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A METHOD TO COMPARE TWO COMPLEXITY
FUNCTIONS USING COMPLEXITY CLASSES

Andrei-Horia MOGOS', Adina Magda FLOREA?

Complexitatea unui algoritm poate fi exprimatd ca o functie, numitd functie
de complexitate. In acest articol studiem compararea a doud functii de complexitate
folosind clase de complexitate. Dupa ce definim multimea tuturor functiilor de
complexitate comparabile cu o functie datd, prezentam cdteva proprietdti ale acestei
multimi. Cele mai importante rezultate din articolul nostru sunt cateva criterii
suficiente pentru ca doud functii de complexitate sd fie comparabile si cdteva criterii
suficiente pentru ca doud functii de complexitate sd fie incomparabile.

The complexity of an algorithm can be expressed as a function, called
complexity function. In this paper we study the comparison of two complexity
functions using complexity classes. After defining the set of all complexity functions
comparable with a given function, we give some properties of this set. The most
important results of our paper are some sufficient criteria for two complexity
functions to be comparable and some sufficient criteria for two complexity functions
to be incomparable.

Keywords: algorithm, complexity function, complexity class, complexity
functions comparison

1. Introduction

Complexity functions are used in various research fields. For example, in
[1] complexity functions describe some properties of the dynamic systems, and
in [2] complexity functions describe the complexity of the structure of models
related to some technical systems. In this paper, complexity functions are used for
measuring the complexity of algorithms.

The complexity of an algorithm can be expressed using a complexity
function, i.e., a positive real valued function defined on the set of positive
integers. In many cases such functions have complicated expressions and using
these functions is a difficult task. For this reason, computer scientists often
express the complexity of an algorithm using complexity classes, a simpler way of
expressing the complexity of an algorithm, but a less exact one. Some basic
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properties of the complexity classes are presented in almost any paper or book
that contains some elements of algorithms complexity theory. See, for example
[31, [4], [5].

In this paper we study the complexity functions using the elementary
theory of functions and sets. Other approaches use more advanced mathematical
theories: for example, in [6], the authors use the nonsymmetric Hausdorff distance
for studying the complexity functions; in [7] the authors introduce a new
quasi-metric on the dual p-complexity space for studying the complexity distances
between algorithms. Nevertheless, our approach is powerful enough to help us to
obtain several interesting results.

As one can observe, when comparing algorithms, in fact we compare
complexity functions, or at least complexity classes. A possible use case of
algorithms comparison is when someone wants to develop a very efficient
algorithm for solving a given problem, see for example [8]. Another use case is
when someone is interested in complexity analysis in heterogeneous systems, see
for example [9].

An interesting idea is presented in [4]: the authors only draw an analogy
between the comparison of the complexity functions using complexity classes and
the comparison of real numbers. Their immediate conclusion was that every two
real numbers can be compared, but not every two complexity functions can be
compared.

Starting from the results presented in [10], [11], this paper studies the
comparison of two complexity functions using complexity classes. After we
define the set of all complexity functions comparable with a given function, we
give some properties of this set. We also present some interesting properties of the
complexity classes. The main contributions of this paper are some sufficient
criteria for two complexity functions to be comparable and some sufficient criteria
for two complexity functions to be incomparable.

The paper is organized as follows. Section 2 contains the definitions used
for the rest of the paper. Section 3 presents some properties of the complexity
classes. Section 4 contains the main results of our paper. Finally, in Section 5, we
present the conclusions of the paper.

2. Definitions

We will denote by R, the set of all positive real numbers and by N, the
set of all positive integers. We will consider the function g: N, — R, to be an
arbitrary fixed complexity function. Consider the following complexity classes

(see [4], [5D):
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O(g(n)={f:N, > R, |3c,,c, € R, ,3n, € N, such that )
¢, g < f(n) < ¢, g(n).Yn>ny)

O(g(n)={f:N, >R, |3ceR,,3n, € N, suchthat 2
S(n)<c-g(n),Vnzny}

Q(g(n)={f:N, >R, |IceR, ,In, € N, such that 3)
c-g(m)< f(n),Vnzny;

o(g(n)={f:N, >R, |VceR, ,In, e N, suchthat @
f(n)<c-g(n),Vnzny}

w(g(n))={f:N, >R, |VceR, ,3n, €N, suchthat 5)

c-gn)< f(n),Vvnzn,}

S (n) € ©(g(n)) W O(g(n) W Q(g(n) v o(g(n) v w(g(n))

