
U.P.B. Sci. Bull., Series C, Vol. 72, Iss. 3, 2010                                                      ISSN 1454-234x 

BUSINESS INTELLIGENCE PERFORMANCE AND 
CAPACITY IMPACT  

Codrin POPA1 

Complexitatea actuală a diverselor organizaţii având impact asupra 
Sistemelor Informatice arată că dezvoltarea unor sisteme de tip Business 
Intelligence trebuie inclusă în cadrul mai larg al Ingineriei de Sistem. Proiectul, în 
totalitatea sa trebuie să se focalizeze în definirea cerinţelor şi livrabilului final şi să 
stabilească componentele specifice ce descriu sistemul pe baza unui ciclu de 
rafinări succesive. Arhitectura software clasică trebuie regândită pentru obţinerea 
unei abordări complexe în care cerinţele funcţionale şi non-funcţionale sunt 
depedente. Bazandu-se pe experienta autorului obtinuta in numeroase  implementari 
de tip Business Intelligence, acest articol ia in considerare importanta unei 
arhitecturi de sistem optimizata si sublineaza relationarea modelului de date cu 
performanta si capacitatea Sistemelor de tip Data Warehouse. 

The actual complexity of various organizations with impact in Information 
Systems reveals that the development of Business Intelligence Systems must be 
integrated into the wider concept of the Systems Engineering. The whole project 
should be focus in defining all the requirements and outputs and to establish the 
specific pieces that compose the systems in a cycle of successive refinements. The 
classical software framework must be redesign in order to enable a complex 
approach where the functional and non-functional requirements are inter related. 
Based on the experience achieved in several Business Intelligence implementations, 
this article considers an optimal system architecture and emphasizes the proper 
linkage between data model and capacity and performance of the Data Warehouse  
Systems. 
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1. Introduction 

One of the keys of management processes is the decision that can have 
two forms, namely the act itself and the decision making process. The difference 
between these two approaches is done by the complexity of the environment that 
involves a decision. Management decision is the choice of action for one or more 
goals. R.T. Clemen [1] remarks that the decision context is the framework of 
events that determine the set of objectives that actually matters (and nothing more 
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or less) for a decider at the time of drafting the decision, even if the values remain 
relatively unchanged. 

Even if some simple patterns could be achieved based on generic or 
structured data, a depth and systematic analysis, using a specific class of 
information systems in order to assist managerial decision – Decision Support 
Systems (DSS), could show more complex patterns and trends.  The objective of a 
DSS is to minimize the effects of the limitations and constraints in solving of a 
large and complex area of decisional problems by implementing automatic 
processes of decision support [2]. 

From a historical perspective P. Keen and S. Morton [3] allege that the 
concept of decision support systems evolved from the theoretical studies of 
organizational decision making done at the Carnegie Institute of Technology 
during the late 1950s and early'60s and the technical work on interactive computer 
systems, mainly carried out at the Massachusetts Institute of Technology in the 
1960s. 

Most definitions of decision support systems have shown the integration of 
those systems into the organization framework. Data warehouse system is only 
one component of decisional support systems. A modern data driven decision 
support system – Business Intelligence System is consisting of four main 
components: the data storage component (data warehouse), the extraction and 
filtration component, data query and analysis component and data presentation 
and visualization component. The business needs to know what is happening right 
now, faster, in order to determine and influence what should happen next time. 
The goal of business intelligence (BI) systems [4] is to capture (data, information, 
knowledge) and respond to business events and needs better, more informed, and 
faster, as decisions. 

The complexity of such systems involves the integration into the broader 
vision of system engineering. BI systems could be decomposed into a set of 
interrelated components based on a flexible and unified architecture that considers 
all the aspects and process of the information system. 

Systems engineering is a robust approach to the design, creation, and 
operation of systems. In simple terms, the approach consists of identification and 
quantification of system goals, creation of alternative system design concepts, 
performance of design trades, selection and implementation of the best design, 
verification that the design is properly built and integrated, and post-
implementation assessment of how well the system meets (or met) the goals [5] . 
It represents [6] an interdisciplinary approach and means to enable the realization 
of successful systems. In the system engineering a system is a set of interrelated 
components which interact with one another in an organized fashion toward a 
common purpose. Every system exists in the context of a broader super system, a 
collection of related systems. It is in that context that the system must be judged.   
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2. Business Intelligence Systems Lifecycle Processes 

The term life-cycle depends on the context and the scope. There are several 
definitions including Software Development Lifecycle or Systems Development 
Lifecycle.  

