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GEOMETRICAL AND OPERATIONAL CONSTRAINTS OF 
AN ACKERMANN STEERING LINKAGE 

Aurel P.STOICESCU1 

In lucrare se analizează restricţiile geometrice şi funcţionale ale trapezului 
de direcţie al automobilelor, folosindu-se sistematic lungimile raportate ale 
elementelor acestuia. Se analizează în ce măsură funcţia de transmitere necesară a 
mecanismului poate fi realizată folosind la sinteza mecanismului  metoda dezvoltării 
în serie Taylor a acestei funcţii. 

 
In the paper the geometrical and the operational constraints of an 

Ackermann steering linkage are analyzed by systematic using of the normalized 
lengths of the elements of the mechanism. One analyzes to what extent the necessary 
transmission function of the mechanism can be carried out when the synthesis of the 
mechanism is performed by method of the Taylor’s series expansion.  

 
Keywords: automobile, Ackermann steering linkage, constraints, steering, 

steering angle, vehicle 

1. Introduction 

The steering system of an automobile with the rigid steering axle (beam 
and steering knuckles hinge-connected to the beam with king pins) comprises the 
steering mechanism which is represented by the steering trapezium otherwise 
known as Ackermann steering linkage. For the kinematical synthesis of an 
Ackermann steering linkage analytical and graphical methods are used. In the 
beginning of the automobile development graphical methods have been employed. 
For the facility of design,  on the basis of these methods, tables and diagrams have 
been achieved as those by Lutz [1].  

The analysis and synthesis of the Ackermann linkage have been tackled in 
numerous papers. A comprehensive list of these works together with the essential 
ideas and their concise conclusions written before 1977 are presented in 
monograph [2].  In [3] the conditions in which the graphs of the transmission 
function of the Ackermann steering linkage and the theoretical transmission 
function corresponding to the correct steering condition have the same curvature 
at origin has been investigated in connection with the synthesis of this 
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mechanism. The approximated synthesis of an Ackermann steering linkage using 
Taylor’s expansion has been tackled in [2] and again in [4].  

In the present paper the geometrical and operational constraints of an 
Ackermann steering linkage are minutely investigated using systematically 
normalized lengths of its elements. In connection with this fact one analyzes to 
what extent the transmission function of the Ackermann steering linkage may be 
approximated by the method of Taylor’s series expansion in view of the synthesis 
of this mechanism. In the paper we consider the planar Ackermann steering 
linkage and the classical condition of correct steering of a vehicle given by the 
Ackermann’s relation [2, 5]. In the most works, the mentioned relation is referred 
to as Ackermann’s relation, but, curiously, in [1] it does not have a  denomination. 

2. Elements of geometry and kinematics of the Ackermann linkage 

In the sketch of a four-bar mechanism shown in Fig. 1 the points A and D 
are fixed on the motor vehicle. 

 
 
 
 
        

 
 
 

Fig. 1 Geometrical elements of a four-bar mechanism 
 

They represent the intersections of the king pin axes with the mechanism plane, 
this being parallel to the ground (the king pin axes are perpendicular to the ground 
plane). The elements 1 and 3 are the steering knuckle arms, and element 2 is the 
tie-rod. For the present condition it is adequately to define the positioning 
elements of the four-bar mechanism in the way shown in Fig.1. The lengths of the 
elements 1, 2 and 3 are l1, l2 and l3, respectively. The distance between A and D is 
l4 : it represents the king pin track denoted by Ep also. 
 From triangle ABD we can write the relations 
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Applying the cosine theorem in triangles BAD and DBC one can determine the 
angle τ. In asimilar way from triangles BAD and DBC one can calculate the angle 
σ. Further, one can determine the angles ϕ2 and ϕ3 using the relations 
                                                 ., 32 χσφχτφ +=−=                                       (3) 
Putting the normalized lengths 
                                                433422411 /,/,/ llλllλllλ === ,                        (4) 
taking into account that in the case of the steering trapezium λ1=λ3, after 
performing above described operations we obtain 
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By projecting of the contour ABCD on the direction of AD after that on a 
perpendicular direction on same direction one arrives the relationship: 
                                        ,1coscoscos 312211 =++ φλφλφλ                             (7) 

                                           .0sinsinsin 312211 =−+ φλφλφλ                             (8) 
If the relations (7) and (8) are differentiated with respect to ϕ1, then one obtains a 
linear system of two equations with two unknowns (the transmission ratios) 
                                                 ./,/ 13311221 φdφdiφdφdi ==  
Solving this system and performing some trigonometrically transformations one 
arrives at the relations 
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 3. Geometrical and operational constraints for the Ackermann linkage 
 
 As is known, the Ackermann linkage may be situated either before or at 
back of the front axle. Corresponding to the two cases one uses the following 
denominations: leading Ackermann linkage and trailing Ackermann linkage. 
 
