known equality R(a) = R(a’) — and analogously for cokernel with R left-

univocal and R™' () =R (b").
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ii (composite) In addition let be SeRel(C, D); we have SR ={(a,
dyeAxD/ RiaynS™(d) =D }.

iii (r-morphism) In the inhomogeneous case relative to the
inhomogeneous relational structures (4, 4,R, ,), (B,B',R; )
(F,F'yeRel(4, B)xRel(4', B") is (inhomogeneous) r -morphism iff for each
acAa eA, (a,a"yeR, , implies (F{(a), F'(a"))e’R; ,; in the
homogencous case the ordered pair (F, F') becomes the single-clement set {F}

which is noted F (see [1]) — and if F is partial function, then the corresponding
power relation coincides with the associated relation.

Theorem 2.3. Relative to the relation Re Rel(4, B) and the arbitrary sets
U, V, X, Y we consider the restriction R |, , the corestriction ,| R and the induced

relation R, , . 1 (sections of the restrictions and of the induced relation) We have

Rly (X)=RUNX), IRX)=RX)nV, (R|,)'¥)=R"(¥)NU,

GIR'M=R'VNY), R, (X)=RUNX)NV, (Ry,») "' (Y) =
RV nY)NU.

ii (equalities, inclusions) We have the equalities and the inclusions R |, =
Ry rarySran| R PIR=Rpy, SR Ry y =Ry py "Ry, S

RV, RU)
Proof. i. We have successively (according to example 1.1 and [1])
R, (X)=(RA,)X) = R(A, (X)) =R(UNX), v| R(X) = (A, R)(X) =

Ay(RIX)=RX)NV, R M= |RTX)=R"¥)NU, (|R)'(¥)=
R, M=R(VNY),Ry ,(X)=(,| R)|, (X)=,| RUNX)=RUNX)NV,
(RU,V)_](Y)Z(R_I)V,U(Y)ZR_I(VGY)QU-

ii. We have successively (according to i, observation 2.1 and [1])
R, (X):R(UﬁX)gR(U)ﬂR(X)=R(U)|R(X), R, c R(U)|R: RU,R(U) =

RlyOpon R=Rlys  y[R=R" )" ()| R =R R -

RT'(1)? RV
R Ny|R=,| R, RU,V=R|UmV|R=RU,R(U)mR gR(U)|RmR

R() RNV Ry

R, RU)
Corollary 2.2.1 ((co)dom) We have dom(R|,) = dom(R)NnU,
codom(R|,) = R(U), dom(,|R) = R'(V), codom(,|R) = codom(R)NV,
dom(R, , )= R™'(V) NnU,codom(R, ,)=R(U) N V.
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ii (extensions) We have R =R |,z =cotomr)| B = Riomr). codommy» S S R
T S S Rypis) cotoms) s Paom(), cotompy ML @y, € Rebly(d, B)YRc oy, }
because R |dom(R): RAdom(R) =R 4 S = Sdom(S), codom(S) - Rdom(S), codom(S) * R - a)A,B

lmphes R: Rdom(R), codom(R) < (a)A, B )dom(R), codom(R) = a)dom(R), codom(R) ° R < a)U, vV

implies dom(R)c dom(w, , )=U, codom(R) c codom(w, , )=V iff
@B gom(R). codom(ry = Py, (s€€ Observation 2.1 and [1]).

iii (null or homogeneous relation) We have R = iff dom(R) = & iff
codom(R) = &, respectively R € Rel(4) iff field(R)e P(4) (see point ii).

3. Composabilities

Definition 3.1 (composabilities) The relations ReRel(4, B), SeRel(C,
D) are composable (R is left-composable with S or S is right-composable with R)
if each pair of R is composable with at least one pair of S, i.e. codom(R) < dom(S);
dually, R, S are cocomposable if dom(S) < codom(R) and they are bicomposable
if they are both composable and cocomposable, i.e. codom(R) = dom(S).
Particularly, R is self-composable if codom(R)cdom(R); dually, R is self-
cocomposable if dom(R) < codom(R) and it is self-bicomposable if it is both self-
composable and self-cocomposable, i.e. codom(R) = dom(R).