Definition 1. Let f:N, — R, be a complexity function. The function
f(n) is comparable with the function g(n) if

(6)

We say that the function f(n) is incomparable with the function g(n) if f(n) is

not comparable with g(n). We denote by C(g(n)) the set of all the complexity

functions comparable with the function g(n) .
Remark 1. We have the following identity:

C(g(n) = 0(g(n) v 0(g(n) v Q(g(n)) v o(g(n) v al(g(n) (7)

Definition 2. We define the following complexity classes:

00(g(n)) =0(g(n) \ (o(g(n)) L O(g(n)))

Ow(g(n) =Q(g(n) \ (O(g(n) v w(g(n)))

3. Some properties of the complexity classes

®)
)

This section shows some properties of the complexity classes defined in
the previous section.
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Proposition 1. We have the following properties:
a) ©(g(n)) # O, O(g(n)) = 9, Q(g(n)) # 9
b) o(g(n)) # 9, w(g(n)) # I
c) 00(g(n)) = O, Ow(g(n)) = .
Proof- a) These results follow from the following observations:

g(n) € ©(g(n)), g(n) € O(g(n)), g(n) € Q(g(n)). (10)

b) It can be proved, using (4) and (5), that g(n)/neo(g(n)) and
n-g(n)ew(gn).
c) Let us show that 0®(g(n)) # . Consider two complexity functions:

fi(n)eO(g(n)) and f,(n)eo(g(n)). We define the following complexity
function:

fi(n), n=2-k+1

fo(n), n=2-k (ih

fiN, >R, f(n)={

The function f(n) is defined by f,(n) for n odd number, and by f,(n)
for n even number.
Next, we prove that f(n)eco®(g(n)). We have to show that

f(n) e O(g(n), f(n)¢O(g(n),and f(n)¢o(g(n)).
From f,(n) € ©(g(n)) we have:

3c,,c, € R,,3n, € N, such that

, , , (12)
¢ g(m) < fi(n) <c,-g(n),Vn 2 n,
From f,(n) € o(g(n)) we have:
V¢ eR,,3n, € N, suchthat f,(n)<c -g(n),vn=>n, (13)
From the definition of f'(n) it follows that
3e,,c, €R,,3n, € N, such that
(14)

c,-gm< f(n)<c,-g(n),vn=ny,n=2-k+1
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Vc¢' €R,,3n, € N, such that
. . (15)
f(ny<c -gn),Vvnzn,,n=2-k
and consequently
Jc, €R,,3n, € N, such that
, , (16)
f(n)<c, -gn),vonzn,,n=2-k+1
3c" eR,,3n, € N, such that
. . (17)
f(m)<c -g(n),Ynzn,,n=2-k
Let be ¢ = max{c,,c } and let be n, = max{n,,n,} . It follows that
f(n)<c-g(n),vn=n, (18)
so we have f(n)e€ O(g(n)).
Next, we assume that f(n) € ©(g(n)). We have:
de,c, € R, ,3n, € N, such that (19)
¢ -g(m) < f(n)<c,-g(n),vn2n,
From the definition of f(n) we have
V¢ eR,,3n, € N, such that f(n)<c -g(n),vn>n,,n=2-k (20)
Let be 77, = max{n,,n,}.For ¢’ =c, we have
¢, -gm)<f(n),Vnzn, and f(n)<c,-gn),Vonzn,n=2-k (21)

Consequently f'(n) ¢ ©(g(n)).
Using the same idea, it can be proved that f(n) ¢ o(g(n)).

So, we have f(n)e O(g(n)), f(n)¢0®(g(n)), and f(n)¢&o(g(n)). It

follows that f(n) € O(g(n))\ (o(g(n))w O(g(n))) thatis f(n)ec o0®(g(n)).

For proving that ®w(g(n)) # @ one can use a similar idea.



74 Andrei-Horia Mogos, Adina Magda Florea

Proposition 2.We have the following properties:
a) o(g(n)) Nw(g(n)) =9, O(g(n)) NQ(g(n)) =O(g(n))
b) o(g(n)) N Q(g(n)) =9, O(g(n)) Nw(g(n)) =9
c) o(g(n)) < O(g(n)), ©(g(n)) = O(g(n))
d) w(g(n)) = Q(g(n)), O(g(n)) = (g(n))
Proof. The results can be obtained using (1), (2), (3), (4), and (5).