P. Rob and C. Coronel allege that the processes used to create and define 
information systems are known as systems development. The system development 
lifecycle traces the history (life cycle) of an information system [7].  

In conformity with IEEE Standard for Developing Software Life Cycle 
Processes [8] a Software Life Cycle Process represents the project-specific 
description of the process that is based on a project’s software life cycle (SLC) 
and the Organizational Process Assets (OPA). The components of the SLCP 
consist of a number of activities organized into activity groups: Project 
Management, Pre-Development, Development, Post-Development and Integral. 

Depending on the user requirements a number of software development 
life cycles (SDLC) models have been developed: sequential, incremental and 
evolutionary. 
The sequential model is the first SDLC pattern, it is easy to understand and is 
based on the assumption that the requirements can be understand and defined 
before designing the solution. There are two basic sequential models: the waterfall 
and V-model.  

 
Fig. 1 - The Waterfall Model 

 
The pure sequential models are very expensive because if there are errors in early 
stages they will be discovered in the last stages thus involve a serious impact on 
the whole project. In the V-model each task is verified by a corresponding test 
task. 

 
Fig. 2 - The V-Model 
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The incremental development lifecycle model was created based on the 
assumption that for reducing and splitting the risks associated with complex 
developments and implementations another technique must be used - 
decomposing the project into small pieces.  

 
Fig. 3 - The Incremental Model 

 
In the evolutionary models the requirements user needs and system requirements 
are partially defined up front, then are refined in each succeeding build / release.  
Sometimes this approach is chosen if the amount of functionality required by the 
business is too expensive to be implemented in a single release. Only prototypes 
are developed where all the requirements can not be known in advance. The spiral 
model is one of the most known designed evolutionary models. 

Theoretical, a data warehouse/business intelligence system must be 
implemented based on the V-model. This is wrong. The complexity of business 
intelligence – data warehouse systems is very high so it is better to consider from 
the beginning various foreseen aspects that could impact the overall cost and 
increase the initial investment of the project but even with a good analysis there 
are still remaining a large numbers of variables to be considered. The correct life 
cycle approach is the incremental iterative approach, with different iterations 
between the requirements phase and development phase, resulting in successive 
refinements of the architectural decisions, parameters or even requirements. 

Based on the various implementations, it result that it is impossible to 
consider a data warehouse as a black box software system and is more or less a 
never ending story. After the first released of the project is finished other 
application will start based on the information ‘greed’ of the organizations. 

S.S. Iliescu [9] remarks that a model is a mathematic representation of 
measures dependency. If the dependence corresponds to a physical reliable 
process we can consider a systemic model. The systemic model represents a 
causality relation between measures. There are input and output measures. 

I emphasized that business intelligence development lifecycle shouldn’t be 
considered a common v-model; in fact it is a system with continuous and specific 
dynamic. A data warehouse can be considered a complex cyclic systemic model. 
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3. Business Intelligence Layers Dependency  

A data model is a graphical, simplified representation of a real world 
complex environment. It is an abstraction of a complex data structure.  

Within the database environment, a data model represents data structure 
and their characteristics, relations, constraints, transformations and other 
constructs with the purpose of supporting a specific problem domain [7] 

ANSI Standards Planning and Requirements Committee propose a 
framework based on three levels of abstraction [10]:  the conceptual level is based 
on the entire organization view regarding the database; the internal level matches 
the conceptual level to the specific implementation model; the external model is a 
subset of internal model and represents the users’ view of the data.  

In order to translate the inputs realized into the analysis phase for a 
complex, organized and scalable system that must fulfill organization 
requirements, the specific data models can be split into the following categories: 
 a) Conceptual model is the highest level of abstraction for business 
organization environment in order to produce a type of conceptual schema or 
semantic data model of a system. The entity-relationship diagram is the widely 
used model; it was introduced by Peter Chen [11] in 1976 and represents an 
informal model for real world representation. 

b) Logical model it is between conceptual and physical model in order to 
translate the functional requirements into the physical requirements.  
 c) Physical model is describing the database access and storage systems 
inputs. 

