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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR UNCERTAIN
NONLINEAR SWITCHED SYSTEMS WITH V-N JUMPS

Zhifu Jia! and Cunlin Li?

In this paper, an uncertain nonlinear switched system with V-n jumps,
characterized by ils sensitivity to subjective uncertainties, is modeled using uncertain
differential equations with V-n jumps. To account for the discontinuous jump behavior
in each subsystem, a V-n jumps process associated with an uncertain 3-n jumps variable,
defined by a jump uncertainty distribution, is introduced. Under the assumptions of
linear growth and Lipschitz conditions, an existence and uniqueness theorem for the
solutions of uncertain nonlinear switched systems with V-n jumps is established and
rigorously proven. An illustrative example is provided to demonstrate the effectiveness
and applicability of the theoretical results.
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1. Introduction

Over the past two decades, the study of the properties of differential systems has
advanced rapidly, resulting in significant achievements in areas such as the oscillatory be-
havior of differential equations [1, 2, 3], their asymptotic properties [4], and the stabilization
of switched differential systems [5, 6, 7]. The development of stochastic analysis, particu-
larly with the introduction of theories like It6 calculus [8], has greatly facilitated progress
in the investigation of the stability of stochastic systems. As a specific class of stochastic
systems, stochastic switching systems have drawn substantial attention from the academic
community. Major developments in this field include the proposal of multiple Lyapunov
function methods for stability analysis [9], the establishment of exponential m-stability [10],
and the exploration of input-to-state stability via Lyapunov-based approaches for nonlin-
ear systems [11]. Unlike stochastic switched systems, uncertain nonlinear switched systems
are nonlinear switched systems that are influenced by subjective uncertainties, which can
be modeled using uncertain differential equations characterized by belief degrees. This for-
m of uncertainty, defined by belief degrees, is distinct from the uncertainty described by
probability theory and is best framed within the context of uncertainty theory [12, 13]. In
practical uncertain control systems, environmental factors such as component aging or dam-
age may alter the system dynamics, leading to abrupt changes in the mathematical model.
Furthermore, during actual operation, these systems are frequently subjected to various
disturbances, resulting in uncertain noise and uncertain jumps with time-varying parame-
ters. The uncertain switching jump system, which integrates the features of both uncertain
switching systems and uncertain jump systems, encapsulates the complexities associated

1 Dr., School of Mathematics and Physics, Sugian University, Sugian, 223800, China, e-mail:
jzf1zbx@163.com

2 Prof.,(Ningxia Key Laboratory of intelligent information and Big Data Processing, Governance and
Social Management Research Center of Northwest Ethnic Regions, North Minzu University, Yinchuan,
China, e-mail: bitlcl@163.com(corresponding author)

129



130 Zhifu Jia, Cunlin Li

with these combined uncertainties. Uncertainty theory has become widely applied across
diverse fields, including uncertain variational inequalities [14, 15], the stability analysis of
uncertain systems [16, 17], as well as in differential games and equilibrium strategy control
problems for uncertain systems [18, 19].

To describe the intrinsic properties of uncertain differential systems, the concept of
stability in measure was introduced in 2009. Later, Yao et al. [20] provided a sufficient
criterion for evaluating the stability in measure for uncertain systems. Su et al. [21] ex-
panded this research by introducing the concept of stability for multidimensional uncertain
differential equations based on uncertain measure. Subsequent studies investigated stability
in terms of the p-th moment [22], mean stability [23], and almost sure stability [24]. In
2022, Su et al. [25] explored three types of stability for uncertain nonlinear switched sys-
tems, while Jia and Li [26] extended this line of inquiry by introducing stability in the p-th
moment specifically for uncertain nonlinear switched systems. These analyses of stability
are fundamentally dependent on the existence of a unique solution for the uncertain system.
Chen and Liu [27] offered a sufficient condition ensuring the existence of a unique solution
for uncertain differential equations and derived an analytical solution for a class of linear
uncertain differential equations. Deng et al. [28] demonstrated the existence and unique-
ness theorem for uncertain differential equations involving jumps. Zhu [29] established an
existence and uniqueness theorem for uncertain fractional systems, under the conditions of
Lipschitz continuity and linear growth. Yang and Ni [30] examined a class of uncertain heat
equations and proposed conditions to ensure the existence and uniqueness of solutions. Jia
et al. [31] studied uncertain equations incorporating delay and V-jumps, while Su et al. [32]
developed an existence and uniqueness theorem for uncertain nonlinear switched systems.
This paper presents two key contributions. First, it investigates nonlinear switched systems
with subjective uncertainties and jumps within a finite-time domain. Second, using the
V-n jumps process [33], uncertainty theory, and Banach’s fixed-point theorem, an existence
and uniqueness theorem is proved for a class of uncertain nonlinear switched systems with
V-n jumps, under conditions of linear growth and Lipschitz continuity. Compared to the
results in Ref. [32], this work enhances the understanding and description of the properties
of solutions for nonlinear switched systems influenced by subjective uncertainties and V-n
jumps. Beyond theoretical advancements, uncertain differential equations have wide-ranging
applications in dynamical systems, particularly in nonlinear switched systems, as discussed
in this paper and in previous studies [34, 35].

