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STUDY OF THE SOLITONS PROPAGATION THROUGH 
OPTICAL FIBERS 

Dan Alexandru IORDACHE1, Andrei PETRESCU2, Viorica IORDACHE1 

Caracteristicile specifice: a) tipul neliniarităţii, b) proprietăţile dispersive ale 
mediului de propagare, c) caracteristicile de coerenţă ale pulsurilor, d) ecuaţiile de 
propagare, e) modalităţile de întreţinere, f) aplicaţiile tehnice, etc. au fost analizate 
atât pentru principalele tipuri de solitoni optici [spre ex. solitonii Schrödinger 
neliniar: (i) pătratici (QNLS), (ii) cubici (Kerr, CNLS), (iii) cu neliniaritate saturabilă 
(SNLS), (iv) cu neliniaritate discretizată (DNLS)], precum şi pentru unii solitoni 
acustici [în particular, cei de tipurile: (i) Korteweg-de Vries, (ii) Boussinesq, (iii) 
Burgers, (iv) sine-Gordon]. Un studiu detaliat al discretizărilor folosite în cadrul unor 
diferite tipuri de simulări numerice, precum şi compararea pulsurilor solitare de 
tipurile “clopot” (breather), respectiv “kink” a fost realizată de asemenea. 

The specific features: a) non-linearity type, b) dispersive properties of the 
propagation medium, c) pulses coherence features, d) propagation equations, 
e) maintenance procedures, f) technical applications, etc. were studied both for some 
typical optical [e.g. the: (i) quadratic (QNLS), (ii) Kerr (cubic, CNLS), (iii) saturable 
(SNLS), (iv) discretized (DNLS), Schrödinger non-linear kind solitons] and for some 
acoustic [e.g.: (i) Korteweg-de Vries, (ii) Boussinesq, (iii) Burgers, (iv) sine-Gordon] 
solitary pulses. A detailed study of the discretizations used by the different numerical 
simulations and a comparison of the solitary pulses of the “bell” (breather) and 
“kink” types was also achieved.  

Keywords: Non-linearity, dispersive properties, pulses coherence, optical (NLS)  
                   solitons, acoustic solitary waves, solitons propagation simulations 

1. Introduction 

As it is well-known, the first studies of the solitons transmission through 
optical fibers were achieved by the works [1], [2], while the demonstration of the 
compensated losses by means of: a) optical amplifiers doped with Er3+ ions, 
b) Raman gain, were accomplished by works [3] and [4], respectively. 

Inside the paper introduction it will be specified the present stage of the 
researches in the studied field (being cited the corresponding references), 
indicating also the paper goals. 
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2. Main types of physical properties of solitons propagation media 

2.1. The non-linearity type 

Figure 1 presents the basic types of non-linearity. 

Fig. 1. Plots of stress / polarisation / magnetisation parameters vs. the strain / field intensities. 

2.2. Basic properties of dispersive media 

The basic physical properties of the optical fibers and their use in the 
optical communications were studied beginning from 1954 and with - many 
improved technological elements - in [5]. 

2.1. Balance of the non-linear and dispersive properties 

We have to underline that - for the solitary waves - it is achieved a perfect 
balance between the non-linear and the dispersive properties. E.g. for the 
elementary case of the KdV solitons, described by the equations: 
 Φ⋅= −2coshAw , where:   ( )[ ]2

14 ξξ ⋅+−=Φ dVx o  , (1) 
one obtains:  

Φ⋅Φ⋅−=⋅ −52 coshsinh2' ξAnwnw , [ ]Φ⋅Φ−Φ⋅Φ⋅=′′′⋅ −− 353
11 coshsinhcoshsinh38 ξAdwd . 

One finds that the non-linear term is neutralized by the dispersion term, in 
conditions when the pseudo-vector: 112dnA=ξ , (2) 
the (nonlinear) KdV equation being so rigorously fulfilled:  

 wdwnwwVw o ′′′−⋅−−= 1''� . (3) 

3. Coherence properties, generation and maintenance procedures 

3.1. Coherence properties 

According to the coherence theory, the spectral components of a pulse are 

coherent if 
τω

ω T
≤

Δ , where T is the corresponding oscillations period, while τ is 

the observation time. The acoustic solitary waves correspond usually to a unique 
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pulse, the (laser) optical solitons represent in fact (the envelope of) a wave group 
(see [5c], and figure 2). 

