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BINARY RELATIONS – ADDENDA 2 

(SECTIONS, COMPOSABILITIES) 

Mihai REBENCIUC1 

Prima completare din această parte a lucrării se referă la secţiunea 
generalizată a unei relaţii binare – în legătură cu unele proprietăţi relativ la relaţii 
şi operaţii de algebră Booleană şi categoriale generalizate, respectiv cu restricţiile 
şi relaţia indusă a  unei relaţii binare. Ultima completare este dedicată 
compozabilităţilor – condiţii echivalente de s-compozabilitate[1] şi noţiunea mai 
tare de compozabilitate(dualizată) cu unificarea unor proprietăţi cunoscute şi de tip 
funcţional; rezultatele principale sunt relativ la o ierarhie a autocompozabilităţii 
recurente (dualizată) – utilă în diferite abordări ale automatelor nedeterministe. 

 
The first addendum from this part of the paper refers to the generalized 

section of a binary relation - in connection with some properties relative to Boolean  
algebra relations and operations  and generalized categorical operations, 
respectively with  the restrictions and the induced relation of a binary relation. The 
last addendum is dedicated to the composabilities – equivalent conditions of w-
composability [1] and the stronger notion of (dualized) composability with the 
unification of some known and functional properties; the main results are relative to 
a  hierarchy of the (dualized) recurrent self-composability - useful in different 
approaches of non- deterministic automata.    

 

Keywords: category of relations, relational systems, category of sets. 
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1. Introduction 

The generalizations relative to categorical operations, restrictions and 
inducement in arbitrary sets from the first part of the paper [1] are continued in 
the first addendum from this part of the paper with the section of a binary relation 
relative to a arbitrary set; the section of the relation R∈Rel(A, B) relative to the 
arbitrary set X – for short the X-section of R is }),(,/{)( RbxXxBbXR ∈∈∃∈=  
∈P(B). We retrieve the special sections such as codomain, right-segment that is 
determined by un element - codom(R) = R(A), ∈=〉〈 })({xRxR  P(B), 
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respectively domain, left-segment that is determined by un element - dom(R) 
= )(1 BR − ,    ∈=〉〈 −− })({11 yRyR  P(A). In addition we supplement the notion of 
field with that of subfield where field(R) = dom(R)∪ codom(R), subfield(R) = 
dom(R)∩    codom(R). Really the taking of the section it is done onto the set of 
the parts of the source-set – more exactly it is done onto the parts of the domain 
because R(X) = R(X∩A) = R(X∩ dom(R)) and hence for ∅≠R  we have 

∅≠)(XR  iff X∩  dom(R) ∅≠ ;  particularly we have codom(R) = R(dom(R)) and 
∅≠〉〈xR  iff ∈x  dom(R) – and analogously for the sections of the inverse 1−R . 

Consequently for the taking of the generalized section we retrieve the properties 
relative to the Boolean algebra relations and operations with sets and relations and 
generalized composition – which is supplemented with other generalized 
categorical operations(relations inducement, product). In addition the segments as 
special sections preserve intersection and allow among other things the 
description of the kernel and of the r"-morphism (see [1]).  

However, the main results are relative to the sections of the restrictions 
and of the induced relation of a binary relation – with the getting of some 
extensions as restrictions and induced relations.  

In the second addendum from this part of the paper the equivalent 
conditions of w-composability are given – which was defined in the first part of 
the paper [1] and the stronger notion of (dualized) composability is defined -  with 
the unification of some known and functional properties and an addendum to the 
domain(and dually codomain) characterization theorem [2];  in addition it is 
relevant to remark the example concerning a characterization of the subtotal 
relations – in point of regularity inclusively. However, the main results are 
relative to a hierarchy of the (dualized) recurrent self-composability, the reduction 
of “recurrent self-bicomposability” to self-bicomposability, self-composabilities 
vs. recurrent w-self-composability and the univocality case.  

The taking of the section onto the set of the parts of the source-set was 
categorical studied in [3], [4];  the above addenda may be categorical validated in 
categories with intersections and unions of “objects” [5] – analogously with the 
restrictions and the inducement in (sub)objects [1], [6].  