             3.1. Trailing Ackermann steering linkage 
 
 Schematically, the disposal of the trailing Ackermann steering linkage is 
indicated in Fig.2. 
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                               Fig. 3. Trailing Ackermann steering linkage-geometrical elements 
 
Supposing that the turning is negotiated to the left ( v -motor vehicle velocity), the 
outer wheel is turned by angle βe and the inner wheel is turned by angle βi. 
Inspecting the Fig. 2 one can write the relations: 
                                          ,, 310101 φφβφφβ ie −=−=                                    (10) 
where ϕ10=ϕ30 represent the values of  ϕ1 and ϕ3 when the motor vehicle is in a 
straight motion. Elementary geometrical considerations yield 
                                           )2/()1(coscos 123010 λλφφ −== .                          (11) 
In the case of the trailing Ackermann linkage l2≤l4=Ep, so that λ2≤1. The existence 
condition of the Ackermann linkage is  
                                                  ).0(,210 112 ≠≤−≤ λλλ                                  (12) 
Applying the Grashof’s theorem or the variant expounded in [4] one readily 
establishes that the trailing Ackermann linkage is double-rocker. 
 For a large turning angle of the outer wheel the Ackermann linkage may 
arrive in critical position when the points B, C and D lie in a straight line. In this 
situation the angle ϕ1 has the value ϕ1l. Applying law cosines for the triangle 
formed at mentioned position we obtain 
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Obviously, the following inequalities must be satisfied 
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The right inequality of (14) becomes after transformations 
                                             .0)12)(1( 212 ≥−++ λλλ                       
Because λ2+1>0, it results that 2λ1+λ2-1≥0, which coincides with the right 
inequality of (12). The left inequality of (14) can be written as  
                                .0)12)(1( 212 ≤++− λλλ  
Because λ2-1≤0, one deduces that 2λ1+λ2+1>0, which is allways satisfied. 
Therefore, if the existence conditions (12) for the Ackermann linkage are satisfied 
then the inequalities (14) are satisfied. 
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 Obviously, it is necessary that allways ϕ1≤ϕ1l. Taking into account (10), it 
follows that  
                                                ,max101 el βφφ ≤−                                               (15) 
where βemax represents the maximum required turning angle of the outer wheel (its 
value corresponds to the minimum turning radius). Taking into account (11) and 
(13), the relation (15) becomes 
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Obviously it is necessary that 
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which, after transformations, becomes λ2(2λ1+λ2-1)>0� 2λ1+λ2-1>0. The 
preceding inequality coincides with the inequality associated with the existence 
condition of the Ackermann linkage (without the equal sign because otherwise it 
would mean that βemax=0). 
 For the bar mechanisms the motion transmitting can be readily achieved if 
the pressure angle does not exceed certain admissible value [4]. The transmission 
angle, which is complement of the pressure angle, can not be smaller than 20°-30° 
in the case of an Ackermann linkage [3]. One can prove that the transmission 
angle between the element 2 and the element 3 is given as  
                                             .3223 φφγ +=                                                         (17) 
If γa is the admissible value of the transmission angle and if we take into account 
(5), (6), the first relation in (10) and the relation (17) then the condition of the 
motion transmitting is written as  
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The expression under root sign in (18) is allways positive. Indeed, from evident 
inequality 1+λ1

2>2λ1 it follows that 1+λ1
2>2λ1cos(βemax+ϕ10) since -

1<cos(βemax+ϕ10)<1. The numerators of the fractions from (18) are allways 
positive. Indeed, from evident inequality cos(βemax+ϕ10)<cosϕ10=(1-λ2)/(2λ1) it 
follows that : 1+λ2

2-2λ1cos(βemax+ϕ10)>λ2+λ2
2>0, 1+2λ1

2-λ2
2-2λ1cos(βemax+ϕ10)> 

2λ1
2+λ2(1-λ2)>0, (λ2≤1).  
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Fig. 3. The graphical representation of the conditions (12), (16) and (18) for the trailing  
Ackermann steering  linkage : βemax=35°, γa=25° 

 
For a given value of βemax, the condition (18) is satisfied when λ1 and λ2 

are chosen so that the condition (16) without the equal sign is fulfilld. We can 
prove that in this conditions the arguments of the functions arccos from (16) are 
less than 1 (we readily verify that if in (16) the case of equality is considered the 
mentioned arguments are equal to 1). 

