
U.P.B. Sci. Bull., Series A, Vol. 72, Iss. 2, 2010 ISSN 1223-7027

A METHOD TO COMPARE TWO COMPLEXITY
FUNCTIONS USING COMPLEXITY CLASSES

 Andrei-Horia MOGOS1, Adina Magda FLOREA2

Complexitatea unui algoritm poate fi exprimată ca o funcţie, numită funcţie
de complexitate. In acest articol studiem compararea a două funcţii de complexitate
folosind clase de complexitate. Dupa ce definim multimea tuturor funcţiilor de
complexitate comparabile cu o funcţie dată, prezentăm câteva proprietăţi ale acestei
mulţimi. Cele mai importante rezultate din articolul nostru sunt cateva criterii
suficiente pentru ca două funcţii de complexitate să fie comparabile şi câteva criterii
suficiente pentru ca două funcţii de complexitate să fie incomparabile.

The complexity of an algorithm can be expressed as a function, called
complexity function. In this paper we study the comparison of two complexity
functions using complexity classes. After defining the set of all complexity functions
comparable with a given function, we give some properties of this set. The most
important results of our paper are some sufficient criteria for two complexity
functions to be comparable and some sufficient criteria for two complexity functions
to be incomparable.

Keywords: algorithm, complexity function, complexity class, complexity
 functions comparison

1. Introduction

Complexity functions are used in various research fields. For example, in
[1] complexity functions describe some properties of the dynamic systems, and
in [2] complexity functions describe the complexity of the structure of models
related to some technical systems. In this paper, complexity functions are used for
measuring the complexity of algorithms.

The complexity of an algorithm can be expressed using a complexity
function, i.e., a positive real valued function defined on the set of positive
integers. In many cases such functions have complicated expressions and using
these functions is a difficult task. For this reason, computer scientists often
express the complexity of an algorithm using complexity classes, a simpler way of
expressing the complexity of an algorithm, but a less exact one. Some basic

1 Assistant, Department of Computer Science, University POLITEHNICA of Bucharest, Romania,
e-mail: mogosandrei@yahoo.com
2 Professor, Department of Computer Science, University POLITEHNICA of Bucharest,
Romania, e-mail: adinamagdaflorea@yahoo.com

70 Andrei-Horia Mogos, Adina Magda Florea

properties of the complexity classes are presented in almost any paper or book
that contains some elements of algorithms complexity theory. See, for example
[3], [4], [5].

In this paper we study the complexity functions using the elementary
theory of functions and sets. Other approaches use more advanced mathematical
theories: for example, in [6], the authors use the nonsymmetric Hausdorff distance
for studying the complexity functions; in [7] the authors introduce a new
quasi-metric on the dual p-complexity space for studying the complexity distances
between algorithms. Nevertheless, our approach is powerful enough to help us to
obtain several interesting results.

As one can observe, when comparing algorithms, in fact we compare
complexity functions, or at least complexity classes. A possible use case of
algorithms comparison is when someone wants to develop a very efficient
algorithm for solving a given problem, see for example [8]. Another use case is
when someone is interested in complexity analysis in heterogeneous systems, see
for example [9].

An interesting idea is presented in [4]: the authors only draw an analogy
between the comparison of the complexity functions using complexity classes and
the comparison of real numbers. Their immediate conclusion was that every two
real numbers can be compared, but not every two complexity functions can be
compared.

Starting from the results presented in [10], [11], this paper studies the
comparison of two complexity functions using complexity classes. After we
define the set of all complexity functions comparable with a given function, we
give some properties of this set. We also present some interesting properties of the
complexity classes. The main contributions of this paper are some sufficient
criteria for two complexity functions to be comparable and some sufficient criteria
for two complexity functions to be incomparable.

The paper is organized as follows. Section 2 contains the definitions used
for the rest of the paper. Section 3 presents some properties of the complexity
classes. Section 4 contains the main results of our paper. Finally, in Section 5, we
present the conclusions of the paper.