 Fig. 2. Structure of an optical Fig. 3. Basic procedure of the optical solitons generation by 
 soliton. means of the amplitude modulation of a light beam. 

3.2. Generation procedures 

While the acoustic solitons could result frequently as a consequence of 
some natural processes in water channels, oceans, Earth atmosphere, etc. [7], in 
order to be used (e.g. in the optical communications systems), the optical solitons 
represent some artifacts (they have to be generated).  

3.3. Maintenance procedures 

Unlike the “natural” solitons, which fit exactly the properties of the propagation 
medium, the “artificial” ones correspond to truncated physical properties, which 
approximate well (but not exactly) the true (exact) properties. That is why these 
solitons are subject to some (rather weak, but not null) attenuation processes, for 
curved trajectories, especially, their Schrödinger non-linear propagation equation 
being completed with some attenuation terms: 

 qiqq
T

q
X
qi ⋅Γ−=⋅−

∂

∂
⋅+

∂
∂ 2

2

2

2
1 , (4) 

where Γ  is the non-dimensional losses coefficient. 

 Fig. 4. Comparison of QSNL and CSNL  Fig. 5. Comparison of QSNL and CSNL  
 breather standing wave. kink standing wave. 

In order to keep their amplitudes, the use of some optical amplifiers is necessary 
(see [8]).  
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Table 1 

Basic features of the studied numerical simulations of the main type of optical and acoustic 
solitons, respectively 

The 
type of 
solitary 
waves 
pulses 

Equation Programming 
medium References 

Optical 

Schrödinger with quadratic non-linearity, QNLS 

( ) 12 2 2 22 n
t z ni w c w w w wω ω ω α −

± ± ± ± ± ± ±− ∂ ∂ + − = ⋅∓  

[with n = 2, “+” = breather, “-” = kink (inflexion)] 
C 

B. Denardo, Non-analytic nonlinear 
oscillations: Christian Huygens, quadratic 
Schrödinger equations, and solitary waves, 
in J. Acoust. Soc. Am., vol. 104, no. 3, 
1998, pp. 1289-1300. 

Schrödinger with cubic (Kerr) non-linearity, 
CNLS 
(the above equation, with n = 3)  
Schrödinger with saturable non-linearity, SNLS 

C 

a) V. E. Zaharov, A. B. Shabat, in Sov. Phys. 
JETP, vol. 34, 1972, p. 62; b) S. Cowan et al, 
in Can. J. Phys., vol. 64, 1986, p. 311; b) A. 
W. Snyder, A. P. Sheppard, in Opt. Lett., vol. 
18, 1993, p. 482; c) W. Krolikowski, S. A. 
Holmstrom, in Opt. Lett., vol. 22, 1997, p. 
369; d) M. H. Jakubowski, K. Steiglitz, R. 
Squier, in Phys. Rev. E, vol. 56, 1997, p. 
7276; e) W. Krolikowski, B. Luther-Davies, 
C. Denz, in IEEE J. Quant. Electron., vol. 39, 
2003, p. 3. 

Schrödinger with discretized saturable non-
linearity, DNLS 

( )1 12 2 0
1

n
n n n n

n

ui u u u u
u

β + +⋅ − + − + =
+

�  C 

J. Cuevas, J. C. Eilbeck, Discrete soliton 
collisions in a wave-guide array with 
saturable non-linearity, in Physics Letters 
A, vol. 358, no. 1, 2006, pp. 15-20. 

Acoustic 

Korteweg – de Vries 

0 1w V w nw w d w′ ′ ′′= − − ⋅ −�  

Fortran  
and C 

R. H. Landau, M. K. Pàez, Computational 
Physics. Problem solving with computers, John 
Wiley, 1997, pages 453, 459. 

Quick Basic 

D. Iordache, M. Scalerandi, V. 
Iordache, et al, FD Simulations of the 
pulses propagation through non-
homogeneous KdV media, in Proc. sci. 
session Acoustics comm. Romanian 
Academy, October 1998, pp. 121-26. 

Versions 11 
and 12 of 
Maple 
(this work) 

A. Petrescu, A. R. Sterian, P. E. Sterian, 
Solitons Propagation in Optical Fibers 
Computer Experiments for Students Training, 
Lecture Notes in Computer Science, vol. 4705, 
2007, pp. 450-461 (Book: Computational 
Science and its Applications - ICCSA 2007). 