Proposition 3.We have the following properties:
a) o(g(n)) NO(g(n)) =9, o(g(n)) M o®(g(n)) =9, 00(g(n)) NO(g(n)) =9.
b) o(g(n)) W 00(g(n)) W O(g(n)) = O(g(n)).
In other words, the complexity classes o(g(n)), 0®(g(n)) and ®(g(n)) form a
partition of the complexity class O(g(n)) .

Proof. a) The first equality can be obtained using the definitions (1) and
(4). The other two equalities are easily obtained from the definition of the
complexity class 0®(g(n)).

b) From Proposition 3, we have o(g(n)) v ©(g(n)) < O(g(n)). Using the
definition of 0®(g(n)) we have o(g(n)) U o®(g(n))w O(g(n))=0(g(n)).

Proposition 4. We have the following properties:
a) 0(g(n)) N a(g(n) =9, B(g(n)) NOw(g(n)) =9, Owu(g(n) N w(g(n) =0
b) O(g(n)) W Bw(g(n) v w(g(n)) =Q(g(n)).
In other words, the complexity classes ®(g(n)), Ow(g(n)) and w(g(n)) form a
partition of the complexity class Q(g(n)).

Proof. The proof follows the same idea as the proof for Proposition 4.

Proposition 5. Let be N, and N, two infinite subsets of N, , such that N,

and N, form a partition of N, . Letbe f,(n) and f,(n) two complexity functions.
Let be

_ fi(n),nENl
f(n) _{fz(n),n e N, (22)

Then, we have:

a)If f,(n) € ©(g(n)) and f,(n) € ©(g(n)) then f(n) € O(g(n)).
b) If f,(n) € O(g(n)) and f,(n) € O(g(n)) then f(n) € O(g(n)).
o) If f,(n) € Q(g(n)) and f,(n) € Q(g(n)) then f(n) € Q(g(n)).
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d) If f,(n) € o(g(n)) and f,(n) € o(g(n)) then f(n) € o(g(n)).
e) If f(n) € w(g(n)) and f,(n) € w(g(n)) then f(n) € w(g(n)).

Proof. For proving these results, we use the definitions from (1), (2), (3),
(4), and (5).

a) From f,(n) e ®(g(n)), f,(n)e®(g(n)), and from the expression of
f(n) we have:

3e,,c, €R,,In, € N, such that

, : , (23)
¢, -gm)< fi(n)<c,-g(n),Yn=n,,neN,

3e,,c, €R,,3n, € N, such that

. . . (24)
¢ -gmn)<f,(n)<c,-gn),vnzny,neN,

Let be ¢, =min(c,,¢,), ¢, =max(c,,c,), and n, = max(n,,n,). Then, we have:

¢ -gn)< fi(n)<c,-gn),Ynzny,neN,
(25)
¢ -gm)< f,(n)<c,-gn),Vn=n,,neN,

It follows that f(n) € ®(g(n)).
b), ¢), d), e) The proofs use the same idea as the proof for a).

Proposition 6. Letbe N, and N, two infinite subsets of N, , such that N,
and N, form a partition of N, . Let be f,(n) and f,(n) two complexity functions.
Let be

_ ﬁ(n)anENl
f(n) _{f2(n),n e N, (26)

Then, we have:

a)If f,(n) € ©(g(n)) and f,(n) ¢ ©(g(n)) then f(n) ¢ O(g(n)).
b) If fi(n) € O(g(n)) and f,(n) € O(g(n)) then f(n) & O(g(n)).
) If f(n) € (g(n)) and f,(n) ¢ Q(g(n)) then f(n) ¢ Q(g(n)).
d) If f,(n) € o(g(n)) and f,(n) ¢ o(g(n)) then f(n) ¢ o(g(n)).
e) If f(n) € w(g(n)) and f,(n) & w(g(n)) then f(n) ¢ w(g(n)).
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Proof. For proving these results, we use the definitions from (1), (2), (3),
(4), and (5).
a) From f,(n) ¢ ©(g(n)) we have that the property

3c,,c, € R,,3n, € N, such that

. . . (27)
¢ -gmn)<f,(n)<c,-g(n),vyn=ny,neN,
is false. If follows that the property
3¢, ,c, €R,,3n, € N, such that
(28)

¢ -g(n)< f(n)<c,-g(n),vn=n,,neN,

is false. Since N, is an infinite subset of N, , we have f(n) ¢ ©(g(n)).
b), ¢), d), e) The proofs use the same idea as the proof for a).