Theoretically it seems that this kind of formalization is synchronized with 
software development life cycle: analysis, design, development and 
implementation. 

To consider all the aspects and process of the data warehouse information 
system and even the correlation between functional and non-functional 
requirements with focus on logical model and performance interrelations, I 
propose an inter-layers schema that will enhance the functionality of the standard 
ANSI/X3/SPARC framework layers (external, conceptual and internal model) and 
will show the interdependencies and influences between information 
requirements, logical design and performance and capacity of the system. 

4. Case study – Reporting Component over the BI Performance and 
Capacity 

The primary objectives of the Performance and Capacity Management 
processes are to ensure that adequate capacity and sufficient performance exist in 
the IT infrastructure to support day-to-day operations in a cost-effective manner.  
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W. Inmon [12] defines the data warehouse system as a database 
environment integrated from various locations with different formats, subject-
oriented in order to allow answers to different compartments, time variant having 
a historical structure unlike the traditionally operational systems and non-volatile, 
the data from these databases are added and represent a history of organization 
activity. The dichotomy between transactional systems and business intelligence 
systems is shown by the data types existing in such systems. While the 
transactional systems load current transactions and keep a relative small log, a 
data warehouse works with large volumes of historical data which are then 
summarized.  

There must be distinguished two types of operations on a data warehouse 
with different impact: extract, transform and load (ETL) batch jobs and queries. 

Queries are the primary mechanism for retrieving information from a data 
warehouse database and consist of questions presented to the database in a 
predefined format. The methodology for calculating the number of CPU’s is based 
on the expected maximum number of concurrent queries. The procedure is to 
calculate the maximum number of concurrent users times the maximum number 
of concurrent reports per user that the end-user business intelligence tool permits. 
The size of the memory is based on the size of tables, type of sorts, number and 
types of users, ETL tools transformations 

For representing the dependency between data warehouse implementation 
variables, architectural overall decisions and designer decisions, I propose an 
inter-layers schema based on influences diagram. These diagrams where proposed 
by R. Howard and J. Matheson [13] for the purpose of qualitative, intuitive and 
especially compact representation of all the essential elements of a decision 
problem [14]. Influence diagrams are directed acyclic graphs that contain three 
types of nodes: rectangular decision nodes that represent the choices being made, 
oval chance nodes that represent the relevant random variables, and diamond-
shaped value nodes that represent aspects of the decision maker’s utility [15]. 
  The inter-layers schema (data warehouse decisions schema) consists of: 
a) Decision nodes represent the architectural decisions (database granularity, 
physical allocated memory and types of memory, degree of parallelism if there are 
multiple cores, database partitioning option, unique and non unique index usage –
the count of output records is less than 15% of the input records) and also the 
software system parameters or “knobs” listed in Table 1. These parameters can be 
adjusted to improve the system’s performance. There are two kinds of 
architectural decisions, implementation decisions consist of decisions regarding 
the physical implementation and placement of the database, ETL and reporting 
components and logical data model decisions (example: the trade-off between 
normalized and de normalized tables in terms of redundancy and data anomalies 
etc). 
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Table 1 
Decision Nodes - Knobs 

Parameters Remarks 

Large Pool Cache parallel execution message buffers. 
Cache Buffer Holds copies of data blocks read from data files 

PGA Work areas allocated by memory-intensive operators: Sort-based operators 
(order by, group-by, rollup, window function), Hash-join 

Multi block 
read count 

Because the blocks are adjacent, I/O calls larger than a single block can be used 
to speed up the process 

Block Size Database blocks stored in the database files and cached in the SGA 
 

b) Chance nodes (with deterministic nodes subtype), listed in Table 2, represent 
the relevant random variables or deterministic variables, can be extrapolated to 
some processes (reading process, sorting process)  and are metrics associated with  
technical performance measurements - the continuing verification of the degree of 
anticipated and actual achievement of technical parameters [6]. 

Table 2 
Chance nodes 

Metrics Remarks 

UW Number of units of work required to get data from a base table 
MB Message Buffers allow parallel query server processes to communicate with each 

other 
AP Access path: Table scan, a fast full index scan, or an index scan. 