We close up with an example concerning generalized sections relative to 
subtotal relations and subdiagonal relations (see example 1.1 from [1]).  

Example 1.1. Let X, Y be arbitrary sets and let x, y be arbitrary elements. 
For ∈VU ,ω Relst(A, B) – the set of subtotal relations in A, B relative to the set 

Rel(A, B) of binary relations between  A, B we have 1
,, )(ker −= VUVU ωω =VU ,ω  

UV ,ω VU ,ω = Uω , VUVVUVUVUVUco ωωωωωω === −
,,

1
,,, )(ker , ∅=)(, XVUω  for 

∅=∩ XU , respectively VXVU =)(,ω  for ∅≠∩ XU  and =− )()( 1
, YVUω  
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∅=)(, YUVω  for ∅=∩YV , respectively UYVU =− )()( 1
,ω  for ∅≠∩YV  - 

particularly codom( VU ,ω ) = dom(coker VU ,ω ) = codom(coker VU ,ω ) = V, 

VU ,ω ∅=〉〈x  for Ux∉ , VU ,ω Vx =〉〈  for Ux∈ , dom( VU ,ω ) = codom( UV ,ω ) = 

dom(ker VU ,ω ) = codom(ker VU ,ω ) = U, ( VU ,ω ) 〉〈− y1 ∅=〉〈= yUV ,ω  for Vy∉ ,  

( VU ,ω ) 〉〈− y1  = U for Vy∈ , field( VU ,ω ) = VU ∪ , subfield( VU ,ω ) = VU ∩  and 
analogously in homogeneous case Rel(A) = Rel(A, A). In addition for 
R∈Rel(A, B) we have )(,, VRUVUR ωω =  because 

==〉〈=〉〈 )()()( ,, VRxRxR VUVU ωω 〉〈xVRU )(,ω  for Ux∈ , respectively 
〉〈xR VU )( ,ω  = 〉〈xVRU )(,ω ∅=  for Ux∉ -and analogously 

VURVU R ),(, 1−= ωω ; 

particularly we have )(),()()( RcodomRdomRcodomRdom RR ωωω == . For ∈ΔU  Relsd(A) - 
the set of subdiagonal relation in A relative to Rel(A) we have 

XUXX UU ∩=Δ=Δ − )()()( 1  - particularly dom( UΔ ) = codom( UΔ ) = field( UΔ ) 
= subfield( UΔ ) = U, ∅=〉〈Δ=〉〈Δ − xx UU

1)(  for Ux∉ , respectively =〉〈Δ xU  
}{)( 1 xxU =〉〈Δ −  for Ux∈ .  

 
2. Sections  
 
Observation 2.1.i (Boolean algebra relation and operation) The taking of 

the sections :μ  P(A) → P(B), )(0 XRX a , ∈0R  Rel(A, B) and :ρ  Rel(A, 
B) → P(B), )( 0XRR a  are order morphisms and they only are the superior 
semilattice morphisms; consequently the taking of the corresponding generalized 
sections preserve the inclusion and the union(as Boolean algebra relation and 
operation). In addition, we have )()()( 0

CXRXRC Rcodom ⊆  where ∈X  P(A), 
)()()( 0

XCRXRC Rcodom ⊆ , respectively ))(()( 00 XCRXCR ⊆  where ∅≠∩ AX 0  
(see [7]).  

ii (generalized composition) In the case of the taking of the generalized 
section and of the generalized composition the behaviour towards composition it 
is preserved too – for R∈Rel(A, B), S∈Rel(C, D) and the set X we have (SR)(X) 
= S(R(X)) (see [7]).  

iii (inclusion preserving vs. equality preserving) The inclusion preserving 
by the taking of the sections – and by restrictions and inducement in sets [1] and 
by generalized categorical operations and the corresponding equality preserving 
are connected (according to elementary axioms of the system ZFC, see [7]).  