Observation 3.1.1 (necessary and sufficient conditions) R, § are w-
composable (SR# & - see [1] and corollary 2.2.iii) iff dom(SR) =< iff
codom(SR) # & iff codom(R) N dom(S) # . In the categorical case B=C R, S
are (co)composable if S(R) is left(right)-total relation. Particularly, R is w-self-
composable iff dom(R*)= @ iff codom(R*)# & iff subfield(R) #J; in the
homogeneous case R € Rel(4) is self-composable if R is left-total relation — and
dually.

il (hierarchy) Non-banally we have (see point i) R, S (co)composable
imply R, S w-composable — and analogously for self-composability.

iii (inclusions, conditioned equalities) We have (see [8], [7]) dom(SR) <
dom(R), codom(SR) c codom(S), respectively R, S composable implies dom(SR)
= dom(R), R, S cocomposable implies codom(SR) = codom(S), R, S bicomposable
implies dom(SR) = dom(R), codom(SR) = codom(S) — and analogously for self-
composability.

iv ((co)kernel) The relations R, R, respectively R™', R are
bicomposable; consequently we have(see point iii and [1])dom(R) = dom(ker R) =
codom(ker R), respectively codom(R) = dom(coker R) = codom(coker R), hence
ker R, respectively coker R are self-bicomposable.
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v (addendum to domain characterization theorem) The domain
characterization theorem places the equivalence X< dom(R) iff X < R™'(R(X)),
where ReRel(4, B), X € P(A); for codomain the dual is valid too (see [2]). An
addendum of this theorem (in the version with generalized sections, see [7])
principally consists in the inclusion ker R(X) < dom(R) and the equality A, =

max{A, € Rel(4)/A, cker R} — and dually for codomain (ker R is dom(R)-
reflexive, see point iv and [1]); this addendum permits a new proof of the theorem
- Xcdom(R) imply X =A, ., X) < ker R(X), respectively X< ker R(X)
cdom(R) (see example 1.1).

Theorem 3.1 (complements) Let ReRel(4, B), SeRel(C, D) be
relations. 1 (restrictiveness vs. composability) R is right-composable with the
corestriction . |8 and left-cocomposable with the restriction S|,z
consequently R is right-composable and left-cocomposable with the induced
relation S, ,..z). dom(r) -

ii (partial reflectiveness) In addition let be R e Rel(4, B), S eRel(C, D);
R, S composable, SR’ SR implies dom(R) c dom(R), respectively R, S
cocomposable, S'R = SR implies codom(S) = codom(S).

iii (the univocality case) In the special case R right-univocal relation (R
partial function) we have R, S composable iff dom(SR) = dom(R); dually, in the
case S left-univocal relation we have R, S cocomposable iff codom(SR) =
codom(S). In the case R right-univocal relation and S left-univocal relation we
have R, S bicomposable iff dom(SR) = dom(R), codom(SR) = codom(S).

Proof. i. We have (see theorem 2.1, corollary 2.2 and [1])
codom(S ., o). dom(ry ) S €OdOM( 4, 1y | S) = codom(S) Ndom(R) < dom(R),
dom(.S ., o), domry ) S AOM(S |1y ) = dOM(S) N codom(R) < codom(R).

ii. We have (see theorem 2.1 and observation 3.l.iii) dom(R) =
dom(SR") cdom(SR) cdom(R), respectively codom(S) = codom(S'R)c
codom( SR) < codom(S).

iii. R#J ordually §#O implies SR # O or equivalently codom(R) N
dom(S) #O, i.e. R, S w-composable (necessary composability condition, see
observation 3.1, points i, ii); we have codom(R) = R(dom(R)) = R(dom(SR)) =
R((SR)™'(codom(SR)) = ((coker R )S™")( codom(SR)) c—((coker R )S™)
(codom(S)) = coker R(S~' (codom(S)) = coker R(dom(S)) = A cogomr) (dom(S)) =

codom(R) M dom(S), codom(R) = dom(S) and dually dom(S) = S~' (codom(S)) =
S~ (codom(SR)) = S'((SR) (dom(SR)) = ((ker S)R)(dom(SR))c ((ker S)R)
(dom(R)) = ker S(R(dom(R)) = ker S(codom(R)) =A s, (codom(R)) = dom(S) N
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codom(R), dom(S) < codom(R) (see [9]). Reciprocal implications are

unconditionally (by observation 3.1.iii). The case R right-univocal relation and §
left-univocal relation follows from the above two cases.
Example 3.1. Let be the sets 4, B with |4|, |B| >2 (in Card). i (equalities,

inclusions) For ReRel(4, B) we have the equalities dom(R) = dom(RR'R) (=
D), codom(R) = codom(R R™' R) (= C) and the inclusions Rc RR™ RC @), ..

