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ORDERED INTUITIONISTIC FUZZY METRIC SPACES
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We provide some fixed point results for some contractive mappings on complete

ordered triangular intuitionistic fuzzy metric spaces. Also, we give some results about

the property (P).
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1. Introduction

In 1922, Banach proved the principle contraction result [9]. As we know, fixed points

results for different kinds of contractions are of great interest for fixed point theorists on some

spaces such quasi-metric spaces [11, 28], cone metric spaces [3], convex metric spaces [35],

partially ordered metric spaces [1, 4, 6, 7, 10, 12, 14, 39, 43, 51], G-metric spaces [8, 13, 41,

45, 46, 47], (quasi-)partial metric spaces [42, 44], Menger spaces [33], and fuzzy metric spaces

[25, 27, 32]. The concept of fuzzy sets introduced by Zadeh in 1965 [50]. In 1975, Kramosil

and Michalek introduced the notion of fuzzy metric spaces [32] and George and Veeramani

modified the concept in 1994 [26]. They also defined the notion of Hausdorff topology in fuzzy

metric spaces [26]. This notion has very important applications in quantum particle physics

particularly in connection with both string and E-infinity theory which introduced by El

Naschie and Sigalotte [18, 19, 20, 21, 22, 23, 49]. Motivated by the potential applicability of

fuzzy topology to quantum particle physics, Park introduced the notion of intuitionistic fuzzy

metric space [36]. He showed that for each intuitionistic fuzzy metric space (X,M,N, ∗,♢),

the topology generated by the intuitionistic fuzzy metric (M,N) coincides with the topology

generated by the fuzzy metric M . We shall use this fact in our results throughout this

manuscript. Actually, Park’s notion is useful in modeling some phenomena where it is

necessary to study the relationship between two probability functions. Some authors have

introduced and discussed several notions of intuitionistic fuzzy metric spaces in different

ways (see for example [2, 5, 15]). Grabiec obtained a fuzzy version of the Banach contraction

principle in fuzzy metric spaces in Kramosil and Michalek’s sense [25], and since then many

authors have proved fixed point theorems in fuzzy metric spaces [16, 31, 34, 37]. In 2007,

Rhoades defined the property (P) on metric spaces [29] and [30]. Denote as usual, by F (T )

the set of fixed points of the mapping T : X → X. We say that a selfmap T has the

property (P) whenever F (T ) = F (Tn) for all n ≥ 1. Note that, F (T ) ⊆ F (Tn) for all
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n ≥ 1. Recently, Ghorbanian, Rezapour and Shahzad generalized some old results about

the property (P) [24]. In 2012, Samet et. al. introduced the concept of α-ψ-contractive type

mappings [40]. In this paper, we combine all the idea of these papers and provide some fixed

point results for some contractive mappings on complete ordered triangular intuitionistic

fuzzy metric spaces. Also, we give some results about the property (P).

2. Preliminaries

Here, we recall some basic notions. For basic notions such continuous t-norm, intu-

itionistic fuzzy metric space and the induced topology which is denoted by τ(M,N), one can

study [36] and [48]. A sequence {xn} in an intuitionistic fuzzy metric space (X,M,N, ∗,♢)
is said to be Cauchy whenever for each ε > 0 and t > 0, there exists a natural number n0
such that M(xn, xm, t) > 1− ε and N(xn, xm, t) < ε for all n,m ≥ n0. Also, (X,M,N, ∗,♢)
is called complete whenever every Cauchy sequence is convergent with respect τ(M,N).

Definition 2.1 ([16]). Let (X,M,N, ∗,♢) be an intuitionistic fuzzy metric space. The fuzzy

metric (M,N) is called triangular whenever

1

M(x, y, t)
− 1 ≤ 1

M(x, z, t)
− 1 +

1

M(z, y, t)
− 1

and N(x, y, t) ≤ N(x, z, t) +N(z, y, t) for all x, y, z ∈ X and t > 0.

Definition 2.2 ([27]). A sequence {xn} in intuitionistic fuzzy metric space (X,M,N, ∗,♢)
is called intuitionistic fuzzy contractive sequence whenever there exists 0 < k < 1 such that

1

M(xn+1, xn+2, t)
− 1 ≤ k

( 1

M(xn, xn+1, t)
− 1

)
and N(xn+1, xn+2, t) ≤ kN(xn, xn+1, t), for

all n and t > 0.

Lemma 2.1 ([31]). Let (X,M,N, ∗,♢) be a triangular intuitionistic fuzzy metric space and

{xn} an intuitionistic fuzzy contractive sequence in X. Then {xn} is a Cauchy sequence.

Denote with Ψ the family of non-decreasing functions ψ : [0,+∞) → [0,+∞) such

that
∑∞

n=1 ψ
n(t) <∞ for all t > 0. It is known that ψ(t) < t for all t > 0.

Definition 2.3 ([40]). Let (X, d) be a metric space, α : X×X → [0,+∞) a mapping and T

a selfmap on X. We say that T is α-admissible whenever α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1

for all x, y ∈ X.