Theorem 2.1 (inclusion, intersection) Let be the relations R, S∈Rel(A, B) 
and the following statements:  
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ir) RS ⊆ ,  
sec) for each X, )()( XRXS ⊆ ,  
seg)for each x, 〉〈⊆〉〈 xRxS .  
We have the equivalences ir⇔ sec⇔ seg (inclusion preserving and 

reflecting), respectively the equality 〉〈∩〉〈=〉〈∩ xSxRxSR )( (intersection 
preserving).  

Proof. We have the implications ir⇒ sec⇒ seg (by definition and 
according to the observation 2.1.i); consequently,  it suffices to prove the 
implication seg⇒ ir – which results from Syx ∈),(  iff 〉〈∈ xSy  implies 

〉〈∈ xRy  iff Ryx ∈),( . The equality follows from 〉〈∩〉〈∈ xSxRy ∅≠  iff 
SRyx ∩∈),(  iff ∅≠〉〈∩∈ xSRy )( ; in the empty case the equality is obtained 

by reductio ad absurdum – according to the inclusion 〉〈∩〉〈⊆〉〈∩ xSxRxSR )(  
(see observation 2.1.i).  

Theorem 2.2 (inducement, product) Let R∈Rel(A, B), S∈Rel(C, D) be 
relations and let U, X, Y, Z be arbitrary sets; we have )()())(,( XSXRXSR ×⊆ , 

)()()(),( 111 ZSYRZYSR −−− ∩=× , respectively )()())(( XSURXUSR ×=××  
and analogously for the sections of the inverse.  

Proof. For inducement (and analogously for product) we have ∈),( db  
∅≠))(,( XSR  iff there exists Xx∈  such that ),()),(,( SRdbx ∈  iff there exists 

Xx∈ , Rbx ∈),(  and Sdx ∈),(  implies there exists Xx∈ , Rbx ∈),(  and there 
exists Xx∈ , Sdx ∈),(  iff ∈),( db ∅≠× )()( XSXR , respectively ∈x  

∅≠×− )(),( 1 ZYSR  iff there exists ZYzy ×∈),( , ),()),(,( SRzyx ∈  iff there 
are Yy∈ , Zz∈ , Ryx ∈),(  and Szx ∈),(  iff there exists Yy∈ , Ryx ∈),(  and 
there exists Zz∈ , Szx ∈),(  iff ∅≠∩∈ −− )()( 11 ZSYRx .  

Corollary 2.1 ((co)dom) We have codom(R, S)⊆ codom(R)×codom(S), 
dom(R, S) = dom(R)∩ dom(S), respectively (co)dom(R×S) = (co)dom(R) ×  
(co)dom(S).  

Observation 2.2 (descriptions with segments) Let be R∈Rel(A, B) and the 
associated power relation ∈Rp Rel(P(A), P(B)) which is defined by 

RYX p∈),( iff for each Xa∈ , Yb∈ , Rba ∈),(  and 
RXY p⊂∅∅∅∅ )},(),,(),,{(  where     ∈X P*(A), ∈Y  P*(B) (see [7]).  

i (kernel) We have ker R = {( ∈′), aa dom(R)2/ ∅≠〉′〈∩〉〈 aRaR } and 
dually - coker R = {( ∈′), bb codom(R)2/ ∅≠〉′〈∩〉〈 −− bRbR 11 } (see [1]); in the 
special case R right-univocal relation (R partial function) the condition becomes 
the known equality R(a) = R( a′ ) – and analogously for cokernel with R left-
univocal and )()( 11 bRbR ′= −− .  



Binary relations – Addenda 2 (sections composabilies) 25

ii (composite) In addition let be S∈Rel(C, D); we have SR ={(a, 
d)∈A×D/ ∅≠〉〈∩〉〈 − dSaR 1 }.  

iii (r"-morphism) In the inhomogeneous case relative to the 
inhomogeneous relational structures ),,( , AARAA ′′ , ),,( , BBRBB ′′  

∈′),( FF Rel(A, B)×Rel(A', B') is (inhomogeneous) r"-morphism iff for each 
,, AaAa ′∈′∈  AARaa ′∈′ ,),(  implies BB

p RaFaF ′∈〉′〈′〉〈 ,),( ; in the 
homogeneous case the ordered pair ),( FF ′  becomes the single-element set {F} 
which is noted F (see [1]) – and if F is partial function, then the corresponding 
power relation coincides with the associated relation.  

