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ADAPTIVE CONTROL ALGORITHM FOR SENSORLESS
SWITCHED RELUCTANCE MOTOR

Honglin WANG'*

Nowadays, sensorless switched reluctance motors are popular due to their
unique advantages. However, the current method of controlling switched reluctance
motors without position sensors has the problem of low accuracy. To optimize the
capability of sensorless switched reluctance motor control, this study suggested an
enhanced backpropagation neural network algorithm that combined genetic
algorithm, adaptive learning rate algorithm, additional momentum term algorithm,
and backpropagation neural network. Moreover, the enhanced algorithm was
combined with a proportional integral derivative controller to construct an adaptive
proportional integral derivative control system for sensorless switched reluctance
motors. The average running time and average accuracy of this method were 0.79
seconds and 97.9%, respectively, which were significantly better than the compared
algorithms. In addition, a performance comparison analysis was conducted on the
control system based on this method, and it was found that the system outperformed
the comparison system in terms of load torque, motor speed response, and rotor angle
estimation error. The adaptive control algorithm for sensorless switched reluctance
motors proposed in the study has strong robustness, adaptability, and feasibility,
which helps to improve the accuracy of sensorless control of switched reluctance
motors.
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1. Introduction

Currently, the Switched Reluctance Motor (SRM) is popular in industrial
applications and the automotive industry due to its simple structure, high efficiency,
and energy-saving capabilities [ 1]. However, the current method of using sensorless
control for SRM has a problem of low accuracy [2]. Although many experts have
conducted relevant research, the results are still unsatisfactory [3]. Dejamkhooy A
and Ahmadpour A proposed an optimization control model to solve the problem of
reduced efficiency of SRM in discrete mode under high-speed applications, but the
control effect was poor [4]. To address the issue of the excessive number of position
sensors in SRM systems, Fang C et al. proposed a current estimation method for
SRMs. Although this method showed some effectiveness, the results were not
satisfactory [5]. Sun X et al. proposed an improved SRM driver position signal
evaluation method to improve the SRM’s fault tolerance in intricate settings, which
was effective [6]. Meanwhile, Kumar MN and Chidanandappa R proposed a control
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algorithm based on particle swarm optimization combined with Proportional
Integral Derivative (PID) controller to solve the problem of large torque ripple and
inaccurate speed response of SRM. Through the algorithm comparison experiment,
the results indicated that this algorithm showed good performance under all load
conditions and was superior to the comparison algorithm [7]. Similarly, aiming at
the influence of SRM parameter uncertainty on electromagnetic torque, Jing B et
al. set up a neural network sliding mode controller based on parametric online
learning. Simulation experiments showed that this method could effectively learn
SRM parameters, reduce torque ripple, and improve system stability [8].

At present, sensorless SRM uses a PID controller to detect the rotor position,
thereby achieving precise control of the Switched Reluctance Motor Drive (SRD)
system and improving system reliability, which has become a research hotspot.
Back Propagation Neural Network (BP) has the advantages of strong self-learning
adaptability, high flexibility, and the ability to automatically extract features, and is
widely used in fields such as system control. However, due to the use of gradient
descent to correct the weights according to the negative gradient direction of the
error function, it has drawbacks related to local minima and lacks a guarantee of
convergence. Genetic Algorithm (GA) has advantages such as strong global
optimization ability. The additional momentum term algorithm is an improved BP
algorithm, which can help the network maintain a certain memory during the
learning process, allowing the network to consider previous information when
adjusting weights, thereby accelerating convergence speed and reducing the
possibility of falling into local minima [9]. The adaptive learning rate algorithm is
a strategy for dynamically adjusting the learning rate in real time based on the error
changes during network training, effectively improving the adaptive learning ability
of the BP algorithm. Many scholars conducted relevant research. For example, Li
C et al. proposed a GA-BP method to find the proper parameters for the cladding
process, which was effective [10]. In addition, Shen W et al. proposed a BP
optimization model with polynomial decay learning rate to handle the limitations
of traditional BP. The model improved evaluation accuracy, but the improvement
was relatively low [11].