2. Definitions

We will denote by +R the set of all positive real numbers and by +N the
set of all positive integers. We will consider the function ++ → RNg : to be an
arbitrary fixed complexity function. Consider the following complexity classes
(see [4], [5]):

A method to compare two complexity functions using complexity classes 71

}),()()(
,,|:{))((

021

021

nnngcnfngc
thatsuchNnRccRNfng

≥∀⋅≤≤⋅
∈∃∈∃→=Θ ++++ (1)

}),()(
,|:{))((

0

0

nnngcnf
thatsuchNnRcRNfngO

≥∀⋅≤
∈∃∈∃→= ++++ (2)

}),()(
,|:{))((

0

0

nnnfngc
thatsuchNnRcRNfng

≥∀≤⋅
∈∃∈∃→=Ω ++++ (3)

}),()(
,|:{))((

0

0

nnngcnf
thatsuchNnRcRNfngo

≥∀⋅<
∈∃∈∀→= ++++ (4)

}),()(
,|:{))((

0

0

nnnfngc
thatsuchNnRcRNfng

≥∀<⋅
∈∃∈∀→= ++++ω

 (5)

Definition 1. Let ++ → RNf : be a complexity function. The function

)(nf is comparable with the function)(ng if

))(())(())(())(())(()(ngngongngOngnf ω∪∪Ω∪∪Θ∈ (6)

We say that the function)(nf is incomparable with the function)(ng if)(nf is
not comparable with)(ng . We denote by))((ngC the set of all the complexity
functions comparable with the function)(ng .

Remark 1. We have the following identity:

))(())(())(())(())(())((ngngongngOngngC ω∪∪Ω∪∪Θ= (7)

Definition 2. We define the following complexity classes:

)))(())(((\))(())((ngngongOngo Θ∪=Θ (8)

)))(())(((\))(())((ngngngng ωω ∪ΘΩ=Θ (9)

3. Some properties of the complexity classes

This section shows some properties of the complexity classes defined in
the previous section.

72 Andrei-Horia Mogos, Adina Magda Florea

Proposition 1.We have the following properties:

a) ≠Θ))((ng Ø, ≠))((ngO Ø, ≠Ω))((ng Ø
b) ≠))((ngo Ø, ≠))((ngω Ø
c) ≠Θ))((ngo Ø, ≠Θ))((ngω Ø.

Proof. a) These results follow from the following observations:

))(()()),(()()),(()(ngngngOngngng Ω∈∈Θ∈ . (10)

b) It can be proved, using (4) and (5), that))((/)(ngonng ∈ and

))(()(ngngn ω∈⋅ .
c) Let us show that ≠Θ))((ngo Ø. Consider two complexity functions:

))(()(1 ngnf Θ∈ and))(()(2 ngonf ∈ . We define the following complexity
function:

⎩
⎨
⎧

⋅=
+⋅=

=→ ++ knnf
knnf

nfRNf
2),(

12),(
)(,:

2

1 (11)

The function)(nf is defined by)(1 nf for n odd number, and by)(2 nf

for n even number.
Next, we prove that))(()(ngonf Θ∈ . We have to show that

))(()(ngOnf ∈ ,))(()(ngnf Θ∉ , and))(()(ngonf ∉ .
From))(()(1 ngnf Θ∈ we have:

'
0

'
21

'
1

'
0

'
2

'
1

),()()(

,,

nnngcnfngc

thatsuchNnRcc

≥∀⋅≤≤⋅

∈∃∈∃ ++ (12)

From))(()(2 ngonf ∈ we have:

"
0

"
2

"
0

"),()(, nnngcnfthatsuchNnRc ≥∀⋅<∈∃∈∀ ++ (13)

From the definition of)(nf it follows that

12,),()()(

,,
'
0

'
2

'
1

'
0

'
2

'
1

+⋅=≥∀⋅≤≤⋅

∈∃∈∃ ++

knnnngcnfngc

thatsuchNnRcc
 (14)

A method to compare two complexity functions using complexity classes 73

knnnngcnf

thatsuchNnRc

⋅=≥∀⋅<

∈∃∈∀ ++

2,),()(

,
"
0

"

"
0

"

 (15)

and consequently

12,),()(

,
'
0

'
2

'
0

'
2

+⋅=≥∀⋅≤

∈∃∈∃ ++

knnnngcnf

thatsuchNnRc
 (16)

knnnngcnf

thatsuchNnRc

⋅=≥∀⋅≤

∈∃∈∃ ++

2,),()(

,
"
0

"

"
0

"

 (17)

Let be },max{ "'

2 ccc = and let be },max{ "
0

'
00 nnn = . It follows that

0),()(nnngcnf ≥∀⋅≤ (18)

so we have))(()(ngOnf ∈ .

Next, we assume that))(()(ngnf Θ∈ . We have:

021

021

),()()(
,,

nnngcnfngc
thatsuchNnRcc
≥∀⋅≤≤⋅

∈∃∈∃ ++ (19)

From the definition of)(nf we have

knnnngcnfthatsuchNnRc ⋅=≥∀⋅<∈∃∈∀ ++ 2,),()(, "

0
""

0
" (20)

Let be },max{ "

000 nnn = . For 1
" cc = we have

knnnngcnfandnnnfngc ⋅=≥∀⋅<≥∀≤⋅ 2,),()(),()(0101 (21)

Consequently))(()(ngnf Θ∉ .