Theorem 2.3. Relative to the relation R∈Rel(A, B) and the arbitrary sets 
U, V, X, Y we consider the restriction UR | , the corestriction RV |  and the induced 
relation VUR , . i (sections of the restrictions and of the induced relation) We have 

)()(| XURXR U ∩= , VXRXRV ∩= )()(| , UYRYR U ∩= −− )()()|( 11 , 
)()()|( 11 YVRYRV ∩= −− , VXURXR VU ∩∩= )()(, ,  =− )()( 1

, YR VU  

UYVR ∩∩− )(1 .  
ii (equalities, inclusions) We have the equalities and the inclusions UR | = 

RR URURU |)()(, ⊆ , )(),( 11 ||
VRVVRV RRR −− ⊆= , ⊆∩= − VVRURUVU RRR ),()(,, 1  

)(),(1 URVRR − .  

Proof. i. We have successively (according to example 1.1 and [1]) 
)())(())(()(| XURXRXRXR UUU ∩=Δ=Δ= , =Δ= ))(()(| XRXR VV  

VXRXRV ∩=Δ )())(( , UYRYRYR UU ∩== −−− )()(|)()|( 111 , =− )()|( 1 YRV  
)()(| 11 YVRYR V ∩= −− , VXURXURXRXR VUVVU ∩∩=∩== )()(|)(|)|()(, , 

UYVRYRYR UVVU ∩∩== −−− )()()()()( 1
,

11
, .  

ii. We have successively (according to i, observation 2.1 and [1]) 
)(|)()()()(| )( XRXRURXURXR URU =∩⊆∩= , ⊆UR | RUR |)( , =)(, URUR  

UURU RRR ||| )( =∩ , 
)(

11
)(

11
11 |)|()|(|

VRVRVV RRRR −− =⊆= −−−− , =− VVR
R ),(1  

RRR VVVR
||| )(1 =∩− , =∩= RRR VUVU ||, ⊆∩ − VVRURU RR ),()(, 1 RUR |)( ∩ )(1 VR

R − = 

)(),(1 URVRR − .  

Corollary 2.2.i ((co)dom) We have dom( UR | ) = dom(R)∩U, 
codom( UR | ) = R(U), dom( RV | ) = )(1 VR − , codom( RV | ) = codom(R)∩V, 
dom( VUR , ) = )(1 VR − ∩U, codom( VUR , ) = R(U) ∩V.  
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ii (extensions) We have === RRR RcodomRdom || )()( )(),( RcodomRdomR , RS ⊆  
iff )(),( ScodomSdomRS ⊆ , )(),( RcodomRdomω =min{ ∈VU ,ω  Relst(A, B)/ VUR ,ω⊆ } 
because RRR RdomRdom =Δ= )()(| , ⊆= )(),( ScodomSdomSS )(),( ScodomSdomR , BAR ,ω⊆  
implies R= )(),( RcodomRdomR =⊆ )(),(, )( RcodomRdomBAω )(),( RcodomRdomω , VUR ,ω⊆  
implies dom(R)⊆ dom( VU ,ω )=U, codom(R)⊆ codom( VU ,ω )=V iff 

)(),( RcodomRdomω VU ,ω⊆  (see observation 2.1 and [1]).  
iii (null or homogeneous relation) We have ∅=R  iff dom(R) = ∅  iff 

codom(R) = ∅ , respectively ∈R  Rel(A) iff field(R)∈ P(A) (see point ii).  
 
3. Composabilities 
 
Definition 3.1 (composabilities) The relations R∈Rel(A, B), S∈Rel(C, 

D) are composable (R is left-composable with S or S is right-composable with R) 
if each pair of R is composable with at least one pair of S, i.e. codom(R)⊆ dom(S); 
dually, R, S are cocomposable if dom(S) ⊆ codom(R) and they are bicomposable 
if they are both composable and cocomposable, i.e. codom(R) = dom(S). 
Particularly, R is self-composable if codom(R)⊆dom(R); dually, R is self-
cocomposable if dom(R) ⊆ codom(R) and it is self-bicomposable if it is both self-
composable and self-cocomposable, i.e. codom(R) = dom(R).  