The above research indicates that although the adaptive control methods
currently applied to sensorless switched reluctance point sets have some
effectiveness, their control accuracy is still relatively low. Therefore, this study
combines GA, additional momentum term algorithm, adaptive learning rate
algorithm, and BP to construct an improved BP and apply it to PID, thereby
constructing an adaptive PID control model for sensorless SRM based on the
improved BP. The innovation lies in the combination of GA, additional momentum
term algorithm, adaptive learning rate algorithm, and BP, aiming to improve the
system operation stability of SRM. It is expected that this method can contribute to
enriching the adaptive control theory of sensorless SRM.
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2. Methods and Materials

2.1 Construction of the Improved BP Model Integrating Adaptive
Learning Rate, Additional Momentum, and GA

The speed regulation of switch magnet group motors is often controlled
without position sensors, but their doubly salient structure gives them high
nonlinear characteristics, resulting in a decrease in PID control performance [12].
Finding a solution to improve the adaptive control performance of sensorless SRM
is significant for enhancing the stability of motor systems [ 13]. Therefore, this study
utilizes the adaptive learning ability of BP to adjust the parameters of PID, and
introduces adaptive learning rate, additional momentum method, and GA to
improve the shortcomings of BP algorithm. Finally, the improved BP and PID are
combined to construct a PID adaptive control system for sensor SRMs based on the
improved BP. Before building the system, it is necessary to construct an improved
BP. BP neural network is a kind of neural network model that optimizes its own
threshold and weights through learning. It has advantages such as strong nonlinear
ability and approximation ability and is widely used in fields such as control [14-
15]. However, BP is prone to getting stuck in local minima and lacks a guarantee of
convergence when using the gradient descent method to adjust weights based on
the error function's negative gradient direction. To solve its slow convergence speed
defect, adaptive learning rate is introduced to adaptively adjust and optimize it, and
the calculation equation is shown in equation (1).

1.057(z)  SSE(z+1) < SSE(z)
n(z+1)=1 0.7n(z) SSE(z+1)> SSE(z-1) (1)
n(k) Others

In equation (1), 7 is the learning rate, sSe is the mean square error; z is

the iteration. To make BP avoid the local minimum, the additional momentum
algorithm is introduced, and the calculation equation is shown in equation (2).

0 SSE(z) > SSE(z—-1)-a
mc =<0.95 SSE(z) > SSE(z-1) (2)
mc Others

In equation (2), mc is the momentum factor. However, BP suffers from
training instability due to its random input of weights and thresholds. The GA
demonstrates robust global optimization capabilities, enabling effective
optimization of weights and thresholds in BP. Fig. 1 illustrates the fundamental
process of the GA [16].
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Fig.1 The Basic Flow Chart of GA

In Fig. 1, GA first encodes the parameters using applicable methods such as
binary or real numbers and performs initialization operations to randomly generate
the initial population. Secondly, the fitness value of each individual is calculated
and searched for. Then, the population is evolved and genetically manipulated to
generate a new generation of population. Finally, the fitness values of individuals
in the population are determined to meet the conditions. If they meet the conditions,
the algorithm is terminated. The calculation equation for GA is shown in equation
3).

SGA= f(B,E,F,N,A,H,0,V) 3)

In equation (3), g represents the encoding method of individuals; £
represents the evaluation function of individual fitness; P, represents the initial
population; N represents the population size; 4 is the operator; g is the crossover
operator; Q is the mutation operator; y represents the termination condition.

Based on the above content, the adaptive learning rate algorithm, GA, additional
momentum algorithm, and BP are combined to construct an improved BP algorithm,
as shown in Fig. 2.
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Fig. 2 Improved BP algorithm flow chart




Adaptive control algorithm for sensorless switched reluctance motor 499

In Fig. 2, the weights and thresholds of BP are encoded with real numbers
and randomly selected in the range of 0 to 1 to generate the initial population.
Secondly, the population evolves through selection, crossover, and mutation
operations, generating a new generation of genes and calculating fitness values for
individuals to select the optimal value. The selected optimal value is judged, and if
it meets the conditions, the initial weight and threshold for BP are determined by
this measure; If not met, the above operations are carried out until the conditions
are met. Next, the obtained initial weights and thresholds are used as input values
for BP training, and the error value of the network is calculated through forward
propagation. Finally, the error values are allocated through BP and updated as new
weights and thresholds for the network. In this process, the learning rate of the
network is automatically selected using an adaptive learning rate. Finally, whether
the value meets the additional momentum criteria and setting conditions is
determined. If it does, the result is outputted and the training is ended; If not met,
the error is recalculated until the condition is met.