Using the same idea, it can be proved that))(()(ngonf ∉ .
So, we have))(()(ngOnf ∈ ,))(()(ngnf Θ∉ , and))(()(ngonf ∉ . It

follows that)))(())(((\))(()(ngngongOnf Θ∪∈ that is))(()(ngonf Θ∈ .
For proving that ≠Θ))((ngω Ø one can use a similar idea.

74 Andrei-Horia Mogos, Adina Magda Florea

Proposition 2.We have the following properties:
a) =∩))(())((ngngo ω Ø,))(())(())((ngngngO Θ=Ω∩
b) =Ω∩))(())((ngngo Ø, =∩))(())((ngngO ω Ø
c)))(())((ngOngo ⊆ ,))(())((ngOng ⊆Θ
d)))(())((ngng Ω⊆ω ,))(())((ngng Ω⊆Θ

Proof. The results can be obtained using (1), (2), (3), (4), and (5).

Proposition 3.We have the following properties:
a) =Θ∩))(())((ngngo Ø, =Θ∩))(())((ngongo Ø, =Θ∩Θ))(())((ngngo Ø.
b)))(())(())(())((ngOngngongo =Θ∪Θ∪ .
In other words, the complexity classes))((ngo ,))((ngoΘ and))((ngΘ form a
partition of the complexity class))((ngO .

Proof. a) The first equality can be obtained using the definitions (1) and
(4). The other two equalities are easily obtained from the definition of the
complexity class))((ngoΘ .

b) From Proposition 3, we have))(())(())((ngOngngo ⊆Θ∪ . Using the
definition of))((ngoΘ we have))(())(())(())((ngOngngongo =Θ∪Θ∪ .

Proposition 4. We have the following properties:

a) =∩Θ))(())((ngng ω Ø, =Θ∩Θ))(())((ngng ω Ø, =∩Θ))(())((ngng ωω Ø
b)))(())(())(())((ngngngng Ω=∪Θ∪Θ ωω .
In other words, the complexity classes))((ngΘ ,))((ngωΘ and))((ngω form a
partition of the complexity class))((ngΩ .

Proof. The proof follows the same idea as the proof for Proposition 4.

Proposition 5. Let be 1N and 2N two infinite subsets of +N , such that 1N
and 2N form a partition of +N . Let be)(1 nf and)(2 nf two complexity functions.
Let be

⎩
⎨
⎧

∈
∈

=
2

1

2

1

,
,

)(
)(

)(
Nn
Nn

nf
nf

nf (22)

Then, we have:
a) If))(()(1 ngnf Θ∈ and))(()(2 ngnf Θ∈ then))(()(ngnf Θ∈ .
b) If))(()(1 ngOnf ∈ and))(()(2 ngOnf ∈ then))(()(ngOnf ∈ .
c) If))(()(1 ngnf Ω∈ and))(()(2 ngnf Ω∈ then))(()(ngnf Ω∈ .

A method to compare two complexity functions using complexity classes 75

d) If))(()(1 ngonf ∈ and))(()(2 ngonf ∈ then))(()(ngonf ∈ .
e) If))(()(1 ngnf ω∈ and))(()(2 ngnf ω∈ then))(()(ngnf ω∈ .
 Proof. For proving these results, we use the definitions from (1), (2), (3),
(4), and (5).

a) From))(()(1 ngnf Θ∈ ,))(()(2 ngnf Θ∈ , and from the expression of
)(nf we have:

1
'
0

'
21

'
1

'
0

'
2

'
1

,),()()(

,,

Nnnnngcnfngc

thatsuchNnRcc

∈≥∀⋅≤≤⋅

∈∃∈∃ ++ (23)

2
''

0
''

22
''

1

''
0

''
2

''
1

,),()()(

,,

Nnnnngcnfngc

thatsuchNnRcc

∈≥∀⋅≤≤⋅

∈∃∈∃ ++ (24)

Let be),min(''

1
'
11 ccc = ,),max(''

2
'
22 ccc = , and),max(''

0
'
00 nnn = . Then, we have:

20221

10211

,),()()(

,,)()()(

Nnnnngcnfngc

Nnnnngcnfngc

∈≥∀⋅≤≤⋅

∈≥∀⋅≤≤⋅
 (25)

It follows that))(()(ngnf Θ∈ .

b), c), d), e) The proofs use the same idea as the proof for a).