Boussinesq 

( )
2 2 2

2 2
2

3
3tt xx xxxxx

c h cw c w w w
h

= + +  C 
M. Scalerandi, M. Giordano, P. P. 
Delsanto, C. A. Condat, private 
communication, 1995. 

Burgers 
tt xx xxu uu uν+ =  C 

S. de Lillo, P.P. Delsanto, M. Scalerandi, 
Analytical and Numerical Results for the Forced 
Burger Equation, in Proc. Conf. Fluctuation 
Phenomena: disorder and nonlinearity, ed. by A. 
R. Bishop et al., World Scientific, Singapore, 
1995. 

sine-Gordon 

( )( , ) ( , ) sin ( , ) 0u x t u x t u x t
x x t t
∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 Fortran  
and C 

R. H. Landau, M. K. Pàez, 
Computational Physics. Problem 
solving with computers, John Wiley, 
1997, pp. 497-498, and 455-456, 
respectively. 
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4. Main theoretical models and numerical simulations 
4.1. Equations and plots of the main types of solitons 

Table 2 
Type of 
SNLE Breather soliton Kink soliton 

Quadratic 2
0 2sech [ ( )] exp

2
A i Vxx V t x

c
ωξ+

⎛ ⎞− ⋅ − ⋅ ⎜ ⎟
⎝ ⎠

 {0 0sgn ( ) 1 sgn( )
2
A x V t x x V t xξ χ− − ⋅ − ⋅ + − ⋅ − −  

[ ]}2
0 21.5 sech ( ) exp i Vxx V t x

c
ωξ −

⎛ ⎞− − ⋅ − ⋅ −⎜ ⎟
⎝ ⎠

 

Cubic 
(Kerr type) 0 2sech[ ( )] exp

2
A i Vxx V t x

c
ωξ+

⎛ ⎞− ⋅ − ⋅ ⎜ ⎟
⎝ ⎠

 
0 2tanh[ ( )] exp

2
A i Vxx V t x

c
ωξ−

⎛ ⎞− ⋅ − ⋅ −⎜ ⎟
⎝ ⎠

 

Breather and kink soliton types solutions of the quadratic and cubic SNL equations (SNLE) 

4.2. Basic types of computer simulations of optical solitons propagation 

 The solution of the Schrödinger nonlinear equation of optical solitons is:  
 ( )[ ] ( ) ⎥⎦

⎤
⎢⎣
⎡ ⋅+−−−⋅−⋅−⋅= oo iXkiikTTXkThXTq σηηη 22

2
expsec),( , (5) 

where the non-dimensional parameters η, k, oT  and oσ  are determined by the 
initial and/or the boundary conditions of the optical soliton launching [10b]. We 
have chosen ε = η = 1 and 0== ooT σ : 

 
2

mod
2

1( , ) sech cos
2 2

c c c c

s g

V t V V t Vx k xE t x k
g n V V
π

λ λ λ λ

⎡ ⎤⎛ ⎞⎛ ⎞ −
= ⋅ − ⋅ ⋅ ⋅ − + ⋅⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⋅ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

, (6) 

where Vc, Vs and Vg are the characteristic speeds to inside the optical fiber, to the 
optical soliton and the group-velocity, respectively (see [10b]). For studying the 
propagation and collisions of some KdV bell-type solitons and of some sine-
Gordon kink-antikink solitons we used the powerful PC program Maple 12. 

Fig. 6. Succession of snapshots for the propagation and collisions of 3 KDV bell-type solitons 

5  Conclusions 
The solitary waves fulfil the requirements of an extensive presence in nature (in 

atmosphere, plasmas, seas, in solid-state physics, proteins, human body, general relativity, 
high energy physics, etc. stimulating features for theoretical investigations, and many 
potentially practical applications in technology. Besides their extremely important 
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technical applications in the field of optical communications where they are presently in a 
financial competition with the trend to reduce very much the energy losses in optical 
fibres. Starting from the basic features of the theoretical models of solitary pulses, this 
work obtained a certain classification of the most important types of solitons. The existing 
numerical simulations were also studied in detail and some comparisons of the “bell” and 
“kink” type soliton solutions and evolutions were pointed out. 
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