Proposition 7. Letbe N, and N, two infinite subsets of N, , such that N,
and N, form a partition of N, . Letbe f,(n) and f,(n) two complexity functions.
Let be

_ ﬁ(l’l),}’leNl
S (n) _{fz(n),n e N, (29)

Then, we have:
a)If f,(n)€o(g(n)) and f,(n) € O(g(n)) then f(n) <€ 0O(g(n))
b) If f,(n) € ©(g(n)) and f,(n) € w(g(n)) then f(n) € Ow(g(n))

Proof. For proving these results we use Proposition 5, Proposition 6, and
the properties: o(g(n)) NO(g(n))= @ and O(g(n)) Nw(g(n))= O.

a) From f,(n)eo(g(n)) and f,(n) e ®(g(n)) we have f,(n)<co(g(n))
and f,(n) ¢ o(g(n)). Consequently, f(n)¢o(g(n)) .

From f(n)eo(g(n)) and f,(n)e®(g(n)) we have f (n)¢O(g(n))
and f,(n) € ©(g(n)). Consequently, f(n)e ®(g(n)).

From f(n)eo(g(n)) and f,(n)e®(g(n)) we have f (n)e O(g(n))

and f,(n) € O(g(n)). Consequently, f(n)e O(g(n)).
It follows that f(n)eO(g(n))\(o(g(n))w®(g(n))). Consequently,

f(n) € 0O(g(n)).

b) The proof uses the same idea as the proof for a).
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Proposition 8. We have the following property: f(n) € 0®(g(n)) if and

only if g(n) € Ow(f(n)).
Proof- We have the following well known properties:

f(n)e®(g(n) if and only if g(n)eO(f(n)) (30)
f(n) e O(g(m)) if and only if g(n) e Q(f(n)) (31
f(n)eo(g(n) if and only if g(n)ea(f(n) (32)

From Definition 2, we have:
00(g(n)) = 0(g(n)) \ (o(g(n)) L O(g(n))) (33)
Ow(g(n)) =Q(gn) \ (0(g(n) v a(g(n))) (34)

Consider that f(n) € 0®©(g(n)). We show that g(n) e Ow(f(n)). From the
definition of 0®(g(n)) we have

S(n) € O(g(n))\(o(g(n))w O(g(n))) (35)
so, we have
S(n) € O(g(n)), f(n) & o(g(n)), f(n) & O(g(n)) (36)

Using (30), (31), (32) it follows that g(n)eQ(f(n)), gn)eao(f(n)),
g(n) & O(f(n)). Consequently, g(n) € Q(f(n)) \(O(f(n)) v a(f(n). It
follows that g(n) € Ow( f(n)).

The other implication can be proved using the same idea.

Proposition 9. Let be N, and N, two infinite subsets of N, , such that N,

and N, form a partition of N, . Letbe f,(n) and f,(n) two complexity functions.
Let be

_ ﬁ(l’l),}’leNl
f(n)—{fz(n),n e N, (37)
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Then, we have:

a)If f,(n) € 00(g(n)) and f,(n) € o(g(n)) then f(n) € 0O(g(n)).
b) If f,(n) € 00(g(n)) and f,(n) € ©(g(n)) then f(n) < 0O(g(n)).
¢) If fi(n) € ®w(g(n)) and f,(n) € w(g(n)) then f(n) € Ow(g(n)).
d) If f(n) € ®a(g(n)) and f,(n) € ©(g(n)) then f(n) € Ow(g(n)).

Proof.

a) From f,(n) € 0®(g(n)) we have that f(n) e O(g(n)), f,(n)eo(g(n)),
and f(n)¢0O(g(n)). From f,(n)eo(g(n)) we have that f,(n)eO(g(n)),
fr(n)eo(g(n)), and f,(n)e O(g(n)). Consequently, using Proposition 5 and
Proposition 6, we have f(n)e€ O(g(n)), f(n)¢o(g(n)),and f(n)e O(g(n)). It
follows that f(n) € 0®(g(n)).

b), ¢), d) The proofs use the same idea as the proof for a).