Proposition 6. Let be 1N and 2N two infinite subsets of +N , such that 1N
and 2N form a partition of +N . Let be)(1 nf and)(2 nf two complexity functions.
Let be

⎩
⎨
⎧

∈
∈

=
2

1

2

1

,
,

)(
)(

)(
Nn
Nn

nf
nf

nf (26)

Then, we have:
a) If))(()(1 ngnf Θ∈ and))(()(2 ngnf Θ∉ then))(()(ngnf Θ∉ .
b) If))(()(1 ngOnf ∈ and))(()(2 ngOnf ∉ then))(()(ngOnf ∉ .
c) If))(()(1 ngnf Ω∈ and))(()(2 ngnf Ω∉ then))(()(ngnf Ω∉ .
d) If))(()(1 ngonf ∈ and))(()(2 ngonf ∉ then))(()(ngonf ∉ .
e) If))(()(1 ngnf ω∈ and))(()(2 ngnf ω∉ then))(()(ngnf ω∉ .

76 Andrei-Horia Mogos, Adina Magda Florea

Proof. For proving these results, we use the definitions from (1), (2), (3),
(4), and (5).

a) From))(()(2 ngnf Θ∉ we have that the property

2
''

0
''

22
''

1

''
0

''
2

''
1

,),()()(

,,

Nnnnngcnfngc

thatsuchNnRcc

∈≥∀⋅≤≤⋅

∈∃∈∃ ++ (27)

is false. If follows that the property

2
''

0
''

2
''

1

''
0

''
2

''
1

,),()()(

,,

Nnnnngcnfngc

thatsuchNnRcc

∈≥∀⋅≤≤⋅

∈∃∈∃ ++ (28)

is false. Since 2N is an infinite subset of +N , we have))(()(ngnf Θ∉ .

b), c), d), e) The proofs use the same idea as the proof for a).

Proposition 7. Let be 1N and 2N two infinite subsets of +N , such that 1N
and 2N form a partition of +N . Let be)(1 nf and)(2 nf two complexity functions.
Let be

⎩
⎨
⎧

∈
∈

=
2

1

2

1

,
,

)(
)(

)(
Nn
Nn

nf
nf

nf (29)

Then, we have:
a) If))(()(1 ngonf ∈ and))(()(2 ngnf Θ∈ then))(()(ngonf Θ∈
b) If))(()(1 ngnf Θ∈ and))(()(2 ngnf ω∈ then))(()(ngnf ωΘ∈
 Proof. For proving these results we use Proposition 5, Proposition 6, and
the properties: =Θ∩))(())((ngngo Ø and =∩Θ))(())((ngng ω Ø.

a) From))(()(1 ngonf ∈ and))(()(2 ngnf Θ∈ we have))(()(1 ngonf ∈
and))(()(2 ngonf ∉ . Consequently,))(()(ngonf ∉ .

From))(()(1 ngonf ∈ and))(()(2 ngnf Θ∈ we have))(()(1 ngnf Θ∉
and))(()(2 ngnf Θ∈ . Consequently,))(()(ngnf Θ∉ .

From))(()(1 ngonf ∈ and))(()(2 ngnf Θ∈ we have))(()(1 ngOnf ∈
and))(()(2 ngOnf ∈ . Consequently,))(()(ngOnf ∈ .

It follows that)))(())(((\))(()(ngngongOnf Θ∪∈ . Consequently,
))(()(ngonf Θ∈ .

b) The proof uses the same idea as the proof for a).

A method to compare two complexity functions using complexity classes 77

Proposition 8. We have the following property:))(()(ngonf Θ∈ if and

only if))(()(nfng ωΘ∈ .
Proof. We have the following well known properties:

))(()())(()(nfngifonlyandifngnf Θ∈Θ∈ (30)

))(()())(()(nfngifonlyandifngOnf Ω∈∈ (31)

))(()())(()(nfngifonlyandifngonf ω∈∈ (32)

From Definition 2, we have:

)))(())(((\))(())((ngngongOngo Θ∪=Θ (33)

)))(())(((\))(())((ngngngng ωω ∪ΘΩ=Θ (34)

Consider that))(()(ngonf Θ∈ . We show that))(()(nfng ωΘ∈ . From the
definition of))((ngoΘ we have

)))(())(((\))(()(ngngongOnf Θ∪∈ (35)

so, we have

))(()()),(()()),(()(ngnfngonfngOnf Θ∉∉∈ (36)

Using (30), (31), (32) it follows that))(()(nfng Ω∈ ,))(()(nfng ω∉ ,

))(()(nfng Θ∉ . Consequently,)))(())(((\))(()(nfnfnfng ω∪ΘΩ∈ . It
follows that))(()(nfng ωΘ∈ .

The other implication can be proved using the same idea.

