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A METHOD TO COMPARE TWO COMPLEXITY 
FUNCTIONS USING COMPLEXITY CLASSES 

 Andrei-Horia MOGOS1, Adina Magda FLOREA2 

Complexitatea unui algoritm poate fi exprimată ca o funcţie, numită funcţie 
de complexitate. In acest articol studiem compararea a două funcţii de complexitate 
folosind clase de complexitate. Dupa ce definim multimea tuturor funcţiilor de 
complexitate comparabile cu o funcţie dată, prezentăm câteva proprietăţi ale acestei 
mulţimi. Cele mai importante rezultate din articolul nostru sunt cateva criterii 
suficiente pentru ca două funcţii de complexitate să fie comparabile şi câteva criterii 
suficiente pentru ca două funcţii de complexitate să fie incomparabile. 

The complexity of an algorithm can be expressed as a function, called 
complexity function. In this paper we study the comparison of two complexity 
functions using complexity classes. After defining the set of all complexity functions 
comparable with a given function, we give some properties of this set. The most 
important results of our paper are some sufficient criteria for two complexity 
functions to be comparable and  some sufficient criteria for two complexity functions 
to be incomparable. 

Keywords: algorithm, complexity function, complexity class, complexity  
                   functions comparison 

1. Introduction 

Complexity functions are used in various research fields. For example, in 
[1] complexity functions describe some properties of the dynamic systems, and   
in [2] complexity functions describe the complexity of the structure of models 
related to some technical systems. In this paper, complexity functions are used for 
measuring the complexity of algorithms. 

The complexity of an algorithm can be expressed using a complexity 
function, i.e., a positive real valued function defined on the set of positive 
integers. In many cases such functions have complicated expressions and using 
these functions is a difficult task. For this reason, computer scientists often 
express the complexity of an algorithm using complexity classes, a simpler way of 
expressing the complexity of an algorithm, but a less exact one. Some basic 
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properties of the complexity classes are presented in almost any paper or book 
that contains some elements of algorithms complexity theory. See, for example 
[3], [4], [5]. 

In this paper we study the complexity functions using the elementary 
theory of functions and sets. Other approaches use more advanced mathematical 
theories: for example, in [6], the authors use the nonsymmetric Hausdorff distance 
for studying the complexity functions; in [7] the authors introduce a new       
quasi-metric on the dual p-complexity space for studying the complexity distances 
between algorithms. Nevertheless, our approach is powerful enough to help us to 
obtain several interesting results. 

As one can observe, when comparing algorithms, in fact we compare 
complexity functions, or at least complexity classes. A possible use case of 
algorithms comparison is when someone wants to develop a very efficient 
algorithm for solving a given problem, see for example [8]. Another use case is 
when someone is interested in complexity analysis in heterogeneous systems, see 
for example [9]. 

An interesting idea is presented in [4]: the authors only draw an analogy 
between the comparison of the complexity functions using complexity classes and 
the comparison of real numbers. Their immediate conclusion was that every two 
real numbers can be compared, but not every two complexity functions can be 
compared. 

Starting from the results presented in [10], [11], this paper studies the 
comparison of two complexity functions using complexity classes. After we 
define the set of all complexity functions comparable with a given function, we 
give some properties of this set. We also present some interesting properties of the 
complexity classes. The main contributions of this paper are some sufficient 
criteria for two complexity functions to be comparable and some sufficient criteria 
for two complexity functions to be incomparable.  

The paper is organized as follows. Section 2 contains the definitions used 
for the rest of the paper. Section 3 presents some properties of the complexity 
classes. Section 4 contains the main results of our paper. Finally, in Section 5, we 
present the conclusions of the paper. 

2. Definitions 

We will denote by +R  the set of all positive real numbers and by +N  the 
set of all positive integers. We will consider the function ++ → RNg :  to be an 
arbitrary fixed complexity function. Consider the following complexity classes 
(see [4], [5]): 
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Definition 1. Let ++ → RNf :  be a complexity function. The function 

)(nf  is comparable with the function )(ng  if  
 

))(())(())(())(())(()( ngngongngOngnf ω∪∪Ω∪∪Θ∈  (6) 
 

We say that the function )(nf  is incomparable with the function )(ng  if )(nf  is 
not comparable with )(ng . We denote by ))(( ngC  the set of all the complexity 
functions comparable with the function )(ng .  