4. The main results

Theorem 1. Letbe f(n) e C(g(n)). Then g(n) e C(f(n)).
Proof. We will use a well known property of the complexity classes:

/i) € O(f,(n)) if and only i f,(n) € Q(f,(n)) (38)

The hypothesis f(n) € C(g(n)) implies that f(n)e O(g(n))v Q(g(n)). From
Proposition 2, we have O(g(n)) N Q(g(n)) = B(g(n)).

It follows that we have two possibilities: either f(n)e O(g(n)) or
f(n) e (Qg(n)\O(g(n))). If f(n)eO(g(n)) then g(n)eQ(f(n)), hence
g(n) e C(f(n).If f(n) e (CUg(n))\O(g(n))) < Q(g(n)) then g(n) e O(f(n)),
hence g(n)e C(f(n)).

Theorem 2. The complexity classes o(g(n)), 0®(g(n)), ©O(g(n)),
®w(g(n)) and w(g(n)) form a partition of the set C(g(n)), that is:
a) C(g(n)) = o(g(n)) W 00(g(n)) U B(g(n)) W Ow(g(n)) v w(g(n))
b) The complexity classes o(g(n)), 00®(g(n)), O(g(n)), Ow(g(n)) and
w(g(n)) are pairwise disjoint.

Proof. a) For proving this result we use Remark 1, Proposition 3, and
Proposition 4. From

C(g(n)) =0(g(n) W O(g(n) W Q(g(n) wo(g(n)waw(gn)  (39)
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we have
C(g(n)) =0(g(n)) Vo(g(n))wob(g(n)wO(g(n)) (40)
U B(g(n)vuBw(g(n) v wn(g(n)vo(g(n)ww(g(n))

It follows that

C(g(m)) = o(g(n))0B(g(n)) W O(g(n)wO(g(n)Va(g(n) (41)

b) From Proposition 3, it follows that o(g(n)), 0®(g(n)) and O(g(n)) are
pairwise disjoint. From Proposition 4, if follows that ®(g(n)), Ow(g(n)) and
w(g(n)) are pairwise disjoint.

From Proposition 2, if follows that o(g(n)) and w(g(n)) are disjoint.
Using Proposition 2, we have that o(g(n)) N Q(g(n)) =9, hence o(g(n)) and
®w(g(n)) are disjoint. Using again Proposition 2, have O(g(n)) N w(g(n)) =9,
hence 0®(g(n)) and w(g(n)) are disjoint.

From Proposition 2 we have that O(g(n)) N Q(g(n))=0(g(n)). We
know that 0®(g(n)) < O(g(n)) and Ow(g(n)) < Q(g(n)). We also know that
00(g(n)) and O(g(n)) are disjoint and O(g(n)) and Ow(g(n))are disjoint. It
follows that 0®(g(n)) and Ow(g(n)) are disjoint.

Consequently o(g(n)), 0®(g(n)), ©(g(n)), Ow(g(n)) and w(g(n)) are
pairwise disjoint.

Theorem 3. Let be f,(n) € o(g(n)) and f,(n) € w(g(n)) two complexity

functions. Then f,(n) € C(f,(n)) and f,(n)e C(f,(n)).
Proof. From f,(n) € o(g(n)), we have:

V¢ €R,,3n, € N, such that f,(n)<c -g(n),Vn=>n, (42)
From f,(n) € w(g(n)), we have:
V¢ eR,,3n, € N, such that ¢ -g(n)< f,(n),vn>n, (43)

Let be ceR,; for ¢ =c =c there exist n, and n, with the above properties.

Let be n, = max{n,,n,}. Then, we have:
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filny<c-g(n) and c-g(n)< f,(n),Vn=n, (44)
that is:

fi(n)y<c-g(n)< f,(n),Vnzn, (45)
It follows that:

dc=1eR,,3n,=n,e N, such that f,(n)<c - f,(n),Vn=n, (46)

hence f (n)e€ O(f,(n)). From here, we have f,(n)e C(f,(n)). Next, using
Theorem 1, it follows that £, (n) € C(f,(n)).