Proposition 9. Let be 1N and 2N two infinite subsets of +N , such that 1N
and 2N form a partition of +N . Let be)(1 nf and)(2 nf two complexity functions.
Let be

⎩
⎨
⎧

∈
∈

=
2

1

2

1

,
,

)(
)(

)(
Nn
Nn

nf
nf

nf (37)

78 Andrei-Horia Mogos, Adina Magda Florea

Then, we have:
a) If))(()(1 ngonf Θ∈ and))(()(2 ngonf ∈ then))(()(ngonf Θ∈ .
b) If))(()(1 ngonf Θ∈ and))(()(2 ngnf Θ∈ then))(()(ngonf Θ∈ .
c) If))(()(1 ngnf ωΘ∈ and))(()(2 ngnf ω∈ then))(()(ngnf ωΘ∈ .
d) If))(()(1 ngnf ωΘ∈ and))(()(2 ngnf Θ∈ then))(()(ngnf ωΘ∈ .

Proof.
a) From))(()(1 ngonf Θ∈ we have that))(()(1 ngOnf ∈ ,))(()(1 ngonf ∉ ,

and))(()(1 ngnf Θ∉ . From))(()(2 ngonf ∈ we have that))(()(2 ngOnf ∈ ,
))(()(2 ngonf ∈ , and))(()(2 ngnf Θ∉ . Consequently, using Proposition 5 and

Proposition 6, we have))(()(ngOnf ∈ ,))(()(ngonf ∉ , and))(()(ngnf Θ∉ . It
follows that))(()(ngonf Θ∈ .

b), c), d) The proofs use the same idea as the proof for a).

4. The main results

Theorem 1. Let be)).(()(ngCnf ∈ Then)).(()(nfCng ∈
Proof. We will use a well known property of the complexity classes:

))(()())(()(1221 nfnfifonlyandifnfOnf Ω∈∈ (38)

The hypothesis))(()(ngCnf ∈ implies that))(())(()(ngngOnf Ω∪∈ . From
Proposition 2, we have))(())(())((ngngngO Θ=Ω∩ .

It follows that we have two possibilities: either))(()(ngOnf ∈ or
)))((\))((()(ngngnf ΘΩ∈ . If))(()(ngOnf ∈ then))(()(nfng Ω∈ , hence

))(()(nfCng ∈ . If))(()))((\))((()(ngngngnf Ω⊆ΘΩ∈ then))(()(nfOng ∈ ,
hence))(()(nfCng ∈ .

Theorem 2. The complexity classes))((ngo ,))((ngoΘ ,))((ngΘ ,

))((ngωΘ and))((ngω form a partition of the set))((ngC , that is:
a)))(())(())(())(())(())((ngngngngongongC ωω ∪Θ∪Θ∪Θ∪=
b) The complexity classes))((ngo ,))((ngoΘ ,))((ngΘ ,))((ngωΘ and

))((ngω are pairwise disjoint.
Proof. a) For proving this result we use Remark 1, Proposition 3, and

Proposition 4. From

))(())(())(())(())(())((ngngongngOngngC ω∪∪Ω∪∪Θ= (39)

A method to compare two complexity functions using complexity classes 79

 we have

))(())(())(())(())((
))(())(())(())(())((

ngngongngng
ngngongongngC

ωωω ∪∪∪Θ∪Θ∪
∪Θ∪Θ∪∪Θ=

 (40)

It follows that

))(())(())(())(())(())((ngngngngongongC ωω ∪Θ∪Θ∪Θ∪= (41)

b) From Proposition 3, it follows that))((ngo ,))((ngoΘ and))((ngΘ are
pairwise disjoint. From Proposition 4, if follows that))((ngΘ ,))((ngωΘ and

))((ngω are pairwise disjoint.
From Proposition 2, if follows that))((ngo and))((ngω are disjoint.

Using Proposition 2, we have that =Ω∩))(())((ngngo Ø, hence))((ngo and
))((ngωΘ are disjoint. Using again Proposition 2, have =∩))(())((ngngO ω Ø,

hence))((ngoΘ and))((ngω are disjoint.
From Proposition 2 we have that))(())(())((ngngngO Θ=Ω∩ . We

know that))(())((ngOngo ⊆Θ and))(())((ngng Ω⊆Θω . We also know that
))((ngoΘ and))((ngΘ are disjoint and))((ngΘ and))((ngωΘ are disjoint. It

follows that))((ngoΘ and))((ngωΘ are disjoint.
Consequently))((ngo ,))((ngoΘ ,))((ngΘ ,))((ngωΘ and))((ngω are

pairwise disjoint.