2.2 Design of Adaptive PID Control System for Position sensorless
SRM Based on Improved BP

Due to the difficulty of achieving good control effects with traditional
sensorless PID control, and the fact that most commonly-used neural network
control systems consist of two networks, the system is too complex. Therefore, this
study combines an improved BP with traditional PID to construct an adaptive PID
controller. Before building an adaptive PID controller, it is necessary to understand
the expression of PID, and its classical incremental calculation equation is shown
in equation (4).

u(c)=u(c—D)+U [r(c)—7(c—D]+U,7(c) +Up[z(c) —27(c —1) + 7(c —2)] 4)
In equation (4), U, is the differential coefficient; U, is the integral
coefficient; U, is the proportional coefficient; ¢ is the error; » is the optimal

control quantity; ¢ is the number of iterations. Therefore, it is substituted into the
3-layer BP to obtain the PID parameter structure controlled by the improved BP, as
shown in Fig. 3. In Fig. 3 the three layers of BP correspond their output nodes to
the three coefficient parameters of PID control: U,, U,, and U,. ¢ is the input

value. Since the parameter value cannot be negative, the activation function of the
HL and OL are Sigmoid and logarithmic.
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Fig. 3. PID Parameter Structure of Improved BP Control

The improved BP adjusts the PID parameter IL calculation equation as
shown in equation (5).
0} =r(c- j) (5)
In equation (5), ¢! is the IL control of PID parameters. The calculation
equation for the HL control is shown in equation (6).

) m ) |
net’(c) = Y wyy}(c)
j=0

0} (¢) = glnet ()]
In equation (6), nes? is BP; w: is the weight of HL neurons; g7 is the HL

(6)

control of PID parameters. Equation (7) shows the control calculation equation for
the OL.

net)(c) = ZLIW;O,.Z (c)
i=0
0} (c) = flnet; (c)]
Oy(c)=u,
013 () =y,
0; (©)=u,
In equation (7), w; is the weight of each neuron in the OL; ¢}, 0}, O} >

(7

and ¢} are the thresholds of each neuron in the OL, and /=0,1,2. Equation (8)
shows the equation for adjusting the weight of the OL.

Aw, (c+1) =180’ (c) + aAw; (c)

(8)

In equation (8), s is the learning algorithm; « is the slope of the neuron.
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880u,3((cc)) is calculated, and equation (9) shows its calculation expression.
a;‘(()g) = 2(c)—(c~1)
:g;fc)) = 2(c)=2r(c~1) +(c—1)

The calculation equation for adjusting the weight of the HL is shown in
equation (10).
Aw[jz. (c+])= 7]2520} (c)+ Olw,.jz. (c)
2
57 = g lnet} (0307w (¢) (10)
1=0
i=0,1,2,...,0

Thus, an adaptive control algorithm based on improved BP can be obtained,
and Fig. 4 shows the algorithm flow.
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Fig. 4 Flow Chart of Adaptive Control Algorithm Based on Improved BP

In Fig. 4, the initialization operation first sets the optimal weights and
thresholds through GA, and the adaptive learning algorithm is set, with the initial
iteration times also set. Secondly, by collecting samples to obtain input and OV, the
error value at that moment is calculated. Next, the output and input values are
calculated, and the obtained OV are the U,,, U,, and U, adjustment parameters of

the PID controller, and the OV of the adaptive PID controller are calculated. Then,
the weights are controlled and adjusted online to achieve the goal of PID adaptive
control. Finally, this study will combine improved BP, adaptive PID, SRM, and
sensorless to construct an adaptive PID with improved BP and sensorless SRM, as
shown in Fig. 5.
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Fig. 5 Adaptive PID Control System Based on Modified BP with Positional Sensorless SRM

In Fig. 5, the system is a closed-loop control that adjusts PID parameters
adaptively through BP according to the operating state of the SRM, so that the
weight and threshold of the system output and the expected output reach the
minimum, thereby achieving the expected control effect. In addition, Au(n) and

u(n) in Fig. 5 represent the optimal control increment and optimal control quantity,
while -1 is the parameter.

3. Results
3.1 Performance Analysis of Algorithms

To verify the superiority of the improved BP (Algorithm 1), it was
experimentally compared with PSO-BP algorithm (Algorithm 2), Adaptive
Network Based Fuzzy Inference System (ANFIS) algorithm (Algorithm 3), and
RBF-RLS algorithm (Algorithm 4) in Matlab simulation software. Experimental
indicators included fitness and accuracy. Table 1 shows the specific experimental
environment.