Remark 3. If f(n) € C(g(n)) we say that f(n) and g(n) are comparable.
Note that, from Theorem 1, if f(n) e C(g(n)) then g(n) € C(f(n)).

Theorem 4.We have the following properties:
a) Letbe f,(n)eo(g(n))and f,(n) e ®(g(n)).Then f (n)e C(f,(n)).

b) Letbe f,(n) € o(g(n)) and f,(n) € ®w(g(n)). Then f,(n)e C(f,(n)).
Proof. We prove that if f,(n)eo(g(n)) and f,(n)eQ(g(n)) then

fi(n) € C(f,(n)). From f,(n)c€o(g(n)) and f,(n) e Q(g(n)) we have:

Ve eR,,3n, € N, such that f,(n)<c -g(n),Yn=>n, (47)

3¢’ eR,,3n, € N, such that ¢ -g(n)< f,(n),VYn=>n, (48)
If we choose ¢ = ¢, then we have:

fim)y<c -gn) < f,(n),Yn>max(n,,n,) (49)
Next, we have

Jc=1eR,,3In, =max(n,,n,) € N, such that

filmy<e- fo(m),¥n2n, (50)

Consequently, f,(n) € O(f,(n)). It follows that f,(n) € C(f,(n)) .
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Using Proposition 4, we have:
O(g(n) = Q(g(n)) (51)
Oaw(g(n)) < Q(g(n)) (52)

a) From f(n)eo(g(n)) and f,(n)e®(g(n)) we have that
fi(n)eo(g(n)) and f,(n) € €(g(n)). It follows that f,(n) e C(f,(n)).

b) From f,(n)eo(g(n)) and f,(n)eO®w(g(n)) we have that
fi(n)eo(g(n)) and f,(n) e Q(g(n)). It follows that f,(n)e C(f,(n)).

Theorem 5. We have the following properties:
a) Letbe f (n)e w(g(n))and f,(n) € ®(g(n)). Then f,(n)e C(f,(n)).

b) Let be f,(n) € w(g(n)) and f,(n) € 0®(g(n)). Then f,(n)e C(f,(n)).
Proof. The proof follows the same idea as the proof for the Theorem 4.

Theorem 6. We have the following properties:
a) Letbe f,(n) € 0®(g(n)) and f,(n) e O®(g(n)).Then f (n)e C(f,(n)).
b) Let be f,(n) € ©(g(n)) and f,(n) € Ow(g(n)). Then f,(n) e C(f,(n)).

c) Letbe f,(n) € 00®(g(n)) and f,(n) e ®w(g(n)). Then f (n)e C(f,(n)).
Proof- Using the same idea used in the proof of Theorem 4, one can prove

that if f,(n) € O(g(n)) and f,(n) € Q(g(n)) then f,(n)e C(f,(n)).
a) We have 0O(g(n)) < O(g(n)) and ©(g(n)) < Q(g(n)). Consequently, we have

f,(n)eO(g(n)) and f,(n) € Q(g(n)). It follows that f,(n) € C(f,(n)).
b), ¢) The proofs follow the same idea used for the proof of a).

Theorem 7. We have the following properties:
a) There exists f,(n) € o(g(n)), f,(n) € 00(g(n)) such that f (n)e C(f,(n))
b) There exists f,(n) € Ow(g(n)), f,(n) € o(g(n)) such that f, (n)e C(f,(n))

Proof.
a) Let be

g(n)/n*, n=2-k+1

gn) , n=2-k (53)

Si(n)=g(n)/n, fz(”):{



82 Andrei-Horia Mogos, Adina Magda Florea

It is easy to see that g(n)/neo(g(n)), g(n)/n* eo(g(n)), and g(n)c®(g(n)).
We have f,(n) € o(g(n)). Using Proposition 7, we have that f,(n) € 0©(g(n)).
One can observe that f,(n)ew(g(n)/n’) and f,(n)eo(g(n)). In
addition, the set of odd naturals and the set of even naturals are infinite sets. It
follows that f,(n) e C(f,(n)).
b) The proof uses the same idea as the proof for a).