For given values of βemax and γa, the conditions (12), (16) and (18) are 
dependent on the normalized lengths λ1 and λ2. On the plotting plane (λ1,λ2) with 
λ1>0, λ2>0, the above mentioned conditions define  the domains Dt1, Dt2 and Dt3, 
respectively. Of course, the domain Dt1 has boundary defined by a straight line. 
Using a proper program in Mathematica® , the boundaries of the domains Dt2 and 
Dt3 have been constructed. They are shown in Fig. 3. The boundaries are depicted 
by Bt1, Bt2 and Bt3, respectively. It is found that Dt3⊂Dt2⊂Dt1. One can prove that 
the boundary of the domain defined in the first quadrant of the coordinate system 
has a horizontal asymptote given by the equation .sin max2 eβλ =  Therefore, the 
normalized lengths of the trailing Ackermann linkage should theoretically fulfil 
the conditions: λ1∈[ λ1ε, ∞), λ2∈[sinβemax, 1], where λ1ε is a positive number 
however small but finite.  Also, one can prove that the boundary of the domain 
defined by (18) in the first quadrant of the coordinate system has a horizontal 
asymptote given by equation λ2=sinβemax/cosγa, so that λ1∈[λ1ε, ∞), 
λ2∈[sinβemax/cosγa, 1]. Of course, the values of λ1 and λ2 should be chosen 
according to design constraints. 
 
  3.2. Leading Ackermann steering linkage 
 Inspecting the Fig. 4 one can write 
                                        .103110 , φφβφφβ ie −=−=                                     (19) 
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Fig. 4. Leading Ackermann steering  linkage : geometrical elements 
 

In this case λ2>1 and the existence condition of the trapezium is  
                                             ( )1,0,21 2112 ≥≠−≥− λλλλ                                  (20) 
In time, the Ackermann linkage is a double crank mechanism. In critical position 
the points B, C and D are collinear (the point C lies on the right side of the point 
D). Alike as in the preceding case the expression of the limit angle is obtained as: 
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Taking into account the first relation (19) we obtain 

                         .
2

)(1
arccos

2
1

arccos max
1

2
12

2
1

1

2
eβλ

λλλ
λ
λ

≥
−−+

−
−                   (22) 

One can prove that the transmission angle is given by relation 
                                                     ).( 3223 φφπγ +−=                                        (23) 
In view of the preceding relation the condition of motion transmitting is written as 
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As in the case of the trailing Ackermann linkage the imposed requirements on the 
parameters λ1 and λ2 relating to the relations (21) and (22) are associated with the 
existence condition of the trapezium (the proofs is similar). In the same way one 
can verify that the expression under sign roots in (24) is positive. To be fulfilled 
the inequality (24), λ1 and λ2 should satisfy the strict inequality (22). One can 
prove that the moduli of the arguments of the functions arcos in (24) are less 1. If 
one considers the equal sign in (22) then the mentioned arguments are 1 and -1 
(the order may be inverse). 

Following the same considerations as in the case of the trailing 
Ackermann linkage, the graphs shown in Fig.5 are obtained. At the same time, 
there are the domains Dl1, Dl2 and Dl3. Also, the boundaries of these domains are 
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depicted by Bl1, Bl2 and Bl3, respectively. We can prove that the boundary of the 
domain defined by (22) considering that the region marked by λ2≥1 has an oblique 
asymptote given by the equation max12 cos2 eβλλ += . Also, the boundary 
defined by (24) has an oblique asymptote of which slope m satisfies the equation 

aγπmm −=−+ )5.01arccos()5.0arccos( 2 . It is found that λ2 should be less than a 
certain specified value for a given λ1. This condition is opposite to that of the 
trailing Ackermann linkage. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The graphical representation of the conditions (20), (22) and (24) for the trailing  
Ackermann steering  linkage : βemax=35°, γa=25° 

 
  4. Analysis of the capability of an Ackermann steering linkage 
to carry out the condition of correct steering 
 
 The condition of correct steering is written as [2, 5]: 
                                              ,/cotcot LEβgβg pie =−                                   (25) 

where L is the wheel base of the automobile. If it is supposed that βe is the input 
quantity and βI is output quantity then the relation (25) leads to the relation 
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Taylor’s series expansion around the origin of the second part of the relation (26) 
yields (obviously, βe=0�βi=0)  
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If βit is the value of βI determined by (26) and βin is the value of the same angle 
determined by relation (27) when n terms are retained (n=2, 3, 4, 5, 6), then the 
error committed by the relation (27) is defined so 
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Fig. 6. The influence of the term number of  Taylor’s series on the error 
 

From the inspection of the numerical results highlighted by Fig.6 it is found that 
the approximation with two terms is better than that with 3 and 4 terms for range 
angles greater than 20°-35°( obviously, this angle  is dependent on  the ratio Ep/L). 
The retaining of 6 terms provides a high accuracy for the large values of the angle. 

The series expansion of the function ϕ3(ϕ1) is (obviously, ϕ30=ϕ10): 
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The first derivative of the function ϕ3 is given by relation (9). Taking into account 
that ϕ10�ϕ20=0, from (9) it results  
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Using the expression of the first derivative we get 
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In considerations on (30), after a succession of transformations, we arrive at the 
relation 
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In view of (11) the preceding relation becomes 
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In a similar way one proceeds for the third order derivative and the result is 
written as 
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Finally, in consideration on (11) we get 
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Substituting ϕ3(ϕ1) given by (29) into the second relation (10) and taking into 
account the first relation (10), and (30), (32), (33), we arrive at the expression 
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where βitt is the angle achieved by the trailing Ackermann linkage for the inner 
wheel. Comparing the relations (27) and (36) it is found that the linear terms are 
the same. Therefore, the Ackermann linkage provides the condition of correct 
steering to the squared terms (exclusively) of the turning angle βe regardless the 
design characteristics. There is the ideal case when the expansions (27) and (36) 
would be identical, which  is impossible because only two independent parameters 
are available (λ1 and λ2). Therefore we may set the condition that the terms of βe

2 

and βe
3 be identical, namely : 
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From system (37), λ1 and λ2 might be determined, but, generally, this system has 
no real positive solutions. To illustrate this, in Fig.3 the curves corresponding to 
the two equations (37) are also shown. It is found that the curves do not intersect 
into the domain which is of practical interest. Moreover, the curve for 3 degree 
term which is located within the domain does not yield βe≥35°. The condition for 
the two degree term can be fulfilled but it does not assure the condition of the 
motion transmitting. 
 In the case of the leading Ackermann linkage the relations (27)-(35) 
remain valid. In consideration of (19) we get finally the expression 
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 where βilt is the angle achieved by the leading Ackermann steering linkage for the 
inner wheel. So we arrive at a system similar to (31) and the representation of the 
associated curves is shown in Fig. 5. And in this case the system does not have 
real positive solutions. The curve for two degree term is enough near to the limit 
curve for the motion transmitting. The curve corresponding to the 3 degree term is 
located into the admissible domain. 
 From the above results it follows that the graph of the transmission 
function of the Ackermann steering linkage has at origin the same tangent as the 
graph of the theoretical transmission function corresponding to the correct 
steering condition. In [3] the conditions in which the two mentioned graphs have 
the same curvature at origin has been investigated. The determination of the 
second derivative of the transmission function has been carried out by the 
acceleration method, which is more intricate than that presented here. The 
obtained result has a form which differs from that given in this paper, but one can 
prove that the proper result is not different (one can directly prove starting from 
(32)). The above mentioned method cannot be applied for determination of the 
third derivative, what explain probably the reason for which the question has not 
been tackled. 
 The applied method for the approximate synthesis in [2, 4] is different 
than that used in the present paper. In the implicit expression of the transmission 
function the angle βe is substituted for the terms to third degree term of βI from 
the Taylor’s series expansion, after that a succession of approximations are made. 
Further, l2 and λ1 being chosen one determines ϕ10. For example [4], for 
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Ep/L=0.40 and λ1=0.30 the result is λ2=0.80. This result leads to βemax=31°, which 
is enough small. 
 Considering different values of Ep/L we can conclude that, generally, the 
approximate synthesis of the Ackermann linkage by the series expansion method 
cannot carried out only to at the most the square outer turning angle. 
 
  5. Conclusions 
 
 The relations established in the paper allow defining the admissible 
domains of the normalized lengths of the Ackermann steering linkage elements 
corresponding to the critical position of the mechanism and the admissible 
transmission angle. These domains are not dependent on the automobile 
characteristics. The mentioned relations render evident the fact that the constraints 
of the Ackermann steering linkage are hard enough.  Also, these relations can be 
straightway used to optimize the Ackermann steering linkage, which we shall do 
in a next paper. 
 The synthesis of the Ackermann linkage using Taylor’s series expansion 
has an important limitation because only the linear terms of the transmission 
function expansion can be exactly reproduced by the mechanism.  
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