Example 2.4. Let X = [0,+∞) and d(x, y) = |x − y|. Define the selfmap T on X and

α : X × X → [0,+∞), respectively by the formulas Tx =
√
x, and α(x, y) = exp(x − y),

whenever x ≥ y and α(x, y) = 0 whenever x < y for all x, y ∈ X. Then T is α-admissible.

Definition 2.5 ([38]). Let (X,M,N, ∗,♢) be an intuitionistic fuzzy metric space. A selfmap

f on X is called intuitionistic fuzzy contractive whenever there exists k ∈ (0, 1) such that

N(f(x), f(y), t) ≤ kN(x, y, t) and
1

M(f(x), f(y), t)
−1 ≤ k

( 1

M(x, y, t)
−1

)
, for all x, y ∈ X

and t > 0.

Definition 2.6. Let (X,M,N, ∗,♢) be an intuitionistic fuzzy metric space, T a selfmap on

X, ψ ∈ Ψ and α : X×X → [0,+∞) a mapping. We say that T is a α-ψ-contraction whenever

α(x, y)N(x, y, t) ≤ ψ(N(x, y, t)) and α(x, y)
( 1

M(Tx, Ty, t)
− 1

)
≤ ψ

( 1

M(x, y, t)
− 1

)
, for

all x, y ∈ X.
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If (X,≤) is a partially ordered set, then we define

X≤ = {(x, y) ∈ X ×X : x ≤ y or y ≤ x}.

Also, we say that a selfmap T : X → X is orbitally continuous at x whenever for each

sequence {n(i)}i≥1 with Tn(i)x → a for some a ∈ X, we have Tn(i)+1 → Ta. By [24], here

Tm+1 = T (Tm). Finally, we define the orbit of T at x by

O(x,∞) := {x, Tx, T 2x, . . . , Tnx, . . .}.

We say that T has the strongly comparable property whenever (Tn−1y, Tny) ∈ X≤ for all

n ≥ 1 and m ≥ 2, where y ∈ F (Tm), see [24].

3. Main Results

First, we give the following result which includes some special mappings that could

be discontinuous.

Theorem 3.1. Let (X,M,N, ∗,♢) be a complete ordered triangular intuitionistic fuzzy met-

ric space, λ ∈ (0, 1) and T a selfmap on X satisfy the condition

min

{
[1−M(Tx, Ty, t)]2

M2(Tx, Ty, t)
,
[1−M(x, y, t)][1−M(Tx, Ty, t)]

M(x, y, t)M(Tx, Ty, t)
,
[1−M(y, Ty, t)]2

M2(y, Ty, t)

}
−min

{
[1−M(x, Tx, t)]2

M2(x, Tx, t)
,
[1−M(y, Ty, t)][1−M(x, Ty, t)]

M(y, Ty, t)M(x, Ty, t)
,
[1−M(y, Tx, t)]2

M2(y, Tx, t)

}
≤ λ

[1−M(x, Tx, t)][1−M(y, Ty, t)]

M(x, Tx, t)M(y, Ty, t)

for all x, y ∈ X≤. If there exists x0 ∈ X such that (Tn−1x0, T
nx0) ∈ X≤ for all n ≥ 1 and

T is orbitally continuous at x0, then T has a fixed point. Moreover, if T has the strongly

comparable property, then T has the property (P).

Proof. Define xn+1 = Txn = Tn+1x0 for all n ≥ 0. If xn0 = xn0−1 for some natural number

n0, then xn = xn0 for all n ≥ n0 and xn0 is a fixed point of T . Suppose that xn ̸= xn−1 for

all n ≥ 1. Now for each n ≥ 1, by using the assumption, we can put x = xn−1 and y = xn
in the condition. Thus we obtain

min

{
[1−M(xn, xn+1, t)]

2

M2(xn, xn+1, t)
,
[1−M(xn−1, xn, t)][1−M(xn, xn+1, t)]

M(xn−1, xn, t)M(xn, xn+1, t)

}
≤ λ

[1−M(xn−1, xn, t)][1−M(xn, xn+1, t)]

M(xn−1, xn, t)M(xn, xn+1, t)
.

Since λ < 1,

min

{
[1−M(xn, xn+1, t)]

2

M2(xn, xn+1, t)
,
[1−M(xn−1, xn, t)][1−M(xn, xn+1, t)]

M(xn−1, xn, t)M(xn, xn+1, t)

}
=

[1−M(xn, xn+1, t)]
2

M2(xn, xn+1, t)

Hence,
1

M(xn, xn+1, t)
− 1 ≤ λ

( 1

M(xn−1, xn, t)
− 1

)
.