Remark 1. We have the following identity: 
 

))(())(())(())(())(())(( ngngongngOngngC ω∪∪Ω∪∪Θ=  (7) 
 

Definition 2. We define the following complexity classes: 
 

)))(())(((\))(())(( ngngongOngo Θ∪=Θ     (8) 
 

)))(())(((\))(())(( ngngngng ωω ∪ΘΩ=Θ    (9) 

3. Some properties of the complexity classes 

This section shows some properties of the complexity classes defined in 
the previous section. 
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Proposition 1.We have the following properties: 

a) ≠Θ ))(( ng  Ø, ≠))(( ngO  Ø, ≠Ω ))(( ng  Ø 
b) ≠))(( ngo  Ø, ≠))(( ngω  Ø 
c) ≠Θ ))(( ngo  Ø, ≠Θ ))(( ngω  Ø. 

Proof. a) These results follow from the following observations:  
 

))(()()),(()()),(()( ngngngOngngng Ω∈∈Θ∈ .   (10) 
 
b) It can be proved, using (4) and (5), that ))((/)( ngonng ∈  and 

))(()( ngngn ω∈⋅ . 
c) Let us show that ≠Θ ))(( ngo  Ø. Consider two complexity functions: 

))(()(1 ngnf Θ∈  and ))(()(2 ngonf ∈ . We define the following complexity 
function: 
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The function )(nf  is defined by )(1 nf  for n odd number, and by )(2 nf  

for n even number. 
Next, we prove that ))(()( ngonf Θ∈ . We have to show that 

))(()( ngOnf ∈ , ))(()( ngnf Θ∉ , and ))(()( ngonf ∉ . 
From ))(()(1 ngnf Θ∈  we have: 
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From ))(()(2 ngonf ∈  we have:  
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From the definition of )(nf  it follows that  
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and consequently 
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Let be },max{ "'

2 ccc =  and let be },max{ "
0

'
00 nnn = . It follows that 

 
0),()( nnngcnf ≥∀⋅≤       (18) 

 
so we have ))(()( ngOnf ∈ . 

Next, we assume that ))(()( ngnf Θ∈ . We have:  
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From the definition of )(nf  we have 
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0
""

0
"  (20) 

 
Let be },max{ "

000 nnn = . For 1
" cc =  we have  
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Consequently ))(()( ngnf Θ∉ . 

Using the same idea, it can be proved that ))(()( ngonf ∉ . 
So, we have ))(()( ngOnf ∈ , ))(()( ngnf Θ∉ , and ))(()( ngonf ∉ . It 

follows that )))(())(((\))(()( ngngongOnf Θ∪∈   that is ))(()( ngonf Θ∈ . 
For proving that ≠Θ ))(( ngω Ø one can use a similar idea. 
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Proposition 2.We have the following properties: 
a) =∩ ))(())(( ngngo ω Ø, ))(())(())(( ngngngO Θ=Ω∩  
b) =Ω∩ ))(())(( ngngo Ø, =∩ ))(())(( ngngO ω Ø 
c) ))(())(( ngOngo ⊆ , ))(())(( ngOng ⊆Θ  
d) ))(())(( ngng Ω⊆ω , ))(())(( ngng Ω⊆Θ  

Proof. The results can be obtained using (1), (2), (3), (4), and (5). 
 

Proposition 3.We have the following properties: 
a) =Θ∩ ))(())(( ngngo Ø,  =Θ∩ ))(())(( ngongo Ø, =Θ∩Θ ))(())(( ngngo Ø. 
b) ))(())(())(())(( ngOngngongo =Θ∪Θ∪ . 
In other words, the complexity classes ))(( ngo , ))(( ngoΘ  and ))(( ngΘ  form a  
partition of the complexity class ))(( ngO . 

Proof. a) The first equality can be obtained using the definitions (1) and 
(4). The other two equalities are easily obtained from the definition of the 
complexity class ))(( ngoΘ . 

b) From Proposition 3, we have ))(())(())(( ngOngngo ⊆Θ∪ . Using the 
definition of ))(( ngoΘ  we have ))(())(())(())(( ngOngngongo =Θ∪Θ∪ . 

 
Proposition 4. We have the following properties: 

a) =∩Θ ))(())(( ngng ω Ø, =Θ∩Θ ))(())(( ngng ω Ø, =∩Θ ))(())(( ngng ωω Ø 
b) ))(())(())(())(( ngngngng Ω=∪Θ∪Θ ωω . 
In other words, the complexity classes ))(( ngΘ , ))(( ngωΘ  and ))(( ngω  form a 
partition of the complexity class ))(( ngΩ . 

