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ADAPTIVE BACKSTEPPING CONTROLLER DESIGN FOR 
LINEAR INDUCTION MOTOR POSITION CONTROL 

Ismail Khalil BOUSSERHANE1, Abdelkrim BOUCHETA2, Abdeldjebar 
HAZZAB3, Benyounes MAZARI4, Mustepha RAHLI5, Mohammed Karim 

FELLAH6 

In this paper, the mover position control of a linear induction motor using an 
adaptive backstepping control design based on filed orientation is proposed. First, 
the indirect field oriented control LIM is derived. Then, a novel adaptive 
backstepping control design technique is investigated to achieve a position and flux 
tracking objective under parameter uncertainties and disturbance of load torque. 
The effectiveness of the proposed control scheme is verified by numerical 
simulation. The numerical validation results of the proposed scheme have presented 
good performances compared to the conventional backstepping controller. 
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1. Introduction 

Nowadays, LIM’s are now widely used, in many industrial applications 
including transportation, conveyor systems, actuators, material handling, pumping 
of liquid metal, and sliding door closers, etc. with satisfactory performance [1, 2]. 
The most obvious advantage of linear motor is that it has no gears and requires no 
mechanical rotary-to-linear converters. The linear electric motors can be classified 
into the following: D.C. motors, induction motors, synchronous motors and 
stepping motors, etc. Among these, the LIM has many advantages such as high-
starting thrust force, alleviation of gear between motor and the motion devices, 
reduction of mechanical losses and the size of motion devices, high-speed 
operation, silence, and so on [1, 2, 3]. The driving principles of the LIM are 
similar to the traditional rotary induction motor (RIM), but its control 
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characteristics are more complicated than the RIM, and the motor parameters are 
time varying due to the change of operating conditions, such as speed of mover, 
temperature, and configuration of rail [3, 4]. 

Field-oriented control (FOC) or vector control [2, 4, 5] of linear induction 
machine achieves decoupled trust and flux dynamics leading to independent 
control of the torque and flux as for a separately excited DC motor. This control 
strategy can provide the same performance as achieved from a separately excited 
DC machine. This technique can be performed by two basic methods: direct 
vector control and indirect vector control. Both DFO and IFO solutions have been 
implemented in industrial drives demonstrating performances suitable for a wide 
spectrum of technological applications [5, 6, 7]. However, the performance is 
sensitive to the variation of motor parameters, especially the rotor time-constant, 
which varies with the temperature and the saturation of the magnetizing 
inductance. Recently, much attention has been given to the possibility of 
identifying the changes in motor parameters of LIM while the drive is in normal 
operation. This stimulated a significant research activity to develop LIM vector 
control algorithms using nonlinear control theory in order to improve 
performances, achieving speed (or torque) and flux tracking, or to give a 
theoretical justification of the existing solutions [1, 6, 7, 8]. 

Due to new developments in nonlinear control theory, several nonlinear 
control techniques have been introduced in the last two decades. One of the 
nonlinear control methods that have been applied to linear induction motor is the 
backstepping design [8, 9, 10]. Backstepping is a systematic and recursive design 
methodology for nonlinear feedback control. This approach is based upon a 
systematic procedure for the design of feedback control strategies suitable for the 
design of a large class of feedback linearisable nonlinear systems exhibiting 
constant uncertainty, and it guarantees global regulation and tracking for the class 
of nonlinear systems transformable into the parametric-strict feedback form. The 
backstepping design alleviates some limitations of other approaches [8, 9, 10, 11, 
12]. It offers a choice of design tools to accommodate uncertainties and 
nonlinearities and can avoid wasteful cancellations. The idea of backstepping 
design is to select recursively some appropriate functions of state variables as 
pseudo-control inputs for lower dimension subsystems of the overall system. Each 
backstepping stage results into a new pseudo-control design, expressed in terms of 
the pseudo-control designs from the preceding design stages. When the procedure 
terminates, a feedback design for the true control input results and achieves the 
original design objective by virtue of a Lyapunov function, which is formed by 
summing up the Lyapunov functions associated with each individual design stage 
[9, 10, 11]. 