The first equality is a result of the bicomposability of R, coker R, i.e.
dom(R) = dom((coker R )R) = dom(R R™' R) — and analogously the second equality
relative to the bicomposability of ker R, R (see observation 3.1, points iv, iii); the
inclusions follow from the D-reflexivity of ker R [1], i.e. A, < ker R implies R =
RA, c Rker R = RR™'R, respectively from the anterior equalities and corollary
2.2.l.

ii (characterization of the subtotal relations set) We have (see example 1.1
and [1]) Reli(4, B) = { ReRel(4, B) R =@,z cosomr) }> 1N addition for
Preu(4, B) = iReg(4, B) = { ReRel(4, B) R= RR'R}, Ky, B) =
{ReRel(4, B)ker R = @,z }» COKs(4, B) = { ReRel(4, B)/coker R =
@,oqomry + — the sets of binary relations between A, B respectively preunivocal (or
i-regulated) relations, relations with subtotal kernel, relations with subtotal
cokernel we have Rel (4, B) = Preu(4, B) N K4, B) = Preu(4, B) n
Cok(4, B) which hold true by double inclusion (according to i and example 1.1 —
see also [1]).

iii (strict inclusions) For Reg(4, B) = {ReRel(4, B)/3R' eRel(B, A), R=
RR'R}c Rel(4, B) — the regulated relations set between A, B in the
unregulated category Rel in which the dysfunctional relations (see [10]) were
named also preunivocal relations (or i-regulated relations for unification of
terminology [1], [9]) we have the strict inclusions Rely(4, B)cKu(4, B) N
Cokg(4, B) — Rel(4, B), iReg(4d, B) — Reg(4, B) because S =
{S=S\{(a,b)}/Se Rel 4, B), |dom(S), |codom(S)>1}, R =
{R=R\{(a,b)}/Re( Ku4, B) n Coky(4, B)\ Rely 4, B), 3b', Vxe
dom(R), b' e Rx)\{b} =D, R'(P) = dom(R), 3Fa', Vye codom(R),
a'e R'(y)\{a} # D, R(a’y = codom(R)} c (K(4, B) N Cokg(4, B))\ Rel (4,
B),S — Reg(4, B)\ 1IReg(4, B), Rc Rel(4, B)\ iReg(4, B).

For T= Se S, D = dom(S), D= D\{a}# &, C = codom(S), C=
C\{b} = we have (see example 1.1, observation 2.1, theorem 2.1 and [1])
dom(7) = D, codom(7) = C, ker T{(x)=(T"'TXx)=T " (T{(x)) 2T (b") =
D=wy(x) = @, (x) with b'e C, coker T(y)=(TT"'X3) =TT "(»)) >
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T(a") = C =0 (P) = Oppipniry(¥) With ' €D, TT'T=w, . =S>Tand T' =
I'T=0., TVo, ,T=0

w Vo = We 1 b}, D 77(C), {a}

C, {a} (b}, D> Yo

ey n - Opitay Y D

ITT =T(w) 1y VO5) =Ty, VTO, = @) 1y Y Op 1) =) - IO, =T,
respectively. Analogously for T= R=R\Pe R, D =dom(R), C = codom(R) we
have dom(7) = D, ker T{x) =T " (T{(x)) 2T " (bY=(R'\P'Nb')=R(b") =
D = @,(x) = @) (x), codom(T) = C, coker T(y)=T(T"'(y)2 T(a')=
R(a"y= C=w.y) = a)codam(T)<y> ,IT'T = O, cDORDT.

Definition 3.2 (recurrent self-composabilities) For m,ne IN" (m=n =1
implicitly) the relation ReRel(4, B) is m, n-self-composable if R", R" are
composable; dually R is m, n-self-cocomposable if R, R" are cocomposable.

Theorem 3.2 (hierarchies) Let Re Rel(4, B) be a relation. i (recurrent
self-composability) For each m, n € IN~ we have the implications:

R m, n-self-composable implies R m + 1, n-self-composable (1);
R m, n+1-self-composable implies R m, n-self-composable (2).
For m <n the implication (2) becomes equivalence; for m >n (2) becomes

conditioned equivalence by dom(R) = ... = dom(R").
i (recurrent self-cocomposability) For each m,neIN  we have the
implications:

R m, n-self-cocomposable implies R m, n+1-self-cocomposable (3);
R m+1, n-self-cocomposable implies R m, n-self-cocomposable (4).
For n<m the implication (4) becomes equivalence; for n>m (4) becomes

conditioned equivalence by codom(R) = ... = codom(R").