By continuing this process we obtain

1

M(xn, xn+1, t)
− 1 ≤ λn

( 1

M(x0, x1, t)
− 1

)



30 Sh. Rezapour, Cristiana Ionescu, M. E. Samei

for all n ≥ 1. Thus for each natural number k we have

1

M(xn, xn+k, t)
− 1 ≤

n+k−1∑
i=n

( 1

M(xi, xi+1, t)
− 1

)
≤

n+k−1∑
i=n

λi
( 1

M(x0, x1, t)
− 1

)

≤ λn

1− λ

( 1

M(x0, x1, t)
− 1

)
.

Therefore, {xn} is a Cauchy sequence. Since (X,M,N, ∗,♢) is a complete intuitionistic

fuzzy metric space, there exists u ∈ X such that xn → u. Since T is orbitally continuous,

xn+1 = Txn → Tu. This implies that Tu = u.

Now, we prove that T has the property (P). Let n ≥ 2 be given and v ∈ F (Tn).

Since T has the strongly comparable property, we can put x = Tn−1v and v = Tnv in the

condition. Thus, we obtain

min

{
[1−M(Tnv, Tn+1v, t)]2

M2(Tnv, Tn+1v, t)
,
[1−M(Tn−1v, Tnv, t)][1−M(Tnv, Tn+1v, t)]

M(Tn−1v, Tnv, t)M(Tnv, Tn+1v, t)

}

≤ λ
[1−M(Tn−1v, Tnv, t)][1−M(Tnv, Tn+1v, t)]

M(Tn−1v, Tnv, t)M(Tnv, Tn+1v, t)
.

Thus,

min

{
[1−M(v, Tv, t)]2

M2(v, Tv, t)
,
[1−M(Tn−1v, v, t)][1−M(v, Tv, t)]

M(Tn−1v, v, t)M(v, Tv, t)

}

≤ λ
[1−M(Tn−1v, v, t)][1−M(v, Tv, t)]

M(Tn−1v, v, t)M(v, Tv, t)

and so we get two cases.

Case I. This is
[1−M(v, Tv, t)]2

M2(v, Tv, t)
≤ λ

[1−M(Tn−1v, v, t)][1−M(v, Tv, t)]

M(Tn−1v, v, t)M(v, Tv, t)
We claim that 1

M(v,Tv,t) − 1 = 0.

If 1
M(v,Tv,t) − 1 > 0, then 1

M(v,Tv,t) − 1 = 1
M(Tnv,Tn+1v,t) − 1 ≤ λ 1

M(Tn−1v,Tnv,t) − 1.

Again, by putting x = Tn−2v and y = Tn−1v in condition, we obtain

min

{
[1−M(Tn−1v, Tnv, t)]2

M2(Tn−1v, Tnv, t)
,
[1−M(Tn−2v, Tn−1v, t)][1−M(Tn−1v, Tnv, t)]

M(Tn−2v, Tn−1v, t)M(Tn−1v, Tnv, t)

}

≤ λ
[1−M(Tn−2v, Tn−1v, t)][1−M(Tn−1v, Tnv, t)]

M(Tn−2v, Tn−1v, t)M(Tn−1v, Tnv, t)
.

Again, we get two cases. Let

[1−M(Tn−1v, Tnv, t)]2

M2(Tn−1v, Tnv, t)
≤ λ

[1−M(Tn−2v, Tn−1v, t)][1−M(Tn−1v, Tnv, t)]

M(Tn−2v, Tn−1v, t)M(Tn−1v, Tnv, t)
.

If 1
M(Tn−1v,Tnv,t) − 1 = 0, then Tn−1v = v and so v = Tnv = Tv. If 1

M(Tn−1v,Tnv,t) − 1 > 0,

then 1
M(Tn−1v,Tnv,t) − 1 ≤ λ[ 1

M(Tn−2v,Tn−1v,t) − 1]. Now, let

[1−M(Tn−2v, Tn−1v, t)][1−M(Tn−1v, Tnv, t)]

M(Tn−2v, Tn−1v, t)M(Tn−1v, Tnv, t)

≤ λ
[1−M(Tn−2v, Tn−1v, t)][1−M(Tn−1v, Tnv, t)]

M(Tn−2v, Tn−1v, t)M(Tn−1v, Tnv, t)
.
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In this case we should have 1
M(Tn−2v,Tn−1v,t) − 1 = 0 or 1

M(Tn−1v,Tnv,t) − 1 = 0 (and so

v = Tv), because if 1
M(Tn−2v,Tn−1v,t) − 1 > 0 and 1

M(Tn−1v,Tnv,t) − 1 > 0, then we get λ ≥ 1

which is a contradiction. By continuing this process, we obtain

1

M(v, Tv, t)
− 1 =

1

M(Tnv, Tn+1v, t)
− 1 ≤ λ

( 1

M(Tn−1v, Tnv, t)
− 1

)
≤ λ2

( 1

M(Tn−2v, Tn−1v, t)
− 1

)
≤ · · · ≤ λn

( 1

M(Tv, Tv, t)
− 1

)
which leads us to λ ≥ 1 which is a contradiction.