In this paper, an adaptive backstepping control design based on filed 
orientation is proposed. The proposed controller is applied to achieve a position 
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and flux tracking objective under parameter uncertainties and disturbance of load 
torque. The reminder of this paper is organized as follows. Section II reviews the 
principle of the indirect field-oriented control (FOC) of linear induction motor. 
Section III shows the development of the adaptive backstepping controller design 
for LIM position control. Section IV gives some simulation results. Finally, some 
conclusions are drawn in section V. 

2. Indirect field-oriented control of the LIM 

The primary (mover) of the adopted three-phase LIM is simply a ‘cut-
open-and-rolled-flat’ rotary-motor primary. The secondary usually consists of a 
sheet conductor using aluminium with an iron back for the return path of the 
magnetic flux. The primary and secondary form a single sided LIM. Moreover, a 
simple linear encoder is adopted for the feedback of the mover position. 

The dynamic model of the LIM is modified from traditional model of a 
three-phase, Y-connected induction motor and can be expressed in the d-q 
synchronously rotating frame as [1, 8, 13, 14, 15]: 
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Where sR  is the winding resistance per phase, rR  is the secondary 
resistance per phase referred primary, mL  is the magnetizing inductance per 
phase, rL  is the secondary inductance per phase, sL  is the primary inductance 
per phase, rv  is the mover linear velocity, h is the pole pitch, P is the number of 
pole pairs, drφ  and qrφ  are d-axis and q-axis secondary flux, respectively, dsi  

and qsi  are d-axis and q-axis primary current, respectively, dsv  and qsv  are d-

axis and q-axis primary voltage, respectively, rrr RL=τ  is the secondary time-

constant, ( ))(1 2
rsm LLL−=σ  is the leakage coefficient, ( )rmf hLLPK 23 π=  is 
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the force constant, eF  is the electromagnetic force, LF  is the external force 
disturbance, M  is the total mass of the moving element and D is the viscous 
friction and iron-loss coefficient. 

The main objective of the vector control of linear induction motors is, as in 
DC machines, to independently control the electromagnetic force and the flux; 
this is done by using a d-q rotating reference frame synchronously with the rotor 
flux space vector [2, 5, 6, 7]. In ideally field-oriented control, the secondary flux 
linkage axis is forced to align with the d-axis, and it follows that [2, 5, 6]: 
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== rdr φφ constant                                                (7) 
By use of the indirect field-oriented control technique and with the fact 

that the electrical time constant is much smaller than the mechanical time 
constant, the electromagnetic force shown in (5) can be reasonably represented by 
the following equations: 
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Moreover, using (4) the feedforward slip velocity signal can be estimated 
using rdφ and qsi as follows: 
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3. Adaptive backstepping control of LIM 

a. Backstepping technique 

Consider the system: 
( ) ( )uxgxfx +=& , ( ) 00 =f                                     (11) 

Where nRx∈ is the state and Ru∈ is the control input. Let ( )xudes α= , 
( ) 00 =a  be a desired feedback control law, which, if applied to the system in (11), 

guarantees global boundedness and regulation of ( )tx  to the equilibrium point 
0=x as ∞→t , for all ( )0x  and ( )xV  is a control Lyapunov function, where [9, 

10] : 
( ) ( ) ( ) ( )[ ] 0<+
∂

∂ xxgxf
x
xV α , ( ) 0>xV                                (12) 
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Consider the following cascade system: 
( ) ( )yxgxfx +=& , ( ) 00 =f                                  (13) 

( ) ( )uxxm ζβζζ ,, +=& , ( ) 00 =h                             (14) 
( )xhy =                                                    (15) 

Where for the system in (13), a desired feedback ( )xa and a control 
Lyapunov function V(x) are known. Then, using the nonlinear block backstepping 
theory in [9, 10, 11, 12], the error between the actual and the desired input for the 
system in (13) can be defined as α−= yz , and an overall control Lyapunov 
function ( )ζ,xV  for the systems in (13) and (14) can be defined by augmenting a 
quadratic term in the error variable z  with ( )xV : 