Observation 3.1.i (necessary and sufficient conditions) R, S are w-
composable (SR ∅≠  - see [1] and corollary 2.2.iii) iff dom(SR) ∅≠  iff 
codom(SR) ∅≠  iff codom(R) ∩ dom(S) ∅≠ . In the categorical case B = C R, S 
are (co)composable if S(R) is left(right)-total relation. Particularly, R is w-self-
composable iff dom( 2R ) ∅≠  iff codom( 2R ) ∅≠  iff subfield(R) ∅≠ ; in the 
homogeneous case ∈R  Rel(A) is self-composable if R is left-total relation – and 
dually.  

ii (hierarchy) Non-banally we have (see point i) R, S (co)composable 
imply R, S w-composable – and analogously for self-composability.  

iii (inclusions, conditioned equalities) We have (see [8], [7]) dom(SR)  ⊆  
dom(R), codom(SR)⊆ codom(S), respectively R, S composable implies dom(SR)  
= dom(R), R, S cocomposable implies codom(SR) = codom(S), R, S bicomposable 
implies dom(SR)  = dom(R), codom(SR) = codom(S) – and analogously for self-
composability.  

iv ((co)kernel) The relations R, 1−R , respectively 1−R , R are 
bicomposable; consequently we have(see point iii and [1])dom(R) = dom(ker R) = 
codom(ker R), respectively codom(R) = dom(coker R) = codom(coker R), hence   
ker R, respectively coker R are self-bicomposable.  
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v (addendum to domain characterization theorem) The domain 
characterization theorem places the equivalence X⊆dom(R) iff ))((1 XRRX −⊆ , 
where R∈Rel(A, B), ∈X  P(A); for codomain the dual is valid too (see [2]). An 
addendum of this theorem (in the version with generalized sections, see [7]) 
principally consists in the inclusion ker R(X) ⊆  dom(R) and the equality )(RdomΔ = 
max{ ∈Δ X  Relsd(A)/ ⊆Δ X ker R} – and dually for codomain (ker R is dom(R)-
reflexive, see point iv and [1]); this addendum permits a new proof of the theorem 
- X⊆dom(R) imply X = )(RdomΔ (X) ⊆  ker R(X), respectively X⊆  ker R(X) 
⊆dom(R) (see example 1.1).  

Theorem 3.1 (complements) Let R∈Rel(A, B), S∈Rel(C, D) be 
relations. i (restrictiveness vs. composability) R is right-composable with the 
corestriction SRdom |)(  and left-cocomposable with the restriction )(| RcodomS ; 
consequently R is right-composable and left-cocomposable with the induced 
relation )(),( RdomRcodomS .  

ii (partial reflectiveness) In addition let be R'∈Rel(A, B), S'∈Rel(C, D); 
R', S composable, SRRS ⊆′  implies dom(R') ⊆  dom(R), respectively R, S' 
cocomposable, SRRS ⊆′   implies codom(S') ⊆  codom(S).  

iii (the univocality case) In the special case R right-univocal relation  (R 
partial function) we have R, S composable iff dom(SR)  = dom(R); dually, in the 
case  S left-univocal relation we have R, S cocomposable iff codom(SR) = 
codom(S). In the case R right-univocal relation  and S left-univocal relation we 
have R, S bicomposable iff dom(SR)  = dom(R), codom(SR) = codom(S).  