Theorem 3. Let be))(()(1 ngonf ∈ and))(()(2 ngnf ω∈ two complexity

functions. Then))(()(21 nfCnf ∈ and))(()(12 nfCnf ∈ .
Proof. From))(()(1 ngonf ∈ , we have:

'
0

'
1

'
0

'),()(, nnngcnfthatsuchNnRc ≥∀⋅<∈∃∈∀ ++ (42)

From))(()(2 ngnf ω∈ , we have:

"
02

""
0

"),()(, nnnfngcthatsuchNnRc ≥∀<⋅∈∃∈∀ ++ (43)

Let be +∈Rc ; for ccc == "' there exist '
0n and "

0n with the above properties.
Let be },max{ "

0
'
00 nnn = . Then, we have:

80 Andrei-Horia Mogos, Adina Magda Florea

021),()()()(nnnfngcandngcnf ≥∀<⋅⋅< (44)

that is:

021),()()(nnnfngcnf ≥∀<⋅< (45)

It follows that:

02100),()(,1 nnnfcnfthatsuchNnnRc ≥∀⋅≤∈=∃∈=∃ ++ (46)

hence))(()(21 nfOnf ∈ . From here, we have))(()(21 nfCnf ∈ . Next, using
Theorem 1, it follows that))(()(12 nfCnf ∈ .

Remark 3. If))(()(ngCnf ∈ we say that)(nf and)(ng are comparable.
Note that, from Theorem 1, if))(()(ngCnf ∈ then)).(()(nfCng ∈

Theorem 4.We have the following properties:

a) Let be))(()(1 ngonf ∈ and))(()(2 ngnf Θ∈ . Then))(()(21 nfCnf ∈ .
b) Let be))(()(1 ngonf ∈ and))(()(2 ngnf ωΘ∈ . Then))(()(21 nfCnf ∈ .

Proof. We prove that if))(()(1 ngonf ∈ and))(()(2 ngnf Ω∈ then
))(()(21 nfCnf ∈ . From))(()(1 ngonf ∈ and))(()(2 ngnf Ω∈ we have:

'
0

'
1

'
0

'),()(, nnngcnfthatsuchNnRc ≥∀⋅<∈∃∈∀ ++ (47)

''
02

''''
0

''),()(, nnnfngcthatsuchNnRc ≥∀≤⋅∈∃∈∃ ++ (48)

If we choose ''' cc = , then we have:

),max(),()()(''
0

'
02

''
1 nnnnfngcnf ≥∀≤⋅< (49)

Next, we have

021

''
0

'
00

),()(
),max(,1

nnnfcnf
thatsuchNnnnRc

≥∀⋅<
∈=∃∈=∃ ++ (50)

Consequently,))(()(21 nfOnf ∈ . It follows that))(()(21 nfCnf ∈ .

A method to compare two complexity functions using complexity classes 81

Using Proposition 4, we have:

))(())((ngng Ω⊆Θ (51)

))(())((ngng Ω⊆Θω (52)

a) From))(()(1 ngonf ∈ and))(()(2 ngnf Θ∈ we have that

))(()(1 ngonf ∈ and))(()(2 ngnf Ω∈ . It follows that))(()(21 nfCnf ∈ .
b) From))(()(1 ngonf ∈ and))(()(2 ngnf ωΘ∈ we have that

))(()(1 ngonf ∈ and))(()(2 ngnf Ω∈ . It follows that))(()(21 nfCnf ∈ .

Theorem 5. We have the following properties:
a) Let be))(()(1 ngnf ω∈ and))(()(2 ngnf Θ∈ . Then))(()(21 nfCnf ∈ .
b) Let be))(()(1 ngnf ω∈ and))(()(2 ngonf Θ∈ . Then))(()(21 nfCnf ∈ .

Proof. The proof follows the same idea as the proof for the Theorem 4.

Theorem 6. We have the following properties:

a) Let be))(()(1 ngonf Θ∈ and))(()(2 ngnf Θ∈ . Then))(()(21 nfCnf ∈ .
b) Let be))(()(1 ngnf Θ∈ and))(()(2 ngnf ωΘ∈ . Then))(()(21 nfCnf ∈ .
c) Let be))(()(1 ngonf Θ∈ and))(()(2 ngnf ωΘ∈ . Then))(()(21 nfCnf ∈ .

Proof. Using the same idea used in the proof of Theorem 4, one can prove
that if))(()(1 ngOnf ∈ and))(()(2 ngnf Ω∈ then))(()(21 nfCnf ∈ .
a) We have))(())((ngOngo ⊆Θ and))(())((ngng Ω⊆Θ . Consequently, we have

))(()(1 ngOnf ∈ and))(()(2 ngnf Ω∈ . It follows that))(()(21 nfCnf ∈ .
b), c) The proofs follow the same idea used for the proof of a).

