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WEIGHTING MATRICES DETERMINATION USING POLE 
PLACEMENT FOR TRACKING MANEUVERS 

Raluca M. STEFANESCU1, Claudiu L. PRIOROC2, Adrian M. STOICA3 

In the following paper is presented an algorithm for determining the 
weighting matrices from the cost function so that the solution of the linear quadratic 
problem assures the desired poles placement of the resulted dynamics. The 
theoretical developments are illustrated by a case study of a satellite attitude 
control. 
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1. Introduction 

In designing an attitude-tracking controller, a compromise has to be made 
between control torques and maneuver time. For example, a smaller control input 
implies a longer period of time in order to acquire the desired attitude, but in this 
case the control actuators used, in this case reaction wheels, are less overloaded. 

Leaving from the fact that the closed-loop system eigenvalues can be 
arbitrarily placed anywhere in the left side of the complex plane and the larger the 
distance of the poles location to the imaginary axis, the more demanding the 
physical control output, the present paper use the method developed in [1] for 
constructing a linear quadratic regulator that achieves the desired pole placement 
while satisfying the optimality. A weighting matrix is determined in such a way 
that the desired pole location is achieved by the optimal feedback gain 
corresponding to the weighting matrix of the performance criterion.     

In literature, several methods of determining the weighting matrices has 
been developed, where the closed-loop poles may be shifted only along the real 
axis [2] or to relocate a single eigenvalue (or a pair of complex conjugate 
eigenvalues) to a desired position [3]. Another method of weights determination is 
by using Multi-objective Evolution Algorithm, when a Pareto-optimal solution is 
obtained [4].  
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In the field of aerospace, for the applications of the linear quadratic 
regulator (LQR) method, the Q and R parameters arising in the cost function are 
usually determined by trial and error [5]. To optimize Q and R might seem as a 
repetition since the linear quadratic regulator methodology already gives optimal 
values of the controller gains with the lowest cost. However, this is actually 
obtained for a specified value of the weighting matrices. For each choice of 
weighting matrices, the LQR would give an optimal gain with the lowest possible 
cost, but this does not necessarily imply a good time domain performance [6]. For 
the attitude tracking of a satellite it is preferable to increase the settling time in 
order to prevent the control saturation. This implies a pole placement of the 
satellite dynamics closer to the imaginary axis. 

2. Mathematical model 

The success of the satellite mission depends on the spacecraft orientation 
in a known reference frame. The attitude motion of the satellite is described by the 
kinematics and dynamics equations. 

For the representation of the kinematics, quaternion based parametrization 
will be used. The quaternion elements depend on the coordinates of Euler axis and 
on its rotation corresponding to a rigid body [7] [8]. Leaving from the 
fundamental equation of motion, which relates to the time derivative of the 
angular momentum due to applied torques, the attitude dynamics is obtained. The 
equations of motions derived from the model are [7]: 

 
�q = 1

2
Ω(ω )× q                                               (1)  

 J �ωb (t) = −ωb × Jωb(t)+ Nctr (t)+ Nd (t)                       (2) 
where Jωb  is the angular momentum of the spacecraft, Ω ω( ) is skew-symmetric 
matrix with respect to Spacecraft angular velocity ωb , q denotes the quaternion, 
and Nctr, Nd are the control torques and all the disturbance torques respectively. 
The Equation (2) then has the form 

    
�ωb(t) = J −1 −ωb × Jωb(t)+ Nctr (t)+ Ng(t)+ Nd (t)( ) .                (3) 

As it can be seen the resulted equation has a nonlinear form, therefore to 
apply a linear control strategy on the spacecraft dynamics, the system must be 
linearized. The linearization will be performed at the operating point 
q0 = 0 0 0 1( ) and ω 0 = 0 0 0( ) so that the dynamics becomes as 
simple as possible. 

The linearized form of the system (1), (2) is:  
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�x(t) = Ax(t)+ Bu(t)

y(t) = Cx(t)+ Du(t)
                                        (4) 

 It follows that 
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;D = 0.                                     (6) 

where J represents the inertial matrix, I the identity matrix and 0 the zero matrix 
of appropriate dimensions. Since the quaternion elements are related by the 
constraint q1

2 + q2
2 + q3

2 + q4
2 = 1, it follows that 

q4 = 1− q1
2 − q2

2 − q3
2                                       (7) 

and therefore the state vector x can be reduced to six independent variables, 
namely 

x = q1 q2 q3 ω1 ω 2 ω 3
⎡
⎣

⎤
⎦ .                               (8) 

 
3. Optimal control theory and weighting matrix determination 
 
The next paragraph, representing the design of the weighting matrix is 

based on some developments derived in [1], which enable us to construct an 
optimal regulator providing specified closed-loop poles. 

In the following we will briefly present the main stages of this design 
method. Considering the time-invariant system model from equation (3) the 
optimal stabilizing control law which minimizes the quadratic cost function: 

J (x(t),u(t)) =
1

2
(xT (t)Qx(t)+ uT (t)Ru(t))dt

0

∞

∫                        (9)     

with Q≥0 and R>0, is given by 
 u(t) = −Kx(t)                                            (10) 

where the gain matrix has the form [9] 
K = R−1BT P                                          (11) 

with P being the stabilizing solution of the algebraic Riccati equation: 
AT P + PA − PBR−1BT P +Q = 0 .                          (12) 

It is assumed that the pairs A,B( ) and Q,A( ) are controllable and 

observable, respectively. These assumptions guarantee the existence of the unique 
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stabilizing solution of the Riccati equation (12) and the solvability of pole 
placement problem. Under these assumptions we will extract a specified real 
mode or two complex conjugate modes applying a nonsingular transformation M 
such that 

M −1AM =
A11 0

0 A22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                                       (13) 

M −1B =
B1

B2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                                              (14) 

where A11 is either 1-by-1, specifying the real modes, or 2-by-2 matrix  

A11 =
α β
−β α

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.                                           (15) 

if the selected modes are λ1,2 =α ± jβ . 
In order to determine the matrix M, we used the linear transformation 

relative to a basis of real eigenvectors associated with complex eigenvalues. 
Therefore, we calculated first the complex vector v associated with the complex 
eigenvalue λ. Decomposing λ and v in real and imaginary components we get 
λ =α ± iβ  and u = x ± iy . By using the two vectors x and y as basis, B = y,x{ }, 
associated with the complex conjugated eigenvalues, one obtains a 2-by-2 Jordan 
block of the form [13]: 

A[ ]B =
α β
−β α

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.                                         (16) 

Further, we have to determine the weighting matrix Q that is to be 
constructed according to the pole assignment requirements. Let Q11 be a positive 
semi-definite matrix with the same size as A11, and set the weighting matrix Q as 

Qi = M −1( )T Q11 0

0 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
M −1 .                                   (17) 

where "i" denotes the current step of the repetitive proposed procedure. 
The eigenvalues of A11 can be shifted while keeping all other eigenvalues 

of A unchanged. Thus, appropriate selection of the weighting matrix Q through 
Q11 is crucial in the design of optimal regulators with prescribed closed-loop 
poles. The selection of weighting matrix R > 0  is arbitrary from this point of 
view, and R could be used as a scaling factor for the input channels. Scaling R for 
single-input systems has no effect, since it will only result in the same amount of 
scaling on Q. 
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Therefore, for the transformation matrix M defined above, one obtains: 

M −1BR−1BT (M −1)T =
V11 V12

VT
12 V22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                            (18) 

where V11 has the same size as A11 and Q11 and 

V11 = v0
1 0
0 v

⎡

⎣
⎢

⎤

⎦
⎥                                         (19) 

 with v0 > 0 , 0 ≤ v ≤ 1. Note that, when v0 ≠ 1 , Q11 from (15) becomes Q11 v0 . 
When a real pole is to be shifted, the matrices A11, Q11, V11 reduces to 

scalars. It is known that a real pole, either stable or unstable can only be shifted 
along the real axis within the left-half plane, and that the absolute value of the 
closed-loop pole is larger than that of the open-loop pole. When a complex 
conjugate is to be shifted, the matrices A11, Q11 and V11 are 2-by-2 matrices. In this 
case, one can introduce the Hamiltonian matrix: 

H =
A11 V11

−Q11 −A11
T

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                                      (20) 

associated with the regulator problem of the second-order system, with Q11 having 
the partition 

Q11 =
q1 q2

q2 q3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.                                         (21) 

Direct algebraic computations show that the characteristic equation of H 
has the form: 

s4 +C2s
2 +C0 = 0 .                                         (22) 

where coefficients C2 and C0 are given by: 
C2 = 2(β 2 −α 2 )−C2

C0 = (β 2 +α 2 )2 −C0

                                  (23) 

where the following notations have been introduced: 
C2 = q1 + vq2

C0 = (α 2 + vβ 2 )q1 + 2(1− v)αβq2 + (vα 2 + β 2 )q3 + v(q1q3 − q2
2 ).

            (24) 

Let weighting matrix Q11, correspond to the optimal closed-loop poles 
α d ± jβd  with the coefficients C2 and C0 described by: 

C2 = 2(βd
2 −α d

2 )

C0 = (βd
2 +α d

2 )2.
                                       (25) 
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Determining C2 and C0  from (23), with C0  and C2  given by (25), the 
equations (23), together with the condition Q11 ≥ 0 give q1, q2 and q3. Replacing 
Q11 in (17), the eigenvalues of A11 can be shifted while keeping all other 
eigenvalues of A unchanged. To shift all poles together, the weighting matrix Q 
and the corresponding optimal feedback gain matrix K are, respectively, 

Q = Qi
i=0

n

∑  and K = Ki
i=0

n

∑ .                                     (26) 

where n represent the number of poles to be relocated. 

The described procedure is illustrated in Fig. 1. 

 
Fig. 1. Algorithm flow-chart 

 
4. Results and discussions 
The control law is implemented in a simulator that had the aim to illustrate 

the system behavior in acquiring a desired attitude, in our case corresponds with 
Moon orbit, leaving from random initial attitude 
q0 = 0.1585 0.5915 0.3425 −0.7125⎡⎣ ⎤⎦  and zero initial angular velocity. 
For the simulations, the quaternion error represents the difference from the body 
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frame (at the start of a rotational tracking manoeuver) and the reference (desired) 
frame, and it can be written as: 
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q1c...4c represents the quaternion in the reference frame and q1...4 the measured 
quaternion [7]. 

The resulted control gains are applied to the nonlinear satellite dynamics 
where the spacecraft is considered as a rigid body [8]. The inertial matrix that 
characterizes the spacecraft, has the form [11] 

J =
32.49 0.01 −0.37
0.01 34.92 0.04
−0.37 0.04 12.85

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ .

 

After stabilizing the system by using first the weighting matrices 
Q1=diag(1,1,1,0,0,0) and R=I3x3 the resulted eigenvalues are:  

λinit = −0.0892 ± 0.0892 j;−0.0856 ± 0.085 j;−0.138 ± −0.138 j{ }. 
By choosing to move closer to the imaginary axis each eigenvalue so that 

the final eigenvalues to be: 
λ f = −0.0181± 0.0201 j;−0.0146 ± 0.0166 j;−0.0597 ± −0.0207 j{ }  

and following the steps explained in chapter 4 the weighting matrix Q and the 
gain matrix K becomes: 

Qf =

0.0018 0 0 0.1698 0 0
0 8.01e− 04 0 0 0.1601 0
0 0 4.25e− 04 0 0 0.0306

0.1698 0 0 −0.1511 0 0
0 0.1601 0 0 −0.1452 0
0 0 0.0306 0 0 −0.0271

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

 K f = 0.0427 0.0283 0.0206 # 1.0912 0.9058 0.4936⎡⎣ ⎤⎦ . 
Although the inertial matrix contains the product of inertia, the 

corresponding gains are nearly zero and would not be used in the control law. In 
order to highlight the effectiveness of the proposed method a comparison is made 
with the nominal control, where the nominal gain vector is calculated using the 
transient response, ts=120 sec, the damping ration γ=0.7 and consider [12] 
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ω n
2 =

kq

J

2γω n =
kω
J

                                                (27) 

where J denotes the inertia matrix. In this case, the gain matrix is: 

 Kn = 0.5848 0.6286 0.2322 # 4.32 4.644 1.709⎡⎣ ⎤⎦ . 
The Figs. 2, 3 and 4 shows the system behaviour in terms of the quaternion 

convergence and the generated control torques for the nominal case. Even if we 
have a quick response, the torques exceed the maximum control torques. All 
simulation presented below have been performed using the nonlinear model of the 
spacecraft. 

 

  
Fig. 2. Quaternion error (Nominal case)  Fig. 3. Spacecraft angular speed (Nominal case) 
 

 
Fig. 4. Spacecraft control torques (Nominal case) 
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We can see that the proposed method with the pole placement has a good 
convergence characteristic of the quaternion without causing the overloads of the 
wheels. By changing the pole location closer to the imaginary axis, the less 
demanding the control output will be, which can be seen in the Fig. 7.   

 

 
Fig. 5. Quaternion error (Optimal case)                Fig. 6. Spacecraft angular speed (Optimal case) 

 

 
Fig. 7. Spacecraft control torques (Optimal case) 

 

5. Conclusions 

In the present paper, the determination of the weighting matrix using pole 
placement has been described. Considering the hardware constraints in terms of 
little control torques, which implies a small distance of the poles location to the 
imaginary axis, the purpose was to find the weighting matrix that satisfies that. 
For the comparison, a nominal controller, considered the settling time and 
damping ratio, was used. 
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The method has proven to be less demanding in finding the suitable 
solution for the system by shifting the undesired eigenvalues. Moreover, the 
weighting matrices were determined without using trial and error. 
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