The structure of the paper is organized as follows: Section 2 presents an overview of
the Liu process, the V-n jumps process, and the concept of uncertain nonlinear switched
systems with V-n jumps, along with two key foundational assumptions. Section 3 formulates
the existence and uniqueness theorem for uncertain nonlinear switched systems with V-n
jumps. In Section 4, an example is provided to demonstrate the validity and effectiveness
of the proposed theoretical results. Lastly, Section 5 concludes the paper with a concise
summary of the main findings.

2. Uncertain nonlinear switched systems with V-n jumps

Definition 2.1. [12, 13] An uncertain process Cy as a Liu process based on the following
conditions:
(1) Co =0 and almost all sample paths are Lipschitz continuous.
(2) Cy has stationary and independent increments
(8) Every increment Cyyy — C, is a normal uncertain variable with an expected value
of 0 and variance t*. The uncertainty distribution of this increment is given by:
-1

@(x)z(l—i—exp(—;;)) , z€R.
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Definition 2.2. [33] An uncertain variable 3(pi1, piz,n,t) is described as an uncertain
3-n jumps variable with parameters p;1 and ;o under specific conditions. The definition
of the uncertain variable outlines a piecewise function ®(x), which characterizes the jump
uncertainty distribution of this variable for t > 0. The function ®(z) is defined as follows:

Oa Zf$<0,
(n+1Dpir . ¢
P(z) = i fi)( ) vosw <
- n i — i i . i i+1)t -
Mz’2+¢(w—nil), i ni1§m<(zn+1),z:1,...,n,
1, if x >t

Remark 2.1. The function ®(x) defines the jump uncertainty distribution for different
intervals of x. Parameters p;1 and pio determine the characteristics of the jumps within
the distribution. The conditions 0 < pin < piz < fi+1)1 < Mii+1)2 < Mmt11 = 1 for
1=1,2,...,n— 1 ensure that the jump points are ordered correctly.

Definition 2.3. [33] An uncertain process Vi is said to be an uncertain V-n jumps process
with parameters pi1 and priz (0 < pin < piz < Pty < Hern2 < B = 1,0 =
1,2,---,n—1) fort > 0if (1) Vo = 0; (it) Vi has stationary and independent increments;
(iii) every increment V,y — V;. is an uncertain 3-n jumps variable 3(u;1, pio, n,t).
Lemma 2.1. [32] Suppose that Cy is a Liu process, and Z; is an integrable n-dimensional
uncertain process on [a,b] with respect to t. Then the inequality

b
/ammm

b
<K, [ 12
1 a

holds, where K., is the Lipschitz constant of the sample path Cy(7y).

In fact, the uncertain nonlinear switched system with V-n jumps discussed in this
section is a nonlinear switched system influenced by both a Liu process and a V-n jumps
process. In the finite-time domain, the uncertain nonlinear switched system with V-n jumps,
represented by a series of uncertain differential equations with V-n jumps, will be analyzed
in the following sections.

dZy = £y (t, Ze)dt + Gi(x)(t, Ze)dCy + hyry (t, Ze)dV:, t € [0,T),
i(k) € {1,2,..., M}, (1)
Zi|t=0 = Zo, t =0,

where Z; € R™ represents the state vector of the system, coefficient functions ) (t,2) :
[0, 7] x R" = R", gjxy(t,2) : [0,T] x R" — R™ and h;(t,2) : [0,7] x R* — R™ are all
continuous for any i(k) € {1,2,..., M}, C; and V; respectively represent the noise and the
jump of the subsystem, with C; as a Liu process and V; as a V-jump process defined on an
uncertainty space.