Therefore, in this case we have 1
M(v,Tv,t) − 1 = 0 and so Tv = v.

Case II.
[1−M(Tn−1v, v, t)][1−M(v, Tv, t)]

M(Tn−1v, v, t)M(v, Tv, t)
≤ λ

[1−M(Tn−1v, v, t)][1−M(v, Tv, t)]

M(Tn−1v, v, t)M(v, Tv, t)
.

In this case, we should have 1
M(Tn−1v,Tv,t) − 1 = 0 or 1

M(v,Tv,t) − 1 = 0 (and so

v = Tv). In fact, if 1
M(Tn−1v,v,t) − 1 > 0 and 1

M(v,Tv,t) − 1 > 0, then λ ≥ 1 which is a

contradiction. Thus we consequence that F (Tn) ⊆ F (T ). Therefore, T has the property

(P). �

The following example shows that there are nonlinear and discontinuous mappings

which satisfy the condition of Theorem 3.1.

Example 3.1. Let X = [0,∞), be endowed with d(x, y) = |x− y|, M(x, y, t) =
t

t+ d(x, y)

and N(x, y, t) =
d(x, y)

t+ d(x, y)
for all x, y ∈ X and t ≥ 0. Define the selfmap T on X by

Tx = 0 whenever 0 ≤ x ≤ 10, Tx = x − 10 whenever 10 ≤ x ≤ 11 and Tx = 1.1 whenever

x ≥ 11. Then by putting λ = 1
2 . T satisfies the condition of Theorem 3.1.

Theorem 3.2. Let (X,M,N, ∗,♢) be a complete ordered triangular intuitionistic fuzzy met-

ric space, b ∈ [0, 1), c ≥ 0, m a nonnegative integer and T a selfmap on X satisfy the

condition

[1−M(Tm+1x, Tm+2y, t)]2

M2(Tm+1x, Tm+2y, t)
≤ b

[1−M(Tmx, Tm+1x, t)][1−M(Tm+1y, Tm+2y, t)]

M(Tmx, Tm+1x, t)M(Tm+1y, Tm+2y, t)

+c
[1−M(Tmx, Tm+2y, t)][1−M(Tm+1y, Tm+1x, t)]

M(Tmx, Tm+2y, t)M(Tm+1y, Tm+1x, t)
,

for all x, y ∈ X≤. Suppose that there exists x0 ∈ X such that (Tn−1x0, T
nX0) ∈ X≤ for all

n ≥ 1. If T is orbitally continuous at x0 or m = 0, then T has a fixed point. Moreover, T

has a unique fixed point whenever c < 1. If T has the strongly comparable property, then T

has the property (P).

Proof. Define x1 = Tm+1x0 and xn+1 = Txn for all n ≥ 1. Then

[1−M(x1, x2, t)]
2

M2(x1, x2, t)
=

[1−M(Tm+1x0, T
m+2x0, t)]

2

M2(Tm+1x0, Tm+2x0, t)

≤ b
[1−M(Tmx0, T

m+1x0, t)][1−M(Tm+1x0, T
m+2x0, t)]

M(Tmx0, Tm+1x0, t)M(Tm+1x0, Tm+2x0, t)

+c
[1−M(Tmx0, T

m+2x0, t)][1−M(Tm+1x0, T
m+1x0, t)]

M(Tmx, Tm+2x0, t)M(Tm+1x0, Tm+1x0, t)

= b
[1−M(Tmx0, T

m+1x0, t)][1−M(Tm+1x0, T
m+2x0, t)]

M(Tmx0, Tm+1x0, t)M(Tm+1x0, Tm+2x0, t)
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= b
[1−M(Tmx0, T

m+1x0, t)][1−M(x1, x2, t)]

M(Tmx0, Tm+1x0, t)M(x1, x2, t)
.

If 1
M(x1,x2,t)

− 1 = 0, then Tx1 = x2 = x1 and so T has a fixed point. If 1
M(x1,x2,t)

− 1 > 0,

then 1
M(x1,x2,t)

− 1 ≤ b[ 1
M(Tmx0,x1,t)

− 1]. Similarly, we have

[1−M(x2, x3, t)]
2

M2(x2, x3, t)
=

[1−M(Tm+2x0, T
m+3x0, t)]

2

M2(Tm+2x0, Tm+3x0, t)

≤ b
[1−M(Tm+1x0, T

m+2x0, t)][1−M(Tm+2x0, T
m+3x0, t)]

M(Tm+1x0, Tm+2x0, t)M(Tm+2x0, Tm+3x0, t)

+c
[1−M(Tm+1x0, T

m+3x0, t)][1−M(Tm+2x0, T
m+2x0, t)]

M(Tm+1x, Tm+3x0, t)M(Tm+2x0, Tm+2x0, t)

= b
[1−M(Tm+1x0, T

m+2x0, t)][1−M(Tm+2x0, T
m+3x0, t)]

M(Tm+1x0, Tm+2x0, t)M(Tm+2x0, Tm+3x0, t)

= b
[1−M(x1, x2, t)][1−M(x2, x3, t)]

M(x1, x2, t)M(x2, x3, t)
.