Theorem 8. We have the following properties:

a) Letbe g(n) eo(f,(n))and g(n) € w(f,(n)). Then f,(n)e C(f,(n)).
b) Letbe g(n) € o(f,(n)) and g(n) € O(f,(n)). Then f,(n)e C(f,(n)).
c) Letbe g(n) €o(f,(n)) and g(n) e Ow(f,(n)). Then f,(n)e C(f,(n)).
d) Letbe g(n) e a(f,(n))and g(n) € O(f,(n)). Then f,(n) e C(f,(n).

e) Letbe g(n) e w(f,(n))and g(n) € 0O(f,(n)). Then f,(n)e C(f,(n)).

Proof- We will use Proposition 8, formulas (31), (32), (35), Theorem 3,
Theorem 4, and Theorem 5.

a) From g(n)eo(f(n)) and g(n)ew(f,(n)) we have that

fi(n) e w(g(n)) and f,(n) € o(g(n)). It follows that f,(n) € C(f,(n)).
b), ¢), d), e) The proofs use the same idea as the proof for a).

Theorem 9. Let be N, and N, two infinite subsets of N, such that N,

and N, form a partition of N, . Letbe f,(n) and f,(n)two complexity functions.
Let be

_ ﬁ(l’l),}’lEN]
f(n)—{fz(n),n e N, (54)

Then, we have:

a)If fi(n) € 0©(g(n)) and f,(n) € o(g(n)) then f(n) e C(g(n)).
b) If f,(n) € 00(g(n)) and f,(n) € O(g(n)) then f(n)e C(g(n)).
) If f(n) €o(g(n)) and f,(n) € ©(g(n)) then f(n) e C(g(n)).
d)If f,(n) € ®w(g(n)) and f,(n) € w(g(n)) then f(n)e C(g(n)).
e)If fi(n) € Ow(g(n)) and f,(n) € O(g(n)) then f(n) e C(g(n)).
D If f,(n) € @(g(n)) and f,(n) € ©(g(n)) then f(n)e C(g(n)).

Proof. For proving the theorem, we use Proposition 9 and Proposition 5.
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a) From f(n)eoB®(g(n)) and f,(n)eo(g(n)) we have that
f(n) €o®(g(n)). Consequently, f(n)e O(g(n)). It follows that f(n) e C(g(n)).
c) From f(n)eo(g(n)) and f,(n)e®(g(n)) we have that
f,(n) € O(g(n)) and f,(n) € O(g(n)). Consequently, f(n)e O(g(n)). It follows

that f(n) € C(g(n)).

b), d), e) The proofs use the same idea as the proof for a).
f) The proof uses the same idea as the proof for c).

Theorem 10. Let be N, and N, two infinite subsets of N, such that N,
and N, form a partition of N, . Letbe f,(n) and f,(n) two complexity functions.
Let be

fl(n)aHENl

o=

(55)

Then, we have:
a)If f,(n) e o(g(n))and f,(n) € w(g(n)) then f(n)¢ C(g(n)).
b) If fi(n) € o(g(n))and f,(n) € Ow(g(n)) then f(n)¢ C(g(n)).
¢) If f,(n) € 0©(g(n))and f,(n) € o(g(n)) then f(n)¢ C(g(n)).
d) If f,(n) € 0®(g(n))and f,(n) € @w(g(n)) then f(n) ¢ C(g(n)).
Proof. For proving that f(n) € C(g(n)), we need to find a complexity

class that contains both f,(n) and f,(n). We will show that this is impossible.
Using Remark 1, we have:

C(g(n) =0(g(n) w O(g(n)) v Q(g(n) wo(g(n) v a(g(n) (56)

The largest two complexity classes are O(g(n))and Q(g(n)). So we can
use the form of C(g(n)) discussed in Remark 2: C(g(n)) = 0(g(n)) v Q(g(n)).
a) From £, (n) € o(g(n)) we have f,(n)€ O(g(n)) and f,(n) & Q(g(n)).

From f,(n)ew(g(n)) we have f,(n)eO(g(n)) and f,(n)e(g(n)). It
follows that f(n) ¢ C(g(n)).

b), ¢), d) The proofs use the same idea as the proof for a).
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6. Conclusion

In this paper we presented some interesting results related to the
comparison of two complexity functions using complexity classes. These results
are important in practice because when we compare two complexity functions, in
fact, we compare two algorithms complexities. Using the results from this paper,
some algorithms can be designed to tell us if two functions are comparable or to
tell us if two functions are incomparable.
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