( ) ( ) 2
2
1, zxVxV +=ζ                                  (16) 

Taking the derivative of both sides gives: 

( ) ( ) zzxVxV &&&
2
1, +=ζ                                    (17) 

From which solving for ( )ζ,xu , which renders ( )ζ,xV&  negative definite, 
yields a feedback control law for the full system in (13-15). One particular choice 
is [10]: 
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b. Application to linear induction motor 

The control objective is that the closed-loop control system is 
asymptotically stable and the mover position tracking of d(t) to a desired reference 
signal dref(t) and , which is assumed to have bounded derivatives up to the third-
order. 

Now, we use the adaptive backstepping techniques to achieve the stability 
and position tracking objectives. 

Step 1: 
For the control objective, the position tracking control, we regard the 

velocity rv  as the “control” variable (called virtual control in [10, 11, 12]). Define 
the position tracking error signal 

)()()(1 tdtdte ref −=                                           (19) 
Then its time derivative is 
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)()()()()(1 tvtdtdtdte refref −=−= &&&&                       (20) 
Using the simple Lyapunov function 

2
11 2

1 eV =                                                    (21) 

We can obtain a proportional (P-) feedback with feedforward of the 
desired reference velocity [16, 17] 

)()()( 11 tdtektv ref
&+=                                   (22) 

Step 2: 
Define another error signal between the velocity and the “desired velocity” 

[ ] )()()()()()( 112 tvtdtektvtvte refref −+=−= &              (23) 
So, the equation (22) can be expressed as 

)()()( 2111 tetekte +−=&                                  (24) 
Its time derivative can be writing as follows 
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The derivative of 2V  along the trajectory of the error dynamical equations 
is 
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So the “control” ( )tiqs  in (28) is asymptotically stabilizing. 
Since the parameters M , F  and Γ  are unknown, we need to use their 

estimates ( )tM̂ , ( )tF̂ , ( )tΓ̂  in (28), that is, 
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Step 3: 
Now, we define the final error signal,  
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Where ( )t1φ  is a known signal. Using this definition, we can express the 
dynamical equation (25) as, 
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and compute the derivative equation for ( )te3  as 
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Where, Γ−Γ=Γ−=−= ˆ~,ˆ~,ˆ~ FFFMMM  are the parameter estimation 
errors, and 1φ , 2φ , 3φ , 4φ  are known signal expressed by the following 
expressions [16, 17] 
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Step 4: 
Now, we add terms concerning 3e  and M~ , F~  and Γ~  to 2V  to form the 

following Lyapunov function 
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Where ( )3,2,1=iiγ  are positive design constants of adaptive gains. 
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Using equations (23), (31), and (32), we can compute the derivative of eV  
along the trajectory of error dynamical equations as 
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Therefore, if we choose the control law as 
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And the update laws as 
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For sufficiently large 0, 32 >kk . With the control law (33), the dynamical 
equation (32) can be written as 
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4. Simulation results 

We demonstrate the effectiveness of the proposed control scheme for 
position control of the linear induction motor. 

First, we present the simulated results of the proposed adaptive 
backstepping control system for periodic square, sinusoidal and triangular inputs. 
The parameter used in simulation are chosen as 181 =k , 1232 == kk , 

025.02 =γ , 0036.02 =γ , 006.03 =γ . 
The position responses of the mover, electromagnetic force, d-flux, q-flux 

and the control effort are shown in Figs. 1, 2 and 3. From the simulated results, 
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Mover position & reference 

Electromagnetic force [N] Control effort 

Fluxes drφ and qrφ  [Wb] 