If 1
M(x2,x3,t)

− 1 = 0, then Tx2 = x3 = x2 and so T has a fixed point. If 1
M(x2,x3,t)

− 1 > 0,

then 1
M(x2,x3,t)

− 1 ≤ b[ 1
M(x1,x2,t)

− 1] and so 1
M(x2,x3,t)

− 1 ≤ b2[ 1
M(Tmx0,x1,t)

− 1]. By

continuing this process we get that 1
M(xn,xn+1,t)

−1 ≤ bn[ 1
M(Tmx0,x1,t)

−1] for all n ≥ 1. This

implies that {xn} is a Cauchy sequence. Since (X,M,N, ∗,♢) is a complete intuitionistic

fuzzy metric space, there exists u ∈ X such that xn → u. If T is orbitally continuous, then

Txn → Tu. Hence, Tu = u.

If m = 0, then for each n ≥ 2 we have

[1−M(Tu, Tnx0, t)]
2

M2(Tu, Tnx0, t)
≤ b

[1−M(u, Tu, t)][1−M(Txn−2, T
2xn−2, t)]

M(u, Tu, t)M(Txn−2, T 2xn−2, t)

+c
[1−M(u, T 2xn−2, t)][1−M(Txn−2, Tu, t)]

M(u, T 2xn−2, t)M(Txn−2, Tu, t)
.

Since xn → u, we have

1

M(Tu, u, t)
− 1 ≤ c

[1−M(u, u, t)][1−M(u, Tu, t)]

M(u, u, t)M(u, Tu, t)
= 0

and so Tu = u. Now, we show that T has a unique fixed point whenever c < 1. Let u and

v be fixed points of T . Then, we have( 1

M(u, v, t)
− 1

)2

=
( 1

M(Tm+1u, Tm+2v, t)
− 1

)2

≤ b
[1−M(Tmu, Tm+1u, t)][1−M(Tm+1v, Tm+2v, t)]

M(Tmu, Tm+1u, t)M(Tm+1v, Tm+2v, t)

+c
[1−M(Tmu, Tm+2v, t)][1−M(Tm+1v, Tm+1u, t)]

M(Tmu, Tm+2v, t)M(Tm+1v, Tm+1u, t)
= c

( 1

M(u, v, t)
− 1

)2

.

Hence, 1
M(u,v,t) − 1 = 0 because c < 1. Thus, u = v and so T has a unique fixed point.

Finally, we prove that T has the property (P) whenever T has the strongly comparable

property. Let n ≥ 2 be given and v ∈ F (Tn). We consider the following cases.

Case I. m = 0. In this case, we have( 1

M(v, Tv, t)
− 1

)2

=
( 1

M(T (Tn−1v), T 2(Tn−1v), t)
− 1

)2
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≤ b
[1−M(Tn−1v, Tnv, t)][1−M(Tnv, Tn+1v, t)]

M(Tn−1v, Tnv, t)M(Tnv, Tm+1v, t)

+c
[1−M(Tn−1v, Tn+1v, t)][1−M(Tnv, Tnv, t)]

M(Tn−1v, Tn+1v, t)M(Tnv, Tnv, t)
= b

[1−M(Tn−1v, v, t)][1−M(v, Tv, t)]

M(Tn−1v, v, t)M(v, Tv, t)
.

If 1
M(v,Tv,t) − 1 = 0 then Tv = v. If 1

M(u,v,t) − 1 > 0, then 1
M(Tnv,Tn+1v,t) − 1 ≤

b[ 1
M(Tn−1v,Tnv,t)−1]. By continuing the process and using a similar argument as in Theorem

3.1, we obtain

1

M(v, Tv, t)
− 1 =

1

M(Tnv, Tn+1v, t)
− 1 ≤ b

( 1

M(Tn−1v, Tnv, t)
− 1

)
≤ b2

( 1

M(Tn−2v, Tn−1v, t)
− 1

)
≤ · · · ≤ bn

( 1

M(v, Tv, t)
− 1

)
.

Since b < 1, Tv = v.

Case II. m ≥ 1 and n ≤ m. In this case, choose a natural number r and an integer number

0 ≤ s < n such that m+ 1 = rn+ s. Then, we have Tn(Tn−sv) = Tm+1(Tn−sv) = v, and

so ( 1

M(v, Tv, t)
− 1

)2

=
( 1

M(Tm+1(Tn−sv), Tm+ 2(Tn−sv), t)
− 1

)2

≤ b
[1−M(Tm(Tn−sv), Tm+1(Tn−sv), t)][1−M(Tm+1(Tn−sv), Tm+2(Tn−sv), t)]

M(Tm(Tn−sv), Tm+1(Tn−sv), t)M(Tm+1(Tn−sv), Tm+2(Tn−sv), t)

+c
[1−M(Tm(Tn−sv), Tm+2(Tn−sv), t)][1−M(Tm+1(Tn−sv), Tm+1(Tn−sv), t)]

M(Tm(Tn−sv), Tm+2(Tn−sv), t)M(Tm+1(Tn−sv), Tm+1(Tn−sv), t)

= b
[1−M(Tn−1v, v, t)][1−M(v, Tv, t)]

M(Tn−1v, v, t)M(v, Tv, t)
.