WAB The amount of data (buffers) to be processed in the work area by memory-
intensive operators 

LRUB Buffers processed based on LRU algorithm 
c) Value nodes are associated with Measures of Effectiveness [6], operational 
measures of success that are closely related to the achievement of the mission or 
operational objective, in the intended operational environment.  

The data warehouse decisions schemas should consider the following non-
functional requirements metrics that are specific with BI Reporting Environment: 
Response Time, Static Volumetric, Dynamic Volumetric and Utilization. The 
variables listed in Tables 3, 4 and 5 represent only a part of the overall data 
warehouse variables. 

Table 3 
Response Time 

Metrics Remarks 

Response time for 
simple Queries 

Simple queries are assumed to make extensive use of indexes.  They are quite 
CPU-intensive 

Response time for 
medium Queries Medium queries make some use of indexes 

Response time for 
Complex Queries 

Complex queries involve tables scans and make sequential accesses, they are 
very I/O intensive
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Table 4 
Static Volumetric 

Metrics Remarks 
Number of active users The total number of users that are connected to the data 

warehouse during day.  
Total raw data Raw data is not the same as database size as it excludes row 

overheads, free space, indexes, work areas etc 
Active data The data most users will only be interested in, for example 

aggregates or results tables. 
Disk expansion factor Convert raw data into disk space sizing, allowing for row 

overheads, free space, indexes, work areas etc.) 
Contingency Reserve capacity for other applications running alongside the 

Data Warehouse  System
Data touched by avg. query  
for simple Queries For simple or medium queries, the use of indexes will generally 

reduce disk I/O Data touched by avg. query  
for medium Queries 
Data touched by avg. query  
for complex Queries In the case of a full-table scan this will be the entire table 

Query mix for simple query Specifies the percentage of simple, medium and complex queries 
for the DW workload Query mix for medium query 

Query mix for complex query 
 

Table 5 
Dynamic Volumetric 

Metrics Remarks 

Simple queries of an active 
user per day 

Number of daily queries influences the performance of the 
system.  

Medium queries of an active 
user per day 
Complex queries of an active 
user per day 

 
For the purposes of this workload characterization, simple queries are 

assumed to make extensive use of indexes, access data in single blocks and are 
not I/O intensive.  Medium queries make some use of indexes, access data in 
multiple blocks and are somewhat I/O intensive.  Complex queries involve full 
table scans, make use of complex joins, access data sequentially in multiple 
blocks and are very I/O intensive.   
The mixture of queries to be run can greatly affect the amount of resources 
required. For example although the number of complex queries planned to be run 
may be small compared to the number of simple queries, complex queries are very 
resource intensive and may drive the need for a larger system.  
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Fig. 4 – Data Warehouse Decisions Schema 

 
The data warehouse decisions schema, is in fact a dependency diagram 

that considers the dependencies between architectural overall decisions, data 
warehouse database implementation decisions (Knobs), data model decisions and 
requirements. In the fig. 4, I considered only some of the important database 
parameters, overall decisions and designer decisions. In that case study the value 
node is referring to response time. In a complex environment, this diagram must 
be extended, all the reports must be categorized, non-functional requirements 
must be indicated very precisely and decisions nodes must be clear emphasized. 

5. Conclusions 

The ideas exposed so far have shown the complexity of a business 
intelligence/data warehouse system and emphasized that a proper approach must 
be done based on the systems engineering. This article considers the 
implementation of a flexible data warehouse framework using an inter-layers 
schema based on influences diagram and also emphasizes that the activities 
involved in the development of a business intelligence systems are not necessary 
included into a standard v-model development lifecycle.  The inter-layers schema 
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(data warehouse decisions schema) will show the interdependencies between 
information requirements, overall architecture and performance and capacity of 
the system. 

An important aspect is the logical data model which according to a 
classical approach is influenced only by the conceptual level and in turn 
influences the physical layer. This article allege the importance of considering the 
necessary relationships between all the systems inputs/outputs and emphasizes  
the bidirectional link between the design of the data model and capacity and 
performance of the system in order to obtain an optimal system architecture.  

In fact an optimal business intelligence system must enforce user’s 
information analysis with acceptable performance based on the integration and 
loading criteria’s. 
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