Fig. 1. Simulated results of adaptive backstepping controller 
for LIM position control (Step reference change) 

the proposed adaptive backstepping controller can track periodic step, sinusoidal 
and triangular inputs precisely. Next, the simulated results of the proposed 
adaptive backstepping control system for periodic step, sinusoidal and triangular 
inputs with load force disturbances (constant, sinusoidal and triangular load force) 
are shown in Figs. 4, 5, 6, 7 and 8. From simulated results, the tracking responses 
of the proposed controller are insensitive to load force application (the controller 
reject the external disturbance without overshoot and with a minimum response 
time). Fig.9 shows error position for adaptive backstepping control of LIM. A 
comparison between the proposed controller (adaptive backstepping) and the 
conventional backstepping is shown in Fig. 10 and 11 for step, sinusoidal and 
triangular reference signal (error position) for different variation of the total mass.  
In Figs. 10 and 11, it can be observed that the position response of the adaptive 
backstepping controller present better tracking characteristics, have minor 
insensitive to the mass variation and is more robust than the conventional 
backstepping controller. Fig. 12 shows the values of the estimated parameters M , 
F  and Γ . 
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Fig. 2. Simulated results of adaptive backstepping controller for 
LIM position control (Sinusoidal reference change) 

Mover position & reference 

Electromagnetic force [N] Control effort [N]

Fluxes drφ and qrφ  [Wb] 

Mover position & reference [m]

Electromagnetic force [N] Control effort [N]

Fluxes rdφ and rqφ  [Wb] 

Fig. 3. Simulated results of adaptive backstepping controller for 
LIM position control (Triangular reference change) 
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Fig. 4. Simulated results of adaptive backstepping controller 
for LIM position control with load force variation: 

Constant load force 10N occurring at 5sec. 

Mover position & reference [m]

Control effort [N] Electromagnetic force [N]

Fluxes rdφ and rqφ  [Wb] 

Electromagnetic force [N] Control effort [n]
Fig. 5. Simulated results of adaptive backstepping controller for 

LIM position control with load force variation: 
Constant load force 10N occurring at 5sec. 

Fluxes rdφ and rqφ  [Wb] Mover position & reference [m]
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Fig. 6. Simulated results of adaptive backstepping controller 
for LIM position control with constant load force 10N  

Mover position & reference [m]

Electromagnetic force [N] Control effort [N] 

Fluxes rdφ and rqφ  [Wb] 

Mover position & reference [m]

Electromagnetic force [N] Control effort [N]

Fluxes rdφ and qrφ  [Wb] 

Fig. 7. Simulated results of adaptive backstepping controller for 
LIM position control with load force variation: 

Sinusoidal load force 10N occurring at 5s. 
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Mover position & reference [m]

Electromagnetic force [N] Control effort [N]

Fluxes drφ and qrφ   [Wb] 

Fig. 8. Simulated results of adaptive backstepping controller 
for LIM position control with load force variation: 

Triangular load force 10N occurring at 5s. 

Fig. 9. Simulated results of the adaptive backstepping control for LIM 
error tracking  
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Fig. 10. Simulated results of the a conventional backstepping 
control for LIM error tracking with mass value variation  

Fig. 11. Simulated results of the a conventional backstepping 
control for LIM error tracking with mass value variation  
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Fig. 12. Estimated parameters M̂ , Γ  and F̂  in nominal case  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Conclusions 

This paper has demonstrated the applications of a nonlinear adaptive 
control system to the periodic motion control of a LIM. First, an adaptive 
backstepping controller for position control of LIM was designed. Moreover, a 
novel adaptive backstepping control design technique is investigated to achieve a 
position and flux tracking objective under parameter uncertainties and disturbance 
of load torque. The control dynamics of the proposed hierarchical structure has 
been investigated by numerical simulation. Simulation results have shown that the 
proposed adaptive backstepping controller has presented satisfactory 
performances (no overshoot, minimal rise time, best disturbance rejection) for 
time-varying external force disturbances and total mass variation. Finally, the 
proposed controller provides drive robustness improvement. 
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Appendix 

Table 1 
Linear induction motor parameters 

s2φ [Wb] 0.9378 Ls [H] 0.1078 
Rs [Ω] 0.34 ƒn [Hz]  50 
Rr [Ω] 0.195 M [kg]  5.47 
Lr [H] 0.1078 D [Nm.s/rd] 2.36 
Lm [H] 0.1042 p 2 
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