If 1
M(v,Tv,t) − 1 = 0, then Tv = v. If 1

M(v,Tv,t) − 1 > 0, then 1
M(Tnv,Tn+1v,t) − 1 ≤

b[ 1
M(Tn−1v,Tnv,t)−1]. By continuing the process and using a similar argument as in Theorem

3.1, We obtain

1

M(v, Tv, t)
− 1 =

1

M(Tnv, Tn+1v, t)
− 1 ≤ b

( 1

M(Tn−1v, Tnv, t)
− 1

)
≤ b2

( 1

M(Tn−2v, Tn−1v, t)
− 1

)
≤ · · · ≤ bn

( 1

M(v, Tv, t)
− 1

)
.

Since b < 1, Tv = v. Thus, F (Tn) ⊆ F (T ). Therefore, T has the property (P). �

The following example shows that there are nonlinear and discontinuous mappings

satisfy the condition of Theorem 3.2.

Example 3.2. Let X = [0,∞), d(x, y) = |x − y|, M(x, y, t) = t
t+d(x,y) and N(x, y, t) =

d(x,y)
t+d(x,y) for all x, y ∈ X and t ≥ 0. Define the selfmap T on X by Tx = 0 whenever

0 ≤ x ≤ 100, Tx = x− 100 whenever 100 ≤ x ≤ 100.1 and Tx = 0.15 whenever x ≥ 100.1.

Then, by putting m = 0, b = 1
2 . T satisfies the condition of Theorem 3.2.

Definition 3.3 ([24]). Let (X,M,N, ∗,♢) be a intuitionistic fuzzy metric space and T a

selfmap on X. Then, T is said to be a convex contraction of order 2 if there exist a, b ∈ (0, 1)

with a+ b < 1 such that

1

M(T 2x, T 2y, t)
− 1 ≤ a

( 1

M(Tx, Ty, t)
− 1

)
+ b

( 1

M(x, y, t)
− 1

)
,
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for all x, y ∈ X and t > 0. Also, T is said to be a convex contraction of order 2 if there exist

a1, a2, b1, b2 ∈ (0, 1) with a1 + a2 + b1 + b2 < 1 such that

1

M(T 2x, T 2y, t)
− 1 ≤ a1

( 1

M(x, Tx, t)
− 1

)
+ a2

( 1

M(Tx, T 2x, t)
− 1

)
+b1

( 1

M(y, Ty, t)
− 1

)
+ b2

( 1

M(Ty, T 2y, t)
− 1

)
,

for all x, y ∈ X.

Theorem 3.3. Let (X,M,N, ∗,♢) be a complete order triangular intuitionistic fuzzy metric

space, a, b ∈ (0, 1) with a + b < 1 and T an orbitally continuous selfmap on X satisfy the

condition

1

M(T 2x, T 2y, t)
− 1 ≤ a

( 1

M(Tx, Ty, t)
− 1

)
+ b

( 1

M(x, y, t)
− 1

)
for all x, y ∈ X≤, then T has a unique fixed point. Also, F (T ) = F (T 2).

Proof. Define xn = Tnx0 for all n ≥ 1, v =
1

M(Tx0, T 2x0, t)
− 1 +

1

M(x0, T x
0 , t)

− 1, and

λ = a + b. Thus
1

M(T 2x0, Tx0, t)
− 1 ≤ v. Now, by using the assumption, we can put

x = Tx0 and y = x0 in the condition. Thus, we obtain

1

M(T 3x0, T 2x0, t)
− 1 ≤ a

( 1

M(T 2x0, Tx0, t)
− 1

)
+ b

( 1

M(x0, Tx0, t)
− 1

)
≤ λv.

Now, by putting x = T 2x0 and y = Tx0 in the condition, we get

1

M(T 4x0, T 3x0, t)
− 1 ≤ a

( 1

M(T 3x0, T 2x0, t)
− 1

)
+ b

( 1

M(T 2x0, x0, t)
− 1

)
≤ a2

( 1

M(T 2x0, Tx0, t)
− 1

)
+ ab

( 1

M(x0, Tx0, t)
− 1

)
+ b

( 1

M(T 2x0, Tx0, t)
− 1

)
≤ λ2v.