Remark 2.2. In the given system (1), the uncertain nonlinear switched system with V-
n jumps consists of multiple subsystems, each governed by a specific switching law i(k) €
{1,2,...,M}. FEach subsystem is described by an uncertain differential equation with V-
n jumps. This jump process introduces discontinuities or sudden changes in the systems
trajectory, which are characteristic of processes with V-n jumps.

The 1-norm is used to measure the distance for a vector Z = (21, 22,...,2,)7 in this
paper, specifically defined as:
n

1Zl = Jail.

i=1
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The switching law of uncertain switched system (1) defined on the interval [0, 7] is

A= {(t07i(0))7 (tlu ’i(l)), R (tm Z(N))}7

at the time instants tgo = 0 < t; < --- <ty = T, the tuple (t,i(k)) indicates that at time
ti, the system switches from sub-system i(k — 1) to sub-system (k). That is, sub-system
i(k) remains active during the time interval [ty, tx+1] for each k € {0,1,...,N}.

Next, two assumptions regarding the coefficient functions in system (1) are introduced
to facilitate the concise analysis of the existence and uniqueness of its solutions. It is assumed
that for each i(k) € {1,2,..., M}, there exist corresponding positive constants such that

Assumption 1. The coefficient functions f;x)(¢,2), gix)(t,2) and h;,(t,2) satisfy
the linear growth condition

€icey (t, 2) 11 + NIy (£ 2) 1 + ey (8, 2) (11 < Qigy (1 + [12]]1)

for any ¢t € [0,T], z € R™;
Assumption 2. The coefficient functions f;x)(¢,2), gix)(t,2) and h;x,(t,2) satisfy
the Lipschitz condition

1£ick) (8, 2) — £iy (8, 2) |1 + 18k (8. 2) — ik (£, 2) |11 + (i) (£, 2) — Dy (2,2) 1
< Si(k)Hz —Z||1,Vt €[0,T),2,Z € R™.

The symbols Q and £ are employed to denote the maximums of positive constants Q1)
and £ (i(k) = 1,2,..., M), respectively, so the following equalities are established:

0= H%Z]‘S’({Ql(kﬂ Z(k) = 1,2,. . .,M}, £= H%%i({sl(k)l Z(k) =1,2,.. ,M}

3. Existence and uniqueness of the solutions

In this section, the existence and uniqueness of solutions for the uncertain nonlinear
switched system with V-n jumps (1) are investigated using uncertainty theory and the
Banach fixed-point theorem. Let C[0, T represent the space of continuous R"-valued vector
functions on [0,7]. Hence, it is straightforward to see that C[0,T] forms a Banach space
with the following norm:

1Z]

= Zl.
[0,T tgﬁ%” ¢l

The mapping x(t) on C[0,T] is now defined as follows: for a sample path Z(y) €
C[0,T] with any given v € I, we denote that

fi(j) (1, Zy(7y))dr + / fi(k) (1, Zy(7))dr

j=0 tj tr

+3 [ B (n 2 )G 0) + [ iy Ze())dCH )

—0 t; t
1

ti+1 t
+ / hy ) (r, 2 (7))dVe () + / by (r, Zi (7))dV: (),
- ts tr
where ¢ € [ty, trt1] C[0,7] and k=0,1,...,N.
To examine the existence and uniqueness of the solutions, the following two lemmas
are first introduced and proven.
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Lemma 3.1. Suppose that V; is an uncertain V-jump process, and Z; is an integrable
n-dimensional uncertain process on [a,b] with respect to t. Then, for any sample v, the
inequality

Proof Denote Z; = (Z},Z2,...,Z")T, where Z: are integrable uncertain processes
for i =1,2,...,n. By applying Theorem 3.2 in Ref. [28], we obtain that

This completes the proof.

b
/ Z4(7)dV, (1)

b
s/ 1Ze(7)]], dt
1 a

holds.

n

[ zwavw| 3| [ zioane| <3 [ zio)d= [ 1z,

Lemma 3.2. If a vector function Z:(v) € C[0,T] holds for any sample v € T, and coefficient
Junctions £ (t,2), i) (t,2) and hyq(t,2) satisfy the linear growth condition outlined in
Assumption 1 for each i(k) € {1,2,..., M}, then x(Z(v)) € C[0,T].