Proof. i. We have (see theorem 2.1, corollary 2.2 and [1]) 
codom( )(),( RdomRcodomS )⊆ codom( SRdom |)( ) = codom(S) ∩ dom(R) ⊆  dom(R), 
dom( )(),( RdomRcodomS )⊆dom( )(| RcodomS ) = dom(S) ∩  codom(R) ⊆  codom(R).  

ii. We have (see theorem 2.1 and observation 3.1.iii) dom(R') = 
dom( ⊆′)RS dom( ⊆)SR dom(R), respectively codom(S') = codom( ⊆′ )RS  
codom( ⊆)SR codom(S).  

iii. ∅≠R  or dually ∅≠S  implies ∅≠SR  or equivalently codom(R) ∩  
dom(S) ∅≠ , i.e. R, S w-composable (necessary composability condition, see 
observation 3.1, points i, ii); we have codom(R) = R(dom(R)) = R(dom(SR)) = 

()(( 1−SRR codom(SR)) = ((coker R ) )(1−S  codom(SR)) ⊆ ((coker R ) )1−S  
(codom(S)) = coker R( 1−S (codom(S)) = coker R(dom(S)) = )(RcodomΔ (dom(S)) = 

codom(R) ∩ dom(S), codom(R) ⊆  dom(S) and dually dom(S) = 1−S (codom(S)) = 
1−S (codom(SR)) = 1−S ((SR) (dom(SR)) = ((ker S)R)(dom(SR))⊆  ((ker S)R) 

(dom(R)) = ker S(R(dom(R)) = ker S(codom(R)) = )(SdomΔ (codom(R)) = dom(S) ∩  
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codom(R), dom(S) ⊆  codom(R) (see [9]). Reciprocal implications are 
unconditionally (by observation 3.1.iii). The case R right-univocal relation and S 
left-univocal relation follows from the above two cases.   

Example 3.1. Let be the sets A, B with |A|, |B| >2 (in Card). i (equalities, 
inclusions) For R∈Rel(A, B) we have the equalities dom(R) = dom(R 1−R R) (= 
D), codom(R) = codom(R 1−R R) (= C) and the inclusions R⊆  R 1−R R⊆ CD,ω .  

The first equality is a result of the bicomposability of R, coker R, i.e. 
dom(R) = dom((coker R )R) = dom(R 1−R R) – and analogously the second equality 
relative to the bicomposability of ker R, R (see observation 3.1, points iv, iii); the 
inclusions follow from the D-reflexivity of ker R [1], i.e. DΔ ⊆  ker R implies R = 
R DΔ ⊆  Rker R = R 1−R R, respectively from the anterior equalities and corollary 
2.2.ii.  

ii (characterization of the subtotal relations set) We have (see example 1.1 
and [1]) Relst(A, B) = { R∈Rel(A, B)/ )(),( RcodomRdomR ω= }; in addition for 

Preu(A, B) = iReg(A, B) = { R∈Rel(A, B)/ R= R 1−R R}, Kst(A, B) =   
{R∈Rel(A, B)/ker R = )(Rdomω }, Cokst(A, B) = { R∈Rel(A, B)/coker R = 

)(Rcodomω } – the sets of binary relations between  A, B respectively preunivocal (or 
i-regulated) relations, relations with subtotal kernel, relations with subtotal 
cokernel we have Relst(A, B) = Preu(A, B) ∩ Kst(A, B) = Preu(A, B) ∩ 
Cokst(A, B) which hold true by double inclusion (according to i and example 1.1 – 
see also [1]).  

iii (strict inclusions) For Reg(A, B) = {R∈Rel(A, B)/ ∈′∃R Rel(B, A), R= 
R R′R}⊂ Rel(A, B) – the regulated relations set between  A, B in the 
unregulated category Rel in which the dysfunctional relations (see [10]) were 
named also preunivocal relations (or i-regulated relations for unification of 
terminology [1], [9]) we have the strict inclusions Relst(A, B)⊂Kst(A, B) ∩ 
Cokst(A, B) ⊂ Rel(A, B), iReg(A, B) ⊂ Reg(A, B) because S = 
{ ∈= SbaSS /)},{(\&  Relst(A, B), |dom(S)|, |codom(S)|>1}, R  = 
{ ∈= RbaRR /)},{(\& ( Kst(A, B) ∩ Cokst(A, B))\ Relst(A, B), b′∃ , ∈∀x  
dom(R), 〉′〈∅≠〉〈∈′ − bRbxRb 1,}{\  = dom(R), a′∃ , ∈∀y  codom(R), 

〉′〈∅≠〉〈∈′ − aRayRa ,}{\1  = codom(R)}⊂ (Kst(A, B) ∩ Cokst(A, B))\ Relst(A, 
B), S ⊂ Reg(A, B)\ iReg(A, B), R⊂ Rel(A, B)\ iReg(A, B).  