Again, by putting x = T 3x0 and y = T 2x0 in the condition, we obtain

1

M(T 5x0, T 4x0, t)
− 1 ≤ a

( 1

M(T 4x0, T 3x0, t)
− 1

)
+ b

( 1

M(T 3x0, T 2x0, t)
− 1

)
≤ (a3 + ab)

( 1

M(T 2x0, Tx0, t)
− 1

)
+ a2b

( 1

M(x0, Tx0, t)
− 1

)
+ab

( 1

M(T 2x0, Tx0, t)
− 1

)
+ b

( 1

M(x0, Tx0, t)
− 1

)
= (a3 + 2ab)

( 1

M(T 2x0, Tx0, t)
− 1

)
+ (a2b+ b2)

( 1

M(x0, Tx0, t)
− 1

)
≤ λ3v.

By continuing this process, we get
1

M(Tn+1x0, Tnx0, t)
− 1 ≤ λn−1v for all n ≥ 3. This

implies that

1

M(Tmx0, Tnx0, t)
− 1 ≤

n−1∑
i=m

( 1

M(T ix0, T i+1x0, t)
− 1

)
≤

n−1∑
i=n

λi−2v ≤ λm−2

1− λ
v

for all n > m ≥ 3. Hence, {xn} is a Cauchy sequence. Since (X,M,N, ∗,♢) is a complete

intuitionistic fuzzy metric space, there exists u ∈ X such that xn → u. Since T is orbitally
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continuous, Txn → Tu and so Tu = u. Now, we show that T has a unique fixed point. Let

y and z be fixed points of T . Then

1

M(y, z, t)
− 1 =

1

M(T 2y, T 2z, t)
− 1 ≤ a

( 1

M(Ty, Tz, t)
− 1

)
+ b

( 1

M(y, z, t)
− 1

)
= (a+ b)

( 1

M(y, z, t)
− 1

)
.

Since a+ b < 1, we get Ty = y. �

Example 3.4. Let X = {1, 3, 5}, d(x, y) = |x − y|, M(x, y, t) = t
t+d(x,y) and N(x, y, t) =

d(x,y)
t+d(x,y) for all x, y ∈ X and t ≥ 0. Define ≤= {(1, 1), (3, 3), (5, 5)} and T be a selfmap on

X by T1 = 3, T3 = 1 and T5 = 5. Then, by putting x0 = 5, a = 1
2 and b = 1

4 , it is easy to

see that T satisfies the condition of Theorem 3.3.

Theorem 3.4. Let (X,M,N, ∗,♢) be a complete order triangular intuitionistic fuzzy metric

space, a1, a2, b1, b2 ∈ (0, 1) with a1 + a2 + b1 + b2 < 1 and T an orbitally continuous selfmap

on X satisfy the condition

1

M(T 2x, T 2y, t)
− 1 ≤ a1

( 1

M(x, Tx, t)
− 1

)
+ a2

( 1

M(Tx, T 2x, t)
− 1

)
+b1

( 1

M(y, Ty, t)
− 1

)
+ b2

( 1

M(Ty, T 2y, t)
− 1

)
for all x, y ∈ X≤. If there exists x0 ∈ X such that Tn−1x0, T

nx0) ∈ X≤ for all n ≥ 1, then

T has a unique fixed point. Also F (T ) = F (T 2).

Proof. Define xn = Tnx0, for all n ≥ 1, and set v =
1

M(Tx0, T 2x0, t)
−1+

1

M(x0, T x
0 , t)

−1.

Also, put λ = a1 + a2 + b1 and β = 1− b2. We prove that

1

M(Tn+1x0, Tnx0, t)
− 1 ≤

(
λ

β

)n−2

v

for all n ≥ 3. Note that

1

M(T 3x0, T 2x0, t)
− 1 ≤ a1

( 1

M(x0, Tx0, t)
− 1

)
+ a2

( 1

M(Tx0, T 2x0, t)
− 1

)
+b1

( 1

M(Tx0, T 2x0, t)
− 1

)
+ b2

( 1

M(T 3x0, T 2x0, t)
− 1

)
≤ a1v + (a2 + b1)v + b2

( 1

M(T 3x0, T 2x0, t)
− 1

)
.

Hence, 1
M(T 3x0,T 2x0,t)

− 1 ≤ (λβ )v. Now, by using the assumption, we can put x = Tx0 and

y = T 2x0 in the condition. Thus, we obtain

1

M(T 3x0, T 4x0, t)
− 1 ≤ a1

( 1

M(Tx0, T 2x0, t)
− 1

)
+ a2

( 1

M(T 2x0, T 3x0, t)
− 1

)
+b1

( 1

M(T 2x0, T 3x0, t)
− 1

)
+ b2

( 1

M(T 3x0, T 4x0, t)
− 1

)
≤ a1v + (a2 + b1)

a1 + a2 + b1
1− b2

v + b2

( 1

M(T 3x0, T 4x0, t)
− 1

)
.