Proof Let r1,ro € [0,T] with 1 <79 and |rg —r1| < ming—o 1, n{tk+1 —tr}. There
are two cases in which the distance between x(Z,, (7)) and x(Z,, (7)) can be computed based
on Lemma 3.1.

Firstly, r1 and ry lie within the same interval, meaning t; <1 < ro < tg41, and thus
we have

IX(Zry (7)) = X(Zr, (V)2

< [t 2o+ [ i 2 G Dl + [ 2 Vi)

T1

T2

/ P b (r Zo () dr + / " g (1 Zo(1)AC, (7) + / by (r, Zr (7)) dVi (7)

T1 T1 T1

1

T2 T2 T2
< / 00 (r Zo (7)) 1l + K, / i (r. Zo ()1 + / g (r, Zo ()
r1

T T
T2

<(2+K,) Qi)+ 1 Ze (V) e, 114017

T1

<O+ NZe (V) llts 4441 (2 + B (r2 = 71). (2)

Secondly, when 71 and ro belong to two different intervals, i.e., tp_1 < 1y <t < 1o <
ti+1, we have

IX(Zr, (7)) = X (Zr, (7)) 11

tr T2
:‘ / o (s Z, (1) dr + / £ (rs Z (7))

1 tr

T2

+/ ' gi(k—l)(ra Zr(’Y))dCT(PY) +/ &i(k) (Tv Zr('y))dcr("/)

T1 tr
tr T2
+ / huge (. Zo (1)) AV (7) + / hue (1, Z0 (1)) AV (7)
T1 tr 1

ti tr
< [ ey Ze )+ [ g0 Ze0)C )

T1
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123

+ 1l hi(kfl)(""va('Y))dV?“(’Y)Hl+/ €5k (r, Ze (7)) [l
t

T1 k
y / g (1 Z0 (1) AC (1) 1 + | / e (. Ze (1) dVe ()
k k

tr tr
S/ 1€ e—1) (7, ZT('y))||1dr+K7/ 18i(k—1) (7, Zr (7)) 1dr
T1 1

ro

tr
+ / sy (s Zo (7)) 2+ / 300 (. 2o (7)) |

T1 tr

() T2
LK, / i (r. Ze (7)1 + / g (r, Zo ()
173 tk

tr

<@+ Ky [ Qi (04 112Dy dr

T1

+2+K,) / ity (14 1Ze) gty
t

.
<Qih—1) (0 + N1 Ze(N |ty 1.04]) (2 + K5 (B — 71)
+ Qitky (0 4 1Ze (N ey 127 (2 + K5 (2 — L)
<A+ NZe (V) ity ta21) (2 + K5 (r2 — 71). 3)
Combining the above (2) and (3), we obtain that:

IX(Zr, (7)) = X(Zr, (V) < Q0+ 1Ze(Vlj0,17) (2 + K5) (r2 — 71),
which implies that

IX(Zr, (7)) = X(Zr, (7)) |l1 = O,

as ro —r; — 0. Hence, x(Z¢(7)) is continuous on [0, 7] for any v € I'. This concludes the
proof of the lemma.

Building on the results from Lemmas 3.1 and 3.2, the existence and uniqueness of
solutions for the uncertain nonlinear switched system with V-n jumps (1) can be explored.
Subsequently, an existence and uniqueness theorem will be established on a small interval
[t,t + ] by applying the two lemmas along with the Banach fixed-point theorem.

Theorem 3.1. There exists a constant ¢ > 0 such that, for any t € [tg,tr41] € 0,77,
system (1) has a unique solution on the interval [t,t + c] (with t + ¢ = tgy1 if t + ¢ > tpt1,
fork=0,1,...,N). This holds provided that the vector functions f;)(t,2), giu)(t,2), and
h;(t,2) satisfy both the linear growth condition and the Lipschitz condition specified in
Assumptions 1 and 2 for each i(k) € {1,2,...,M}.