Proof. The proof follows the same idea as the proof for Proposition 4.  
 

Proposition 5. Let be 1N  and 2N  two infinite subsets of +N , such that 1N  
and 2N  form a partition of +N . Let be )(1 nf  and )(2 nf two complexity functions. 
Let be  
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Then, we have: 
a) If ))(()(1 ngnf Θ∈  and ))(()(2 ngnf Θ∈  then ))(()( ngnf Θ∈ . 
b) If ))(()(1 ngOnf ∈  and ))(()(2 ngOnf ∈  then ))(()( ngOnf ∈ . 
c) If ))(()(1 ngnf Ω∈  and ))(()(2 ngnf Ω∈  then ))(()( ngnf Ω∈ . 
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d) If ))(()(1 ngonf ∈  and ))(()(2 ngonf ∈  then ))(()( ngonf ∈ . 
e) If ))(()(1 ngnf ω∈  and ))(()(2 ngnf ω∈  then ))(()( ngnf ω∈ . 
 Proof. For proving these results, we use the definitions from (1), (2), (3), 
(4), and (5). 

a) From ))(()(1 ngnf Θ∈ , ))(()(2 ngnf Θ∈ , and from the expression of  
)(nf  we have:  
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It follows that ))(()( ngnf Θ∈ . 

b), c), d), e) The proofs use the same idea as the proof for a). 
 

Proposition 6. Let be 1N  and 2N  two infinite subsets of +N , such that 1N  
and 2N  form a partition of +N . Let be )(1 nf  and )(2 nf two complexity functions. 
Let be  
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Then, we have: 
a) If ))(()(1 ngnf Θ∈  and ))(()(2 ngnf Θ∉  then ))(()( ngnf Θ∉ . 
b) If ))(()(1 ngOnf ∈  and ))(()(2 ngOnf ∉  then ))(()( ngOnf ∉ . 
c) If ))(()(1 ngnf Ω∈  and ))(()(2 ngnf Ω∉  then ))(()( ngnf Ω∉ . 
d) If ))(()(1 ngonf ∈  and ))(()(2 ngonf ∉  then ))(()( ngonf ∉ . 
e) If ))(()(1 ngnf ω∈  and ))(()(2 ngnf ω∉  then ))(()( ngnf ω∉ . 
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Proof. For proving these results, we use the definitions from (1), (2), (3), 
(4), and (5). 

a) From ))(()(2 ngnf Θ∉ we have that the property  
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is false. Since 2N is an infinite subset of +N , we have ))(()( ngnf Θ∉ . 

b), c), d), e) The proofs use the same idea as the proof for a). 
 

Proposition 7. Let be 1N  and 2N  two infinite subsets of +N , such that 1N  
and 2N  form a partition of +N . Let be )(1 nf  and )(2 nf two complexity functions. 
Let be  

 

⎩
⎨
⎧

∈
∈

=
2

1

2

1

,
,

)(
)(

)(
Nn
Nn

nf
nf

nf       (29) 

 
Then, we have: 
a) If  ))(()(1 ngonf ∈  and ))(()(2 ngnf Θ∈  then ))(()( ngonf Θ∈  
b) If ))(()(1 ngnf Θ∈  and ))(()(2 ngnf ω∈  then ))(()( ngnf ωΘ∈  
 Proof. For proving these results we use Proposition 5, Proposition 6, and 
the properties: =Θ∩ ))(())(( ngngo  Ø and =∩Θ ))(())(( ngng ω  Ø. 

a) From ))(()(1 ngonf ∈  and ))(()(2 ngnf Θ∈  we have ))(()(1 ngonf ∈  
and ))(()(2 ngonf ∉ . Consequently, ))(()( ngonf ∉  .  

From ))(()(1 ngonf ∈  and ))(()(2 ngnf Θ∈  we have ))(()(1 ngnf Θ∉  
and ))(()(2 ngnf Θ∈ . Consequently, ))(()( ngnf Θ∉ . 

From ))(()(1 ngonf ∈  and ))(()(2 ngnf Θ∈  we have ))(()(1 ngOnf ∈  
and  ))(()(2 ngOnf ∈ . Consequently, ))(()( ngOnf ∈ .  

It follows that )))(())(((\))(()( ngngongOnf Θ∪∈ . Consequently,  
))(()( ngonf Θ∈ . 

b) The proof uses the same idea as the proof for a). 
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Proposition 8. We have the following property: ))(()( ngonf Θ∈  if and 

only if ))(()( nfng ωΘ∈ .      
Proof. We have the following well known properties: 
 

))(()())(()( nfngifonlyandifngnf Θ∈Θ∈    (30) 
 

))(()())(()( nfngifonlyandifngOnf Ω∈∈    (31) 
 

))(()())(()( nfngifonlyandifngonf ω∈∈    (32) 
 

From Definition 2, we have: 
 

)))(())(((\))(())(( ngngongOngo Θ∪=Θ     (33) 
 

)))(())(((\))(())(( ngngngng ωω ∪ΘΩ=Θ    (34) 
 
Consider that ))(()( ngonf Θ∈ . We show that ))(()( nfng ωΘ∈ . From the 
definition of ))(( ngoΘ  we have 

 
)))(())(((\))(()( ngngongOnf Θ∪∈     (35) 

 
so, we have 

 
))(()()),(()()),(()( ngnfngonfngOnf Θ∉∉∈    (36) 

 
Using (30), (31), (32) it follows that ))(()( nfng Ω∈ , ))(()( nfng ω∉ , 

))(()( nfng Θ∉ . Consequently, )))(())(((\))(()( nfnfnfng ω∪ΘΩ∈ . It 
follows that ))(()( nfng ωΘ∈ .       

The other  implication can be proved using the same idea. 
 

Proposition 9. Let be 1N  and 2N  two infinite subsets of +N , such that 1N  
and 2N  form a partition of +N . Let be )(1 nf  and )(2 nf two complexity functions. 
Let be  
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Then, we have: 
a) If ))(()(1 ngonf Θ∈  and ))(()(2 ngonf ∈  then ))(()( ngonf Θ∈ . 
b) If ))(()(1 ngonf Θ∈  and ))(()(2 ngnf Θ∈  then ))(()( ngonf Θ∈ . 
c) If ))(()(1 ngnf ωΘ∈  and ))(()(2 ngnf ω∈  then ))(()( ngnf ωΘ∈ . 
d) If ))(()(1 ngnf ωΘ∈  and ))(()(2 ngnf Θ∈  then ))(()( ngnf ωΘ∈ . 

Proof.  
a) From ))(()(1 ngonf Θ∈  we have that ))(()(1 ngOnf ∈ , ))(()(1 ngonf ∉ , 

and ))(()(1 ngnf Θ∉ . From ))(()(2 ngonf ∈  we have that ))(()(2 ngOnf ∈ , 
))(()(2 ngonf ∈ , and ))(()(2 ngnf Θ∉ . Consequently, using Proposition 5 and 

Proposition 6, we have ))(()( ngOnf ∈ , ))(()( ngonf ∉ , and ))(()( ngnf Θ∉ . It 
follows that ))(()( ngonf Θ∈ . 

b), c), d) The proofs use the same idea as the proof for a). 

4. The main results 

Theorem 1. Let be )).(()( ngCnf ∈  Then )).(()( nfCng ∈  
Proof. We will use a well known property of the complexity classes: 
 

))(()())(()( 1221 nfnfifonlyandifnfOnf Ω∈∈   (38) 
 

The hypothesis ))(()( ngCnf ∈  implies that ))(())(()( ngngOnf Ω∪∈ . From 
Proposition 2, we have ))(())(())(( ngngngO Θ=Ω∩ .  

It follows that we have two possibilities: either ))(()( ngOnf ∈  or 
)))((\))((()( ngngnf ΘΩ∈ . If ))(()( ngOnf ∈  then ))(()( nfng Ω∈ , hence  

))(()( nfCng ∈ . If ))(()))((\))((()( ngngngnf Ω⊆ΘΩ∈  then ))(()( nfOng ∈ , 
hence  ))(()( nfCng ∈ . 