Table 1
Specific experimental environment of this study
Parameter names Parameter
Processor Intel Core 19-13900K
Main frequency 5.8Hz
Internal memory 32GB
Hard disk capacity 500GB
Operating system Windows 10 64
Matlab version Matlab 2022a
Data analysis software Spss26.0

In the above environment, first, a comparative experiment was conducted
on the accuracy and loss values of the four algorithms, as shown in Fig. 6.
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Fig. 6 Loss and accuracy Curves for Each Algorithm

In Fig. 6 (a), the average accuracy of Algorithm 1, Algorithm 2, Algorithm

3, and Algorithm 4 were 97.9%, 90.4%, 93.6%, and 86.7%, respectively, with
Algorithm 1 having the highest average accuracy. In Fig. 6 (b), the loss curve of
Algorithm 1 began to converge at iteration 58, with an average loss value of 0.03,
which was lower than Algorithm 2's 0.04, Algorithm 3's 0.08, and Algorithm 4's
0.17. The above results indicated that Algorithm 1 outperformed the compared
algorithms in terms of both quasi average accuracy and loss value. The fitness
curves and running time comparison results of each algorithm are shown in Fig. 7.
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Fig. 7 Fitness Curve and the Run Time Comparison Results of the Algorithms

In Fig. 7 (a), the fitness curves of Algorithm 1, Algorithm 2, Algorithm 3,
and Algorithm 4 began to converge around the 83rd, 121st, 128th, and 158th
generations, respectively, with Algorithm 1's fitness curve converging first. In Fig.
7 (b), the average running time of Algorithm 1 was 0.79 seconds, Algorithm 2 was
2.13 seconds, Algorithm 3 was 1.37 seconds, and Algorithm 4 was 2.91 seconds.
Among them, Algorithm 1 had the shortest average running time. From the
dimensions of runtime and fitness, Algorithm 1 performed best. The fitting results
of each algorithm are shown in Fig. 8.
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Fig. 8 Results of Fit Degree of Each Algorithm

In Fig. 8, R? is the coefficient of fit. The fitting coefficient is a statistical
indicator used to measure the degree to which a model fits the data. The closer its
value is to 1, the better the fitting effect of the model on the data is, that is, the
independent variable can better explain the changes of the dependent variable.
Conversely, the closer the R? value is to 0, the worse the fitting effect of the model
is. In Fig. 8 (a), Algorithm 1 had the most concentrated scatter points, with a fitting
coefficient of 0.93. In Fig. 8 (b), Algorithm 2 had scattered points with a fitting
coefficient of 0.84. In Fig. 8 (c), the scatter points of Algorithm 3 were relatively
concentrated, with a fitting coefficient of 0.89. In Fig. 8 (d), the scatter of Algorithm
4 was the most scattered, with a fitting coefficient of 0.79. From the perspective of
fit dimension, Algorithm 1 performed better than the comparison algorithms. Based
on the above results, from the dimensions of fitting degree, fitness, accuracy,
running time, and loss value, Algorithm 1 had significantly better performance than
the compared algorithms and was effective.

3.2 Performance Analysis of Adaptive PID Control System

This study compared the performance the proposed model (System 1), an
adaptive PID control system based on PSO-BP sensorless SRM (System 2), an
adaptive PID control system based on ANFIS sensorless SRM (System 3), and an
adaptive PID control system based on RBF-RLS sensorless SRM (System 4). The
comparative indicators included motor response speed, load torque, and rotor angle
estimation error. The comparison results of the motor response speed of each system
before and after external interference are shown in Fig. 9.
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Fig. 9 Comparison Results of Motor Speed Response of Each System Before and After External
Disturbance

In Fig. 9 (a), when no external interference was added, the motor speed
response of System 1 was the fastest, with the smallest overshoot, and the speed
was the smoothest after startup. The motor speed response curve of System 2
quickly reached around 1753 revolutions per minute at 0.12 seconds, and then
rapidly dropped and stabilized at 1500 revolutions per minute after 0.15 seconds,
indicating poor stability. The motor speed response curve of System 3 reached 1570
revolutions per minute at 0.13s, and began to stabilize after 0.15s, reaching 1500
revolutions per minute, which was relatively stable. System 4 had the worst stability,
reaching 1768 revolutions per minute at 0.14s, dropping to around 1490 revolutions
per minute at 1.5 s, and then stabilizing at 1500 revolutions per minute. In Fig. 9
(b), when external interference was added, System 1 quickly adjusted its own motor
speed and had the best stability. Its adaptive dynamic adjustment performance was
higher than System 2, System 3, and System 4. From the perspective of motor
response speed, System 1 performed better than the comparative system, with good
adaptability and robustness. The comparison results of rotor angle estimation error
and load torque for each system are shown in Fig. 10.
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In Fig. 10 (a), the fluctuation range of the rotor angle estimation error of
System 1 was the smallest, which was smaller than other systems, indicating that
the motor can perform steering operation within a certain accuracy. In Fig. 10 (b),
the load torque fluctuation of System 1 was the smallest, the load torque of System
2 was larger than that of System 1, the fluctuation of System 3 was higher than that
of System 2, and the fluctuation of System 4 was the largest. From the perspective
of rotor estimation error and load torque, compared to the comparative system,
System 1 had the best performance. From the perspective of rotor angle estimation
error, load torque, and motor speed response dimensions, System 1 performed the
best, indicating the feasibility of the sensorless SRM adaptive control algorithm.

4. Discussion

This study compared and analyzed the performance of improved BP and an
adaptive PID with improved BP for sensorless SRM. Improved BP algorithm had
significant advantages in terms of running time, accuracy, and loss value. In the
accuracy comparison experiment, the average accuracy of the improved BP, PSO-
BP, ANFIS, and RBF-RLS algorithms were 97.9%, 90.4%, 93.6%, and 86.7%,
respectively, with the proposed improved BP algorithm having the highest average
accuracy. This indicated that the introduction of GA algorithm optimized the
algorithm's ability to find the optimal solution and improved its performance from
the perspective of accuracy. This result was in line with the improved BP algorithm
suggested by Zhu J et al. [17]. In the loss value comparison experiment, the average
loss values of the improved BP, PSO-BP, ANFIS, and RBF-RLS algorithms were
0.03, 0.04, 0.08, and 0.17, respectively. Among them, the improved BP algorithm
had the lowest loss rate, indicating that the introduction of adaptive learning rate
algorithm and additional momentum algorithm improved the algorithm
performance and enhanced the computing power of BP. Meanwhile, in the
comparison experiment of running time and fitting degree, the fitting coefficient
and average running time of the proposed model were 0.93 and 0.79 seconds,
respectively. This result indicated that the performance of the improved BP was
significantly improved, further verifying the superiority. Kumar R reached similar
conclusions in his research on improving the BP algorithm [18]. Secondly, in the
comparative analysis of the performance of adaptive PID control systems, the
proposed system showed good performance in terms of rotor angle estimation error,
load torque, and motor speed response dimensions. In terms of motor speed
response, compared to the comparative system, this system had the best
performance, with good adaptability and robustness. In terms of load torque and
rotor angle estimation errors, this system had the smallest error estimation and the
smallest load torque fluctuation, both of which were superior to the comparison
system. This result indicated that the introduction of adaptive learning algorithm,
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additional momentum algorithm, and GA improved the performance of the system,
resulting in good control effect. This conclusion is aligned with the findings from
relevant studies conducted by Kaveh M and Mesgari M.S. in 2023 [19]. This result
indicated that the adaptive PID control system based on improved BP for sensorless
SRM could effectively enhance the reliability of SRM system operation and reduce
costs.

5. Conclusion

In view of the current problem of low accuracy in SRM control using
sensorless methods, the research introduced adaptive learning rate algorithm,
additional momentum term algorithm, and GA to improve BP. Moreover, an
adaptive PID with improved BP for sensorless SRM is constructed. Through
comparative analysis of algorithms, it was found that the improved BP performed
significantly the best in terms of running time, loss value, accuracy, and fitting
degree. Subsequently, the adaptive PID control system of sensorless SRM based on
improved BP were compared and analyzed with other systems in terms of load
torque, motor speed response, and rotor angle estimation error dimensions.
Compared with the comparison system, the proposed system had the best
performance. The above results indicated that the improved BP algorithm proposed
in the study has strong adaptability and robustness. The limitation of this study is
that it did not consider the noise of SRMs, and noise constraints are a further
direction for research.
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