Proof Let ¢ > 0 such that o(y) = £(2+ K,)c € (0,1).
For any given ¢t € [0,T] , 7 € [t,t + ¢] and v € T', define a mapping ¥ on the space
C[t,t + ¢] in the following:

T

U(Z, (7)) =Zu(7) + / " figey (2 2o (7)) dr + / g1 (2 2 (7)), (7)

+ / g (. 20 (7)Y, (). (4)

By Lemma 3.2, it is able to derive that U(Z,(v)) € C[t,t + ¢ for Z,(v) € C[t,t + ¢].
For any 7 € [t,t + ¢], according to the Lipschitz condition in Assumption 3.2 we have

1%(Z- () = ¥(Z: (7)) a
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[ oo 200 = By 2,01
+ /t ' {giu«)(n Z.(7)) — ik (1, ZT(V))} dC,(v)

/T [h( ) (1 Zr (7)) — iy (7 Z,(V))} dVT(V)Hl
H/ Fige (r 2 (7)) = i(k)(r»zr(v))} dr

1

[ [t 200 - gy (20 @)

1

+

[
hry (7, Zr (7)) — Dy (7, ZT(W))’L dr

/t T [huk)(?ﬂ Z, (7)) — by (r, Z(v))} avi.(v)

i) (1, Zr (7)) — £iry (s Zon( H

8ite) (1, Zr (7)) — 8ir) (1, Zr (7)) H1 dr

+/T
qz+Kﬁl¢Mmmmzaw>—ammzwwml

+ lgion) (r: 20 (1) — 8y (. 2o (7)1
+ ige) (. Z0 (1) = higey (. Z (1)1 | e

<@+ K | 2, ar
t
<
s+ K’Y) ¢ tgr?gic 7)H1 dr
<L(2+ Ky)e||Zr(v) - ZT(V) )
[t,t4c]

which means that
1%(Z- (7)) = U(Zr )it < 0NZr(¥) = Zr (N0 (5)

where 0 < o(v) < 1.

From the above (5), it can be concluded that W is a contraction mapping on C[t, t+c].
Therefore, by applying the well-known Banach fixed-point theorem, there exists a unique
fixed point Z.(y) € C[t,t + c| that satisfies (4).

This unique fixed point Z,(y), a continuous function of 7 defined on [t,t + ¢], can be
treated as a sample path; and it is the unique solution of the following ordinary differential
equation:

T

ZTW)=Z47%+AWﬂ@ﬂhZAVDW=jZ 8100 (2 2 (7))AC, ()

+[3m@mzxwwmwx reltt+d

In other words, for each sample point v € T', there exists a unique function Z, () that satis-
fies the given ordinary differential equation. Considering all sample points in I', Z, becomes
a mapping from the sample set I' to the set of corresponding sample paths. Consequently,
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Z, is identified as an uncertain process, and for each 7 € [t,t + ¢], Z, is measurable with
respect to y in I'.

Therefore, the uncertain process Z; is the unique solution of the uncertain differential
equation

7, =7, +/ fz(k) (Tv Zr)dr +/
t t

In conclusion, system (1) has a unique solution Z; on the small interval [t,t + ¢|. This
completes the proof.

In the following, the existence and uniqueness of solutions for uncertain nonlinear
switched system with V-n jumps (1) will be extended to the interval [0,7T] on the basis of
Theorem 3.1.

T

&30 (r, Z,)dC, + / hue(r Z,)dVy, 7 € [tt+ .
t

Theorem 3.2. For 0 < T < 400, the uncertain nonlinear switched system with V-n jumps
(1) possesses a unique solution over the interval [0, T], provided that the coefficient functions
ik (t,2), ik (t,2), and hy()(t,2) meet the linear growth and Lipschitz conditions outlined
in Assumptions 1 and 2 for each i(k) € {1,2,..., M}.