For T = ∈S&  S, D = dom(S), D& = D\{a} ∅≠ , C = codom(S), C& = 
C\{b} ∅≠  we have (see example 1.1, observation 2.1, theorem 2.1 and [1]) 
dom(T) = D, codom(T) = C, ker =〉′〈⊇〉〈=〉〈=〉〈 −−− bTxTTxTTxT 111 )()(  

〉〈= xD Dω  = 〉〈xTdom )(ω  with ∈′b C& , coker ⊇〉〈=〉〈=〉〈 −− )()( 11 yTTyTTyT  
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〉〈=〉〈==〉′〈 yyCaT TcodomC )(ωω  with Da &∈′ , TSTTT CD ⊃==−
,

1 ω and T ′  = 

DbaC && },{}{, ωω ∪ , DaDDbTaCTDbaC TTTT &&&&& ωωωωωω ∪=∪=∪=′
〉〈−− }{,,}{),(},{}{, 11 , 

TTTTTTT CDCDDTDaTDDaDDaD =∪=∪=∪=∪=′ 〉〈 .,)(,,}{,}{, )( &&&&&& ωωωωωωωω ,  

respectively. Analogously for T = ∈= PRR \&  R, D = dom(R), C = codom(R) we 
have dom(T) = D, ker 〉′〈=〉′〈=〉′〈⊇〉〈=〉〈 −−−−− bRbPRbTxTTxT 11111 )\()( =  
D = 〉〈xDω  = 〉〈xTdom )(ω , codom(T) = C, coker ⊇〉〈=〉〈 − )( 1 yTTyT  =〉′〈aT  

=〉′〈aR 〉〈=〉〈= yyC TcodomC )(ωω , TRTTT CD ⊃⊃=−
,

1 ω .  

Definition 3.2 (recurrent self-composabilities) For *, INnm ∈  (m = n = 1 
implicitly) the relation R∈Rel(A, B) is m, n-self-composable if mR , nR  are 
composable; dually R is m, n-self-cocomposable if mR , nR  are cocomposable.  

Theorem 3.2 (hierarchies) Let R∈Rel(A, B) be a relation. i (recurrent  
self-composability) For each *, INnm ∈  we have the implications:  

R  m, n-self-composable implies R  1+m , n-self-composable (1);  
R  m, 1+n -self-composable implies R  m, n-self-composable (2).  

 For nm ≤  the implication (2) becomes equivalence; for nm >  (2) becomes 
conditioned equivalence by dom(R) = K  = dom( mR ).  
 ii (recurrent self-cocomposability) For each *, INnm ∈  we have the 
implications:  
 R  m, n-self-cocomposable implies R  m, 1+n -self-cocomposable (3);  
 R  1+m , n-self-cocomposable implies R  m, n-self-cocomposable (4).  
For mn ≤  the implication (4) becomes equivalence; for mn >  (4) becomes 
conditioned equivalence by codom(R) = K  = codom( nR ).  
 Proof. i. The implications (1) and (2) are true because codom( 1+mR )⊆    
codom( mR )⊆dom( nR ), respectively codom( mR )⊆ dom( 1+nR )⊆ dom( nR ) (see 
observation 3.1.iii); the reciprocal implication follows from codom( mR )⊆  
dom( nR )⊆ dom( mR ) = dom( nmR + )⊆ dom( 1+nR ) – with the mention that for 

nm ≥  we have the equality dom( nR ) = dom( mR ) (instead of inclusion).   
 ii. The dual implications (3) and (4) are true because dom( 1+nR )⊆  
dom( nR )⊆ codom( mR ), respectively dom( nR )⊆ codom( 1+mR )⊆ codom( mR );the 
reciprocal implication follows from dom( nR )⊆ codom( mR )⊆ codom( nR ) = 
codom( nmR + )⊆ codom( 1+mR ) - with the mention that for mn ≥  we have the 
equality codom( mR ) = codom( nR ) (instead of inclusion).   
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 Corollary 3.1 (self-bicomposability vs. recurrent self-bicomposability) For        
each *, INnm ∈  and “R is m, n-self-bicomposable if R is both m, n-self-compo -    
sable and m, n-self-cocomposable, i.e. mR , nR  are bicomposable.” we have the 
equivalence:  
 R is m, n-self-bicomposable iff R is self-bicomposable.  
 