Theorem 7. We have the following properties:
a) There exists))(()(1 ngonf ∈ ,))(()(2 ngonf Θ∈ such that))(()(21 nfCnf ∉
b) There exists))(()(1 ngnf ωΘ∈ ,))(()(2 ngnf ω∈ such that))(()(21 nfCnf ∉

Proof.
a) Let be

⎩
⎨
⎧

⋅=
+⋅=

==
kn

kn
ng

nng
nfnngnf

2
12

,
,

)(
/)(

)(,/)()(
2

21 (53)

82 Andrei-Horia Mogos, Adina Magda Florea

It is easy to see that))((/)(ngonng ∈ ,))((/)(2 ngonng ∈ , and))(()(ngng Θ∈ .
We have))(()(1 ngonf ∈ . Using Proposition 7, we have that))(()(2 ngonf Θ∈ .

One can observe that)/)(()(2
1 nngnf ω∈ and))(()(1 ngonf ∈ . In

addition, the set of odd naturals and the set of even naturals are infinite sets. It
follows that))(()(21 nfCnf ∉ .
 b) The proof uses the same idea as the proof for a).

Theorem 8. We have the following properties:

a) Let be))(()(1 nfong ∈ and))(()(2 nfng ω∈ . Then))(()(21 nfCnf ∈ .
b) Let be))(()(1 nfong ∈ and))(()(2 nfng Θ∈ . Then))(()(21 nfCnf ∈ .
c) Let be))(()(1 nfong ∈ and))(()(2 nfng ωΘ∈ . Then))(()(21 nfCnf ∈ .
d) Let be))(()(1 nfng ω∈ and))(()(2 nfng Θ∈ . Then))(()(21 nfCnf ∈ .
e) Let be))(()(1 nfng ω∈ and))(()(2 nfong Θ∈ . Then))(()(21 nfCnf ∈ .

Proof. We will use Proposition 8, formulas (31), (32), (35), Theorem 3,
Theorem 4, and Theorem 5.

a) From))(()(1 nfong ∈ and))(()(2 nfng ω∈ we have that
))(()(1 ngnf ω∈ and))(()(2 ngonf ∈ . It follows that))(()(21 nfCnf ∈ .

b), c), d), e) The proofs use the same idea as the proof for a).

Theorem 9. Let be 1N and 2N two infinite subsets of +N , such that 1N

and 2N form a partition of +N . Let be)(1 nf and)(2 nf two complexity functions.
Let be

⎩
⎨
⎧

∈
∈

=
2

1

2

1

,
,

)(
)(

)(
Nn
Nn

nf
nf

nf (54)

Then, we have:
a) If))(()(1 ngonf Θ∈ and))(()(2 ngonf ∈ then))(()(ngCnf ∈ .
b) If))(()(1 ngonf Θ∈ and))(()(2 ngnf Θ∈ then))(()(ngCnf ∈ .
c) If))(()(1 ngonf ∈ and))(()(2 ngnf Θ∈ then))(()(ngCnf ∈ .
d) If))(()(1 ngnf ωΘ∈ and))(()(2 ngnf ω∈ then))(()(ngCnf ∈ .
e) If))(()(1 ngnf ωΘ∈ and))(()(2 ngnf Θ∈ then))(()(ngCnf ∈ .
f) If))(()(1 ngnf ω∈ and))(()(2 ngnf Θ∈ then))(()(ngCnf ∈ .

Proof. For proving the theorem, we use Proposition 9 and Proposition 5.

A method to compare two complexity functions using complexity classes 83

a) From))(()(1 ngonf Θ∈ and))(()(2 ngonf ∈ we have that
))(()(ngonf Θ∈ . Consequently,))(()(ngOnf ∈ . It follows that))(()(ngCnf ∈ .

c) From))(()(1 ngonf ∈ and))(()(2 ngnf Θ∈ we have that
))(()(1 ngOnf ∈ and))(()(2 ngOnf ∈ . Consequently,))(()(ngOnf ∈ . It follows

that))(()(ngCnf ∈ .
b), d), e) The proofs use the same idea as the proof for a).
f) The proof uses the same idea as the proof for c).