Proof For each k € {0,1,..., N}, denote that
[th,th +c), [t + e te +2¢], ..o, [t + (e — D)e tr + e, [t + Lic, trga]

are the subsets of [tg, txy1] with

te + e < tpe1 <tr+ (Ig + 1e.
For any v € I', it follows from Theorem 3.1 that uncertain nonlinear switched system
with V-n jumps (1) has a unique solution Zf*/ on the small interval [ty + jc, tx + (j + 1)d]
for j =0,1,...,1; and setting t; + (Ix + 1)c = tp41.
Therefore, system (1) has a unique solution Zf on the interval [ty, 4] for every
ke {0,1,...,N} by defining
Z70(y),  tE[titrtd,
Z9'(y),  tE [tk +ety+2d,
Zi(7) ="
Zf’lk_l(’y)7 te [tk + (lk — ety + lkC],
ZP"(y),  tE [t + lee, tesa].

Then a multi-dimensional uncertain process Z; on the interval [0, 7] is defined as follows:

Z?(’Y)a te [tOvtl] = [Ovtl]a
Z%(’y), te [tlth]v

Z) (), te[tno1,tnl,
ZY (v), teltn, tne1] = [tn, T,

for any v € T', which is the unique solution of uncertain nonlinear switched system with V-n
jumps (1) on the interval [0, T ]. This completes the proof.

Remark 3.1. In Theorems 3.1 and 3.2, the coefficient functions in each sub-system are
assumed to satisfy the linear growth and Lipschitz conditions. Therefore, regardless of the
switching law, system (1) is composed of these sub-systems, ensuring a unique solution. In
other words, for any given switching law, the system has a corresponding unique solution.



Existence and uniqueness of solutions for uncertain nonlinear switched systems with V-n jumps 137

4. An example

Example 4.1. To verify the correctness of Theorem 3.2, an example of an uncertain non-
linear switched system with V-n jumps will be presented over a finite-time horizon.

dZy = £y (t, Ze)dt + @i(r) (t, Ze)dCy + hyy (t, Ze)d Vs, t € (0,77,
i(k) €{1,2,3,4}, (6)
Zo = (21(0), 22(0))",

where Zy = (21(t), 22(t))T € R? is the state vector of the system, and

3 3

fitte)=e"8 ez ilt) = g exp(—lal), it 2) = 5o - exp(—fe]),
falt, 2) = e76 -z, 92(t, 2) = lftQ -exp(—|z|), ha(t, z) = 1 jt2 -exp(—|z|),
folt ) =75 n ga(t,2) = g en(-leD, h(t,) = 1 -esp(-l2)),
filt )= s aulte) = o ep(lel) halt2) = oy esp(—e)),

where the notation |z| represents the vector (|21, |22|)T for z = (21, 22)T .
If the switching law of system (6) defined on the interval [0,T) is listed as follows:

A= ((t07 2)7 (tla 4)7 (t27 1)a (t37 3)7 (t47 2)a (t5a 3)7 (tﬁv 1)5 (t77 2))7
where T =99, and tp(k=0,1,...,7) are the given switching times, i.e.,

to=0, t1 =8, to=19, t3=29, t, =47, t5=>56, t5=269, t;="719.

Then, we can obtain the following uncertain differential equations with V-n jumps

dz (t) =e —4 z1(t)dt + 2+t2 -exp(—|z1(t)])dCy + 2+t2 -exp(—|z1(t)])dV4,

dza(t) = 7% - zo(t)dl + 5 - exp(—|22(t))dC; + 525 - exp(—|22(t)])dVi,
t € [19,29] U [69, 79];

dzy(t) = 76 - 2z (t)dt + 1+t2 -exp(—|z1(t))dCy + 12z - exp(—|z1(t)])dV,

dzo(t) = e % - 29(t)dt + 1+t2 -exp(—|z2(t)])dCt + 1—&-% - exp(—|z2(t)])dV4,
t € [0,8] U [47,56] U [79, 99];

dz (t) = e z1(t)dt + 1+t2 -exp(—|z1(t)])dCy + 1+t2 -exp(—|z1(t)])dVi,

dzo(t) = €5 - 29 (t)dt + 1+t2 -exp(—|z2(t)])dCy + 1+t2 - exp(—|z2(t)])dV4,

t € [29,47] U [56, 69);