 Proof. The equivalence follows from the equivalences R      m, n-self-bi -   
composable iff R 1+m , n-self-bicomposable iff R  m, 1+n -self-bicomposable.  
 
 Observation 3.2.i (self-composabilities vs. recurrent w-self-composability) 
The implications (1), (2) are composable, i.e. “R  m, 1+n -self-composable implies  
R  m, n-self-composable implies R  1+m , n-self-composable” where for nm ≤   
the first implication becomes equivalence; consequently for each *, INnm ∈  we 
have the implications “R self-composable implies R  m, n-self-composable 
implies R ( nm + )-w-self-composable” where for each )1{\*INp∈ , 

,,1{ K∈i }1−p   R is p-w-self-composable iff codom( iR ) ∩ dom( ipR − ) ∅≠  [1]. 
It follows “for each *, INnm ∈  R self-composable implies codom( mR )∩  
dom( nR ) ∅≠ ”; the above implication is stronger than the implication “R self-
composable implies subfield(R) ∅≠ ” because for each *, INnm ∈     
codom( mR )∩ dom( nR ) ∅≠  implies subfield(R) ∅≠ . In addition the sequence 
dom(R) = dom( 2R ) is extended indefinitely, i.e. we have dom(R)=dom( 2R ) =K= 
dom( nmR + ) (see observation 3.1, points ii, iii).  
Dually it follows “for each *, INnm ∈  R self-cocomposable implies codom( mR ) 
∩ dom( nR ) ∅≠ ” – which is stronger than the implication “R self-cocomposable 
implies subfield(R) ∅≠ ” and the indefinite extension of the sequence codom(R)= 
codom( 2R ), i.e. codom(R) = codom( 2R ) =K= codom( nmR + ).  
 ii (the univocality case) In the special case R right-univocal relation (R 
partial function) the sequence dom(R) = dom( 2R ) is extended indefinitely with R 
self-composable – and dually; in the case R biunivocal relation it follows the 
conjunction of the respective sequences with R self-bicomposable (see theorem 
3.1.iii).   

4. Conclusions  

The first addendum of this part of the paper refers to the generalized 
section – some properties such as intersection preserving for segments and the 
sections for relations inducement and product (see  the theorems 2.1, 2.2); these 
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complete the properties of the generalized section relative to Boolean algebra 
relations and operations with sets and relations and generalized composition 
(which were presented in Introduction – see also [7]); however, the main results 
are relative to the sections of the restrictions and of the induced relation of a 
binary relation – with the getting of some extensions as restrictions and induced 
relations (see theorem 2.3 and corollary 2.2, points i, ii).  

The last addendum is dedicated to the composabilities – equivalent 
conditions of w-composability [1] and the stronger notion of (dualized) 
composability with the unification of some known and functional properties and 
an addendum to the domain(and dually codomain) characterization theorem (see 
[2], respectively observation 3.1 and theorem 3.1); in addition it is relevant to 
remark a characterization of the subtotal relations – in point of regularity 
inclusively (see example 3.1). However, the main results are relative to a 
hierarchy of the (dualized) recurrent self-composability, the reduction of 
“recurrent self-bicomposability” to self-bicomposability, self-composabilities vs. 
recurrent w-self-composability and the univocality case (see theorem 3.2, 
corollary 3.1 and observation 3.2).  

The above addenda may be categorical validated in categories with 
intersections and unions of “objects” [5] – analogously with the restrictions and 
the inducement in (sub)objects [1], [6]; the last addendum may be useful in 
different approaches of non- deterministic automata.   
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