 
Theorem 2. The complexity classes ))(( ngo , ))(( ngoΘ , ))(( ngΘ , 

))(( ngωΘ  and ))(( ngω  form a partition of the set ))(( ngC , that is: 
a) ))(())(())(())(())(())(( ngngngngongongC ωω ∪Θ∪Θ∪Θ∪=  
b) The complexity classes ))(( ngo , ))(( ngoΘ , ))(( ngΘ , ))(( ngωΘ  and 

))(( ngω  are pairwise disjoint. 
Proof. a) For proving this result we use Remark 1, Proposition 3, and 

Proposition 4. From 
 

 ))(())(())(())(())(())(( ngngongngOngngC ω∪∪Ω∪∪Θ=  (39) 
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 we have 
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  (40) 

 
It follows that 
 

))(())(())(())(())(())(( ngngngngongongC ωω ∪Θ∪Θ∪Θ∪=  (41) 
 

b) From Proposition 3, it follows that ))(( ngo , ))(( ngoΘ and ))(( ngΘ  are 
pairwise disjoint. From Proposition 4, if follows that ))(( ngΘ , ))(( ngωΘ  and 

))(( ngω  are pairwise disjoint.  
From  Proposition 2, if follows that ))(( ngo  and ))(( ngω  are disjoint. 

Using Proposition 2, we have that =Ω∩ ))(())(( ngngo Ø, hence ))(( ngo  and 
))(( ngωΘ  are disjoint. Using again Proposition 2, have =∩ ))(())(( ngngO ω Ø, 

hence ))(( ngoΘ  and  ))(( ngω  are disjoint.  
From Proposition 2 we have that ))(())(())(( ngngngO Θ=Ω∩ . We 

know that ))(())(( ngOngo ⊆Θ  and ))(())(( ngng Ω⊆Θω . We also know that 
))(( ngoΘ  and ))(( ngΘ  are disjoint  and ))(( ngΘ  and ))(( ngωΘ are disjoint. It 

follows that  ))(( ngoΘ  and ))(( ngωΘ  are disjoint. 
Consequently ))(( ngo , ))(( ngoΘ , ))(( ngΘ , ))(( ngωΘ  and ))(( ngω  are 

pairwise disjoint. 
 
Theorem 3. Let be ))(()(1 ngonf ∈  and ))(()(2 ngnf ω∈  two complexity 

functions. Then ))(()( 21 nfCnf ∈  and ))(()( 12 nfCnf ∈ . 
Proof. From ))(()(1 ngonf ∈ , we have: 
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021 ),()()()( nnnfngcandngcnf ≥∀<⋅⋅<    (44) 
 

that is: 
 

021 ),()()( nnnfngcnf ≥∀<⋅<      (45) 
 

It follows that: 
 

02100 ),()(,1 nnnfcnfthatsuchNnnRc ≥∀⋅≤∈=∃∈=∃ ++  (46) 
 

hence ))(()( 21 nfOnf ∈ . From here, we have ))(()( 21 nfCnf ∈ . Next, using 
Theorem 1, it follows that ))(()( 12 nfCnf ∈ . 
 

Remark 3. If ))(()( ngCnf ∈ we say that )(nf  and )(ng  are comparable. 
Note that, from Theorem 1, if  ))(()( ngCnf ∈  then )).(()( nfCng ∈  

 
Theorem 4.We have the following properties: 

a)  Let be ))(()(1 ngonf ∈ and ))(()(2 ngnf Θ∈ . Then ))(()( 21 nfCnf ∈ .  
b) Let be ))(()(1 ngonf ∈  and ))(()(2 ngnf ωΘ∈ . Then ))(()( 21 nfCnf ∈ . 

Proof. We prove that if ))(()(1 ngonf ∈  and ))(()(2 ngnf Ω∈  then 
))(()( 21 nfCnf ∈ . From ))(()(1 ngonf ∈  and ))(()(2 ngnf Ω∈ we have: 

 
'
0

'
1

'
0

' ),()(, nnngcnfthatsuchNnRc ≥∀⋅<∈∃∈∀ ++   (47) 
 

''
02

''''
0

'' ),()(, nnnfngcthatsuchNnRc ≥∀≤⋅∈∃∈∃ ++   (48) 
 

If we choose ''' cc = , then we have: 
 

),max(),()()( ''
0

'
02

''
1 nnnnfngcnf ≥∀≤⋅<     (49) 

 
Next, we have 

 

021

''
0

'
00

),()(
),max(,1

nnnfcnf
thatsuchNnnnRc

≥∀⋅<
∈=∃∈=∃ ++    (50) 