Theorem 10. Let be 1N and 2N two infinite subsets of +N , such that 1N

and 2N form a partition of +N . Let be)(1 nf and)(2 nf two complexity functions.
Let be

⎩
⎨
⎧

∈
∈

=
2

1

2

1

,
,

)(
)(

)(
Nn
Nn

nf
nf

nf . (55)

Then, we have:
a) If))(()(1 ngonf ∈ and))(()(2 ngnf ω∈ then))(()(ngCnf ∉ .
b) If))(()(1 ngonf ∈ and))(()(2 ngnf ωΘ∈ then))(()(ngCnf ∉ .
c) If))(()(1 ngonf Θ∈ and))(()(2 ngnf ω∈ then))(()(ngCnf ∉ .
d) If))(()(1 ngonf Θ∈ and))(()(2 ngnf ωΘ∈ then))(()(ngCnf ∉ .

Proof. For proving that))(()(ngCnf ∈ , we need to find a complexity
class that contains both)(1 nf and)(2 nf . We will show that this is impossible.

Using Remark 1, we have:

))(())(())(())(())(())((ngngongngOngngC ω∪∪Ω∪∪Θ= (56)

The largest two complexity classes are))((ngO and))((ngΩ . So we can

use the form of))((ngC discussed in Remark 2:))(())(())((ngngOngC Ω∪= .
a) From))(()(1 ngonf ∈ we have))(()(1 ngOnf ∈ and))(()(1 ngnf Ω∉ .

From))(()(2 ngnf ω∈ we have))(()(2 ngOnf ∉ and))(()(2 ngnf Ω∈ . It
follows that))(()(ngCnf ∉ .

b), c), d) The proofs use the same idea as the proof for a).

84 Andrei-Horia Mogos, Adina Magda Florea

6. Conclusion

In this paper we presented some interesting results related to the
comparison of two complexity functions using complexity classes. These results
are important in practice because when we compare two complexity functions, in
fact, we compare two algorithms complexities. Using the results from this paper,
some algorithms can be designed to tell us if two functions are comparable or to
tell us if two functions are incomparable.

Acknowledgement

This research was supported by the AGATE project: Self-aware and self-
organizing cognitive agents societies for modeling and developing complex
systems - Grant CNCSIS ID_1315, 2009-2011.

R E F E R E N C E S

[1] V. Afraimovich, L. Glebsky, “Measures Related to (ε, n)-Complexity Functions”, in Discrete
and Continuous Dynamical Systems, vol. 22, no. 1 & 2, Sept. & Oct. 2008, pp. 23-34

[2] E. Schmidt, A. Schulz, L. Kruse, G. von Cölln and W. Nebel, “Automatic Generation of
Complexity Functions for High-Level Power Analysis”, in Proceedings of PATMOS 2001,
the International Workshop – Power and Timing Modeling, Optimization and Simulation,
Yverdon-les-bains, Switzerland, 26-28 Sept. 2001, pp. 26-35

[3] D.E. Knuth, “Fundamental Algorithms”, volume 1 of “The Art of Computer Programming”,
Third edition, Addison-Wesley, USA, 1997

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, “Introduction to Algorithms”, Second
edition, MIT Press, Cambridge Massachusetts, London England, USA, 2001

[5] C.A. Giumale, “Introducere in Analiza Algoritmilor. Teorie si aplicatie” (Introduction to the
Analysis of Algorithms. Theory and Application), Polirom, Bucharest, Romania, 2004

[6] J. Rodríguez-López, S. Romaguera and O. Valero, “Asymptotic Complexity of Algorithms via
the Nonsymmetric Hausdorff Distance”, in Computing Letters (CoLe), vol. 2, no. 3, 2004,
pp. 155-161

[7] S. Romaguera, E. A. Sánchez-Pérez and O. Valero, “Computing Complexity Distances
Between Algorithms”, in Kybernetika, vol. 39, no. 5, 2003, pp. 569-582

[8] M. I. Andreica, “Efficient Gaussian Elimination on a 2D SIMD Array of Processors without
Column Broadcasts”, in U. P. B. Sci. Bull., series C, vol. 71, Iss. 4, 2009, pp. 83-98

[9] K. Sharma, D. Garg, “Complexity Analysis in Heterogeneous System”, in Computer and
Information Science, vol. 2, no. 1, Feb. 2009, pp. 48-52

[10] A.H. Mogos, “g(n) – Comparable Complexity Functions”, in Proceedings of CSCS – 16, the
16th International Conference on Control Systems and Computer Science, Bucharest,
Romania, 22-25 May 2007, vol. 2, pp. 246-251

[11] A.H. Mogos, A.M. Florea, “Comparing Two Complexity Functions using g(n)-Comparable
Complexity Functions”, in Proceedings of CSCS – 17, the 17th International Conference on
Control Systems and Computer Science, Bucharest, Romania, 26-29 May 2009, vol. 1,
pp. 155-160