dz (t) = e % - z1(t)dt + 1+t2 -exp(—|z1(t)])dCt + 1ft2 -exp(—|z1(t)])dV4,
dzo(t) = e % zo(t)dt + H_tQ -exp(—|z2(t)])dCy + 1+t2 - exp(—|22(t)])dV4,
t € [8,19]
Based on the uncertainty distributions of ACy and AVy, the sample points ¢ and Uy are ob-
tained from their respective inverse uncertainty distributions as ¢; = \[At In (1 O‘) , 0<
(TL+1[L @, 0<a< 15—?—117
a <l and 0 = n+1 ( uﬁlfﬂmz) v Mz Sa<fiyn, i=1,0m,

a=1.
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When n = 20 of V-n jumps, we conducted the following simulation as Figure 1, (a)
tllustrates coefficient dynamics of the sample points ¢; and vy under different belief degree o;
(b) illustrates the solutions of above uncertain differential equations with V-n jumps under
four different belief degree c.

Dynamics of z,(1) and z,(t) over time under different belief
4

o and 7
)
| J—
| -
3

Values of sample points & and @

i/ 1

4 2
0 01 02 03 04 05 06 07 08 09 1 0 10 20 % 4 5 0 70 8 90 100
belief degree o Time ()

(a) (b)

FIGURE 1. (a) gives the coefficient dynamics of the sample points & and ¥,
under different belief degree «, (b) gives solutions of uncertain differential
equations with jumps under a = 0.2,0.4,0.6,0.8.

For any t € [0,T], z € R?, it is not difficult to obtain that

e

11t 2)[[1 + 91 (¢, 2)[[1 + ([P (2, 2) 11 < (e_ + ) S22+ lzlh) <42+ llz]),

2+ t2

ol

12t 2)[11 + [lg2(t, 2)[11 + [[Ra(t, 2) 11 < (e_ + ) 2+ lzll) <72+ llz]l),

14¢2

(5

|B@Jm1+wau@m+w%uxmls(f+ )42+wm>sm2+th

1+4+¢2

o

|ﬂﬁim1+wdtﬂm+ﬁmﬁimlé(5+ )w2+wm>sa2+uhx

1+4+¢2

which means that, for each i(k) € {1,2,3,4}, the coefficient functions f;(t,2), i) (t,2)
and h;,)(t,2) satisfy the linear growth condition in Assumption 1.
For any t € [0,T], z,Z € R?, it is able to derive that

1f1(t.2) = f1(t,2) |l + lg1(t,2) — 91, Z) [l + [[ha (£, 2) — Pa (2, 2) |1

: - 6 . -
<ei =l 5l —Flh < 4z 3],

1f2(t,2) = fa(t,2) 11 + llg2(t,2) — 92(t, 2)[[1 + [[ha(t, 2) — ha(t, 2)|2

<e sz -zl + Nz =zl <7z — 2|,

1+1¢2
I f3(t,2) — f3(t,2)||1 + |lg3(t,2) — g3(t,Z)||x + ||ha(t,2) — ha(t,Z) |1

<e i -||lz—z|; + Nz — [ < 3|z — 2],

2
1+ ¢2

||f4(t>z) - f4(t,i)||1 + ||g4(t7z) - 94(t7i)||1 + Hh‘l(tvz) - h4(t,i)||1
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4
<e =+ g 2= Al < 5l -3

That is to say, for everyi(k) € {1,2,3,4}, the coefficient functions £ (t,2), i) (t,2)
and h;,)(t,2) satisfy the Lipschitz condition in Assumption 2.

In short, by using Theorem 3.2, it is able to conclude that system (6) has a unique
solution on the interval [0, T], the (b) of Figure 1 also illustrates the existence and uniqueness
of the solution.

5. Conclusions

In this paper, a class of uncertain nonlinear switched systems characterized by V-n
jumps was explored, modeled by a set of uncertain differential equations that incorporated
V-n jumps. Utilizing V-n jumps process and the Banach fixed point theorem, an existence
and uniqueness theorem for the solutions was established and proved on a small interval
[t,t + ¢], assuming that the coefficient functions in each subsystem satisfied the Lipschitz
condition and the linear growth condition. This result was then extended to the broader
interval [0, 7. Finally, an example was provided to validate the the existence and uniqueness.
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