
U.P.B. Sci. Bull., Series C, Vol. 72, Iss. 3, 2010 ISSN 1454-234x

BUSINESS INTELLIGENCE PERFORMANCE AND
CAPACITY IMPACT

Codrin POPA1

Complexitatea actuală a diverselor organizaţii având impact asupra
Sistemