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WEIGHTING MATRICES DETERMINATION USING POLE
PLACEMENT FOR TRACKING MANEUVERS

Raluca M. STEFANESCU?, Claudiu L. PRIOROC?, Adrian M. STOICA?

In the following paper is presented an algorithm for determining the
weighting matrices from the cost function so that the solution of the linear quadratic
problem assures the desired poles placement of the resulted dynamics. The
theoretical developments are illustrated by a case study of a satellite attitude
control.
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1. Introduction

In designing an attitude-tracking controller, a compromise has to be made
between control torques and maneuver time. For example, a smaller control input
implies a longer period of time in order to acquire the desired attitude, but in this
case the control actuators used, in this case reaction wheels, are less overloaded.

Leaving from the fact that the closed-loop system eigenvalues can be
arbitrarily placed anywhere in the left side of the complex plane and the larger the
distance of the poles location to the imaginary axis, the more demanding the
physical control output, the present paper use the method developed in [1] for
constructing a linear quadratic regulator that achieves the desired pole placement
while satisfying the optimality. A weighting matrix is determined in such a way
that the desired pole location is achieved by the optimal feedback gain
corresponding to the weighting matrix of the performance criterion.

In literature, several methods of determining the weighting matrices has
been developed, where the closed-loop poles may be shifted only along the real
axis [2] or to relocate a single eigenvalue (or a pair of complex conjugate
eigenvalues) to a desired position [3]. Another method of weights determination is
by using Multi-objective Evolution Algorithm, when a Pareto-optimal solution is
obtained [4].
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In the field of aerospace, for the applications of the linear quadratic
regulator (LQR) method, the Q and R parameters arising in the cost function are
usually determined by trial and error [5]. To optimize Q and R might seem as a
repetition since the linear quadratic regulator methodology already gives optimal
values of the controller gains with the lowest cost. However, this is actually
obtained for a specified value of the weighting matrices. For each choice of
weighting matrices, the LQR would give an optimal gain with the lowest possible
cost, but this does not necessarily imply a good time domain performance [6]. For
the attitude tracking of a satellite it is preferable to increase the settling time in
order to prevent the control saturation. This implies a pole placement of the
satellite dynamics closer to the imaginary axis.

2. Mathematical model

The success of the satellite mission depends on the spacecraft orientation
in a known reference frame. The attitude motion of the satellite is described by the
kinematics and dynamics equations.

For the representation of the kinematics, quaternion based parametrization
will be used. The quaternion elements depend on the coordinates of Euler axis and
on its rotation corresponding to a rigid body [7] [8]. Leaving from the
fundamental equation of motion, which relates to the time derivative of the
angular momentum due to applied torques, the attitude dynamics is obtained. The
equations of motions derived from the model are [7]:

1
6'1=5§2(a))><q (1)

Jo,(t)=—w,xJo,(t)+ N, )+ N, () (2)
where Jw, is the angular momentum of the spacecraft, Q(w ) is skew-symmetric
matrix with respect to Spacecraft angular velocity w,, q denotes the quaternion,

and N, Ng are the control torques and all the disturbance torques respectively.
The Equation (2) then has the form

o,(t)=J" (—a)b x J@,()+ N, (1)+N,(6)+ N, (z)) . ©)
As it can be seen the resulted equation has a nonlinear form, therefore to

apply a linear control strategy on the spacecraft dynamics, the system must be
linearized. The linearization will be performed at the operating point

4 =( 0 0 01 ) and @, :( 0 0 O ) so that the dynamics becomes as

simple as possible.
The linearized form of the system (1), (2) is:
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%(t) = Ax(t)+ Bu(t)

4
y(t)=Cx(t)+ Du(t)
It follows that
A= 03><3 13x3 0.5 B= 03><3 (5)
03><3 O3><3 .]71
1 0 -
C=| 0 1 ;D=0. (6)

where J represents the inertial matrix, | the identity matrix and 0 the zero matrix
of appropriate dimensions. Since the quaternion elements are related by the

constraint ¢; +q; +q; +q; =1, it follows that

4 =\1-4 -4 —q 7
and therefore the state vector x can be reduced to six independent variables,
namely

x:|: 9 49 4 @, @O, 0; } (8)

3. Optimal control theory and weighting matrix determination

The next paragraph, representing the design of the weighting matrix is
based on some developments derived in [1], which enable us to construct an
optimal regulator providing specified closed-loop poles.

In the following we will briefly present the main stages of this design
method. Considering the time-invariant system model from equation (3) the
optimal stabilizing control law which minimizes the quadratic cost function:

)

JCx(t),u(t)) = %I(xT (Qx(t)+u" ()Ru(t))dt ©)
0
with Q20 and R>0, is given by
u(t) = —Kx(r) (10)
where the gain matrix has the form [9]
K=R'B'P (11)
with P being the stabilizing solution of the algebraic Riccati equation:
A"P+PA-PBR'B"P+Q=0. (12)

It is assumed that the pairs (A,B) and (\/EA) are controllable and
observable, respectively. These assumptions guarantee the existence of the unique
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stabilizing solution of the Riccati equation (12) and the solvability of pole
placement problem. Under these assumptions we will extract a specified real
mode or two complex conjugate modes applying a nonsingular transformation M

such that
-1 All o
M™AM = (13)
0 A,
1 Bl
M™'B= (14)
B2
where A;; is either 1-by-1, specifying the real modes, or 2-by-2 matrix
a p
A, = { ] : (15)
_ﬂ a

if the selected modes are 4, =a + jj.

In order to determine the matrix M, we used the linear transformation
relative to a basis of real eigenvectors associated with complex eigenvalues.
Therefore, we calculated first the complex vector v associated with the complex
eigenvalue A. Decomposing 4 and v in real and imaginary components we get
A=azif and u=x*iy. By using the two vectors x and y as basis, B={y,x},

associated with the complex conjugated eigenvalues, one obtains a 2-by-2 Jordan

block of the form [13]:
| a B
[AL—[ P ] (16)

Further, we have to determine the weighting matrix Q that is to be
constructed according to the pole assignment requirements. Let Q11 be a positive
semi-definite matrix with the same size as A;1, and set the weighting matrix Q as

(! | O, O M 17
0=(Mm") { 0o } (17)
where "i" denotes the current step of the repetitive proposed procedure.

The eigenvalues of A;; can be shifted while keeping all other eigenvalues
of A unchanged. Thus, appropriate selection of the weighting matrix Q through
Qa1 is crucial in the design of optimal regulators with prescribed closed-loop
poles. The selection of weighting matrix R >0 is arbitrary from this point of
view, and R could be used as a scaling factor for the input channels. Scaling R for
single-input systems has no effect, since it will only result in the same amount of
scaling on Q.
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Therefore, for the transformation matrix M defined above, one obtains:

-1 -1 pT —I\T ‘/11 ‘/12
M BR B (M) = vy (18)
12 22
where V13 has the same size as A;; and Qq; and
1 0
Vii= Vo[ 0 v } (19)

with v, >0, 0 <v <1. Note that, when v, =1, Q,, from (15) becomes Q,, /v, .

When a real pole is to be shifted, the matrices A;; Qi1, V11 reduces to
scalars. It is known that a real pole, either stable or unstable can only be shifted
along the real axis within the left-half plane, and that the absolute value of the
closed-loop pole is larger than that of the open-loop pole. When a complex
conjugate is to be shifted, the matrices A;;, Q11 and Vi are 2-by-2 matrices. In this
case, one can introduce the Hamiltonian matrix:

A V.

H _ 11 11T (20)
_Qu _Au

associated with the regulator problem of the second-order system, with Q1 having

the partition
q, 4
Qu=[ 1 } (21)
9, 4;

Direct algebraic computations show that the characteristic equation of H
has the form:

s'+Cs*+C,=0. (22)
where coefficients C, and Cy are given by:
C,=2(f-a’)-C
o @
Co=(B +a’) -C,
where the following notations have been introduced:
C,=q,+v
2 T4 TV, (24)

Cy = (@ +vf")q, +2(=v)afq, + (va’ + *)q; +v(4,:q; — ;).

Let weighting matrix Qi1, correspond to the optimal closed-loop poles
a, £ jB, with the coefficients C, and C, described by:
C, =208, -ay)

25
C,=(B +a’). (@)
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Determining C,and C, from (23), with C, and C, given by (25), the
equations (23), together with the condition Q,, >0 give qi, 2 and gs. Replacing
Qi1 in (17), the eigenvalues of A;; can be shifted while keeping all other
eigenvalues of A unchanged. To shift all poles together, the weighting matrix Q
and the corresponding optimal feedback gain matrix K are, respectively,

0=>0 andK=)K,. (26)
i=0 i=0
where n represent the number of poles to be relocated.

The described procedure is illustrated in Fig. 1.
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Fig. 1. Algorithm flow-chart

4. Results and discussions

The control law is implemented in a simulator that had the aim to illustrate
the system behavior in acquiring a desired attitude, in our case corresponds with
Moon orbit, leaving from random initial attitude

qoz[ 0.1585 0.5915 0.3425 -0.7125 } and zero initial angular velocity.
For the simulations, the quaternion error represents the difference from the body
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frame (at the start of a rotational tracking manoeuver) and the reference (desired)
frame, and it can be written as:

qle q4c q3c _q2c _qlc ql
q2e _q3c q4c qlc _q2c q2
= (26)
9. Qe e Yae  Yae q;
q4e Chc qQL' q3c Q4 c Q4

q,. .. represents the quaternion in the reference
quaternion [7].

frame and ¢, ,the measured

The resulted control gains are applied to the nonlinear satellite dynamics
where the spacecraft is considered as a rigid body [8]. The inertial matrix that
characterizes the spacecraft, has the form [11]

3249 001 -0.37
J=| 001 3492 0.04
-0.37 0.04 12.85

After stabilizing the system by using first the weighting matrices
Qi=diag(1,1,1,0,0,0) and R=l3y3 the resulted eigenvalues are:

A = {-0.0892 £ 0.0892 j;—0.0856 + 0.085 j;—0.138 £ —0.138 j } .

By choosing to move closer to the imaginary axis each eigenvalue so that
the final eigenvalues to be:

A, ={-0.0181£0.0201,;-0.0146 + 0.0166 j;—0.0597 + -0.0207 j }

and following the steps explained in chapter 4 the weighting matrix Q and the

gain matrix K becomes:

0.0018 0 0 0.1698 0 0
0  80le-04 0 0 0.1601 0

0 - 0 0 4.25¢—04 0 0 0.0306
771 0.1698 0 0 —0.1511 0 0
0 0.1601 0 0 ~0.1452 0

0 0 0.0306 0 0 ~0.0271 |

KfZ[ 0.0427 0.0283 0.0206
Although the inertial matrix contains the product of inertia, the

1.0912 0.9058 0.4936 ]

corresponding gains are nearly zero and would not be used in the control law. In
order to highlight the effectiveness of the proposed method a comparison is made
with the nominal control, where the nominal gain vector is calculated using the
transient response, t;=120 sec, the damping ration y=0.7 and consider [12]
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wr=te
I ) 27)
2yw, ==

J
where J denotes the inertia matrix. In this case, the gain matrix is:

K,=[ 05848 0.6286 02322 i 432 4644 1709 |.

The Figs. 2, 3 and 4 shows the system behaviour in terms of the quaternion
convergence and the generated control torques for the nominal case. Even if we
have a quick response, the torques exceed the maximum control torques. All
simulation presented below have been performed using the nonlinear model of the
spacecraft.
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We can see that the proposed method with the pole placement has a good
convergence characteristic of the quaternion without causing the overloads of the
wheels. By changing the pole location closer to the imaginary axis, the less
demanding the control output will be, which can be seen in the Fig. 7.
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Fig. 7. Spacecraft control torques (Optimal case)

5. Conclusions

In the present paper, the determination of the weighting matrix using pole
placement has been described. Considering the hardware constraints in terms of
little control torques, which implies a small distance of the poles location to the
imaginary axis, the purpose was to find the weighting matrix that satisfies that.
For the comparison, a nominal controller, considered the settling time and
damping ratio, was used.
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The method has proven to be less demanding in finding the suitable
solution for the system by shifting the undesired eigenvalues. Moreover, the
weighting matrices were determined without using trial and error.
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