Hence, 1
M(T 3x0,T 4x0,t)

− 1 ≤ (λβ )v. Similarly, we have

1

M(T 5x0, T 4x0, t)
− 1 ≤ a1

( 1

M(T 3x0, T 2x0, t)
− 1

)
+ a2

( 1

M(T 4x0, T 3x0, t)
− 1

)
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+b1

( 1

M(T 4x0, T 3x0, t)
− 1

)
+ b2

( 1

M(T 5x0, T 4x0, t)
− 1

)
≤ a1

a1 + a2 + b1
1− b2

v + (a2 + b1)
a1 + a2 + b1

1− b2
v + b2

( 1

M(T 5x0, T 4x0, t)
− 1

)
.

Hence, 1
M(T 5x0,T 4x0,t)

− 1 ≤ (λβ )
2v. Also, by using the assumption and putting x = T 3x0

and y = T 4x0 in the condition, we obtain

1

M(T 5x0, T 6x0, t)
− 1 ≤ a1

( 1

M(T 3x0, T 4x0, t)
− 1

)
+ a2

( 1

M(T 4x0, T 5x0, t)
− 1

)
+b1

( 1

M(T 4x0, T 5x0, t)
− 1

)
+ b2

( 1

M(T 5x0, T 6x0, t)
− 1

)
≤ a1

λ

β
v + (a2 + b1)(

λ

β
)2v + b2

( 1

M(T 5x0, T 6x0, t)
− 1

)
= (

λ

β
)2
(
a1(

β

λ
)v + (a2 + b1)v + (

β

λ
)2b2

( 1

M(T 5x0, T 6x0, t)
− 1

))
≤ (

λ

β
)2
(
a1(

β

λ
)v + (

β

λ
)(a2 + b1)v + (

β

λ
)2b2

( 1

M(T 5x0, T 6x0, t)
− 1

))
= (

λ

β
)2
(
(
β

λ
)(a1 + a2 + b1)v + (

β

λ
)2b2

( 1

M(T 5x0, T 6x0, t)
− 1

))
≤ (

1

β
)2
(
(
β

λ
)(a1 + a2 + b1)

3v + (β)2b2

( 1

M(T 5x0, T 6x0, t)
− 1

))
which implies

(
λ

β
)β3

( 1

M(T 5x0, T 6x0, t)
− 1

)
≤ (1− b2)

3
( 1

M(T 5x0, T 6x0, t)
− 1

)
≤ (λ)3v.

Hence ( 1

M(T 5x0, T 6x0, t)
− 1

)
≤ (

λ

β
)3v.

By continuing the process, we get ( 1
M(T 5x0,T 6x0,t)

− 1) ≤ (λβ )
n−2 for all n ≥ 3. This implies

1

M(Tmx0, Tnx0, t)
− 1 ≤

n−1∑
i=m

( 1

M(T ix0, T i+1x0, t)
− 1

)
≤

n−1∑
i=m

(
λ

β
)i−2v ≤

(λβ )
m−2

1− (λβ )
v,

for all n > m ≥ 3. Hence {xn} is a Cauchy sequence. Since (X,M,N, ∗,♢) is a complete

intuitionistic fuzzy metric space, there exists u ∈ X such that xn → u. Since T is orbitally

continuous, Txn → Tu and so Tu = u. Now, we show that T has a unique fixed point. Let

y and z be fixed point of T . Then,

1

M(y, z, t)
− 1 =

1

M(T 2y, T 2z, t)
− 1 ≤ a1

( 1

M(Ty, y, t)
− 1

)
+ a2

( 1

M(Ty, T 2y, t)
− 1

)
+b1

( 1

M(z, Tz, t)
− 1

)
+ b2

( 1

M(Tz, T 2z, t)
− 1

)
and so y = z. Now, we prove that F (T ) = F (T 2). Let y ∈ F (T 2). Then, we have

1

M(y, Ty, t)
−1 =

1

M(T 2y, T 2Ty, t)
−1 ≤ a1

( 1

M(Ty, T 2y, t)
−1

)
+a2

( 1

M(T 2y, T 3y, t)
−1

)
+b1

( 1

M(y, Ty, t)
− 1

)
+ b2

( 1

M(Ty, T 2y, t)
− 1

)
= (a1 + a2 + b1 + b2)

( 1

M(y, Ty, t)
− 1

)
.

Since a+ b < 1, we get Ty = y. �
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Example 3.5. Let X = {1, 3, 5}, d(x, y) = |x − y|, M(x, y, t) = t
t+d(x,y) and N(x, y, t) =

d(x,y)
t+d(x,y) for all x, y ∈ X and t ≥ 0. Define ≤= {(1, 1), (3, 3), (5, 5)} and T be a selfmap on

X by T1 = 3, T3 = 1 and T5 = 5. Then, by putting x0 = 5, a1 = a2 = b1 = b2 = 1
4 , it is

easy to see that T satisfies the condition of Theorem 3.4.

4. Conclusion

In this article, we provide fixed point results for some contractive mappings on com-

plete ordered triangular intuitionistic fuzzy metric spaces. Also, we gave some results about

the property (P). Our results are extensions of several results as in relevant items from the

reference section of this paper, as well as in the literature in general. For stability results

related to our fixed point research, please see [17], [35].
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