Proof. i. The implications (1) and (2) are true because codom(R""")c
codom(R™)cdom(R"), respectively codom(R”)cdom(R"")cdom(R") (see
observation 3.1.iii); the reciprocal implication follows from codom(R")c
dom(R")cdom(R") = dom(R"")cdom(R"") — with the mention that for
m > n we have the equality dom( R") = dom(R") (instead of inclusion).

ii. The dual implications (3) and (4) are true because dom(R"")c
dom(R") < codom(R"), respectively dom( R")< codom(R"" )< codom(R" );the
reciprocal implication follows from dom(R")ccodom(R™)ccodom(R") =
codom(R"™")c codom( R"™") - with the mention that for n>m we have the
equality codom( R") = codom( R") (instead of inclusion).
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Corollary 3.1 (self-bicomposability vs. recurrent self-bicomposability) For
each m,ne IN" and “R is m, n-self-bicomposable if R is both m, n-self-compo -
sable and m, n-self-cocomposable, i.e. R™, R" are bicomposable.” we have the

equivalence:
R is m, n-self-bicomposable iff R is self-bicomposable.

Proof. The equivalence follows from the equivalences R m, n-self-bi -
composable iff R m + 1, n-self-bicomposable iff R m, n+ 1-self-bicomposable.

Observation 3.2.1 (self-composabilities vs. recurrent w-self-composability)
The implications (1), (2) are composable, i.e. “R m,n +1-self-composable implies
R m, n-self-composable implies R m +1, n-self-composable” where for m <n

the first implication becomes equivalence; consequently for each m,n e IN~ we
have the implications “R self-composable implies R m, n-self-composable
implies R (m+n)-w-self-composable” where for each pelIN \{l),

ie{l,..., p—1} Risp-w-self-composable iff codom(R') Nndom(R”™) =@ [1].
It follows “for each m,neIN R self-composable implies codom(R")N

dom(R")# &”; the above implication is stronger than the implication “R self-
composable implies subfield(R) #@> because for each m,nelIN’

codom(R")ndom(R")= < implies subfield(R) # . In addition the sequence
dom(R) = dom( R?) is extended indefinitely, i.e. we have dom(R)=dom(R*) =...=

Dually it follows “for each m, n e IN" R self-cocomposable implies codom( R"™)

Ndom(R")# & — which is stronger than the implication “R self-cocomposable
implies subfield(R) # & and the indefinite extension of the sequence codom(R)=
codom( R?), i.e. codom(R) = codom(R*) =...= codom(R"™").

ii (the univocality case) In the special case R right-univocal relation (R
partial function) the sequence dom(R) = dom(R”) is extended indefinitely with R
self-composable — and dually; in the case R biunivocal relation it follows the

conjunction of the respective sequences with R self-bicomposable (see theorem
3.1.ii0).

4. Conclusions
The first addendum of this part of the paper refers to the generalized

section — some properties such as intersection preserving for segments and the
sections for relations inducement and product (see the theorems 2.1, 2.2); these
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complete the properties of the generalized section relative to Boolean algebra
relations and operations with sets and relations and generalized composition
(which were presented in Introduction — see also [7]); however, the main results
are relative to the sections of the restrictions and of the induced relation of a
binary relation — with the getting of some extensions as restrictions and induced
relations (see theorem 2.3 and corollary 2.2, points i, ii).

The last addendum is dedicated to the composabilities — equivalent
conditions of w-composability [1] and the stronger notion of (dualized)
composability with the unification of some known and functional properties and
an addendum to the domain(and dually codomain) characterization theorem (see
[2], respectively observation 3.1 and theorem 3.1); in addition it is relevant to
remark a characterization of the subtotal relations — in point of regularity
inclusively (see example 3.1). However, the main results are relative to a
hierarchy of the (dualized) recurrent self-composability, the reduction of
“recurrent self-bicomposability” to self-bicomposability, self-composabilities vs.
recurrent w-self-composability and the univocality case (see theorem 3.2,
corollary 3.1 and observation 3.2).

The above addenda may be categorical validated in categories with
intersections and unions of “objects” [5] — analogously with the restrictions and
the inducement in (sub)objects [1], [6]; the last addendum may be useful in
different approaches of non- deterministic automata.
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