 
Consequently, ))(()( 21 nfOnf ∈ . It follows that ))(()( 21 nfCnf ∈  .   
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Using Proposition 4, we have: 
 

))(())(( ngng Ω⊆Θ        (51) 
 

))(())(( ngng Ω⊆Θω        (52) 
 
a) From ))(()(1 ngonf ∈  and ))(()(2 ngnf Θ∈  we have that 

))(()(1 ngonf ∈  and ))(()(2 ngnf Ω∈ . It follows that ))(()( 21 nfCnf ∈ .  
b) From ))(()(1 ngonf ∈  and ))(()(2 ngnf ωΘ∈  we have that 

))(()(1 ngonf ∈  and ))(()(2 ngnf Ω∈ . It follows that ))(()( 21 nfCnf ∈ . 
 

Theorem 5. We have the following properties: 
a)  Let be ))(()(1 ngnf ω∈ and ))(()(2 ngnf Θ∈ . Then ))(()( 21 nfCnf ∈ . 
b) Let be ))(()(1 ngnf ω∈  and ))(()(2 ngonf Θ∈ . Then ))(()( 21 nfCnf ∈ . 

Proof. The proof follows the same idea as the proof for the Theorem 4. 
 
Theorem 6. We have the following properties: 

a) Let be ))(()(1 ngonf Θ∈  and ))(()(2 ngnf Θ∈ . Then ))(()( 21 nfCnf ∈ . 
b) Let be ))(()(1 ngnf Θ∈  and ))(()(2 ngnf ωΘ∈ . Then ))(()( 21 nfCnf ∈ . 
c) Let be ))(()(1 ngonf Θ∈  and ))(()(2 ngnf ωΘ∈ . Then ))(()( 21 nfCnf ∈ .  

Proof. Using the same idea used in the proof of Theorem 4, one can prove 
that if ))(()(1 ngOnf ∈  and ))(()(2 ngnf Ω∈  then ))(()( 21 nfCnf ∈ . 
a) We have ))(())(( ngOngo ⊆Θ  and ))(())(( ngng Ω⊆Θ . Consequently, we have  

))(()(1 ngOnf ∈  and ))(()(2 ngnf Ω∈ . It follows that ))(()( 21 nfCnf ∈ . 
b), c) The proofs follow the same idea used for the proof of a). 
 

Theorem 7. We have the following properties:  
a) There exists ))(()(1 ngonf ∈ , ))(()(2 ngonf Θ∈  such that ))(()( 21 nfCnf ∉  
b) There exists ))(()(1 ngnf ωΘ∈ , ))(()(2 ngnf ω∈  such that ))(()( 21 nfCnf ∉  

Proof.  
a) Let be  

 

⎩
⎨
⎧

⋅=
+⋅=

==
kn

kn
ng

nng
nfnngnf

2
12
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,

)(
/)(

)(,/)()(
2

21    (53) 
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It is easy to see that ))((/)( ngonng ∈ , ))((/)( 2 ngonng ∈ , and ))(()( ngng Θ∈ . 
We have ))(()(1 ngonf ∈ . Using Proposition 7, we have that ))(()(2 ngonf Θ∈ .  

One can observe that )/)(()( 2
1 nngnf ω∈  and ))(()(1 ngonf ∈ . In 

addition, the set of odd naturals and the set of even naturals are infinite sets. It 
follows that ))(()( 21 nfCnf ∉ . 
 b) The proof uses the same idea as the proof for a). 

   
Theorem 8. We have the following properties: 

a)  Let be ))(()( 1 nfong ∈ and ))(()( 2 nfng ω∈ . Then ))(()( 21 nfCnf ∈ . 
b)  Let be ))(()( 1 nfong ∈ and ))(()( 2 nfng Θ∈ . Then ))(()( 21 nfCnf ∈ . 
c)  Let be ))(()( 1 nfong ∈  and ))(()( 2 nfng ωΘ∈ . Then ))(()( 21 nfCnf ∈ . 
d)  Let be ))(()( 1 nfng ω∈ and ))(()( 2 nfng Θ∈ . Then ))(()( 21 nfCnf ∈ . 
e)  Let be ))(()( 1 nfng ω∈ and ))(()( 2 nfong Θ∈ . Then ))(()( 21 nfCnf ∈ . 

Proof. We will use Proposition 8, formulas (31), (32), (35), Theorem 3, 
Theorem 4, and Theorem 5. 

a) From ))(()( 1 nfong ∈  and ))(()( 2 nfng ω∈  we have that 
))(()(1 ngnf ω∈  and ))(()(2 ngonf ∈ . It follows that ))(()( 21 nfCnf ∈ . 

b), c), d), e) The proofs use the same idea as the proof for a). 
 
Theorem 9. Let be 1N  and 2N  two infinite subsets of +N , such that 1N  

and 2N  form a partition of +N . Let be )(1 nf  and )(2 nf two complexity functions. 
Let be  
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2
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2
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Nn
Nn

nf
nf

nf       (54) 

 
Then, we have: 
a) If ))(()(1 ngonf Θ∈  and ))(()(2 ngonf ∈  then ))(()( ngCnf ∈ . 
b) If ))(()(1 ngonf Θ∈  and ))(()(2 ngnf Θ∈  then ))(()( ngCnf ∈ . 
c) If ))(()(1 ngonf ∈  and ))(()(2 ngnf Θ∈  then ))(()( ngCnf ∈ . 
d) If ))(()(1 ngnf ωΘ∈  and ))(()(2 ngnf ω∈  then ))(()( ngCnf ∈ . 
e) If ))(()(1 ngnf ωΘ∈  and ))(()(2 ngnf Θ∈  then ))(()( ngCnf ∈ . 
f) If ))(()(1 ngnf ω∈  and ))(()(2 ngnf Θ∈  then ))(()( ngCnf ∈ . 

Proof. For proving the theorem, we use Proposition 9 and  Proposition 5. 
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a) From ))(()(1 ngonf Θ∈  and ))(()(2 ngonf ∈  we have that 
))(()( ngonf Θ∈ . Consequently, ))(()( ngOnf ∈ . It follows that ))(()( ngCnf ∈ . 

c) From ))(()(1 ngonf ∈  and ))(()(2 ngnf Θ∈  we have that 
))(()(1 ngOnf ∈  and ))(()(2 ngOnf ∈ . Consequently, ))(()( ngOnf ∈ . It follows 

that ))(()( ngCnf ∈ . 
b), d), e) The proofs use the same idea as the proof for a).  
f) The proof uses the same idea as the proof for c). 

 
Theorem 10. Let be 1N  and 2N  two infinite subsets of +N , such that 1N  

and 2N  form a partition of +N . Let be )(1 nf  and )(2 nf two complexity functions. 
Let be 
  

⎩
⎨
⎧

∈
∈

=
2

1

2

1

,
,

)(
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)(
Nn
Nn

nf
nf

nf .      (55) 

 
Then, we have: 
a) If ))(()(1 ngonf ∈ and ))(()(2 ngnf ω∈  then  ))(()( ngCnf ∉ . 
b) If ))(()(1 ngonf ∈ and ))(()(2 ngnf ωΘ∈  then  ))(()( ngCnf ∉ . 
c) If ))(()(1 ngonf Θ∈ and ))(()(2 ngnf ω∈  then  ))(()( ngCnf ∉ . 
d) If ))(()(1 ngonf Θ∈ and ))(()(2 ngnf ωΘ∈  then  ))(()( ngCnf ∉ . 

Proof. For proving that ))(()( ngCnf ∈ , we need to find a complexity 
class that contains both )(1 nf  and )(2 nf . We will show that this is impossible.  

Using Remark 1, we have: 
 

))(())(())(())(())(())(( ngngongngOngngC ω∪∪Ω∪∪Θ=  (56)                
             
The largest two complexity classes are ))(( ngO and ))(( ngΩ . So we can 

use the form of ))(( ngC  discussed in Remark 2: ))(())(())(( ngngOngC Ω∪= .  
a) From ))(()(1 ngonf ∈  we have ))(()(1 ngOnf ∈  and ))(()(1 ngnf Ω∉ . 

From ))(()(2 ngnf ω∈  we have ))(()(2 ngOnf ∉  and ))(()(2 ngnf Ω∈ . It 
follows that ))(()( ngCnf ∉ .  

b), c), d) The proofs use the same idea as the proof for a). 
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6. Conclusion 

In this paper we presented some interesting results related to the 
comparison of two complexity functions using complexity classes. These results 
are important in practice because when we compare two complexity functions, in 
fact, we compare two algorithms complexities. Using the results from this paper, 
some algorithms can be designed to tell us if two functions are comparable or to 
tell us if two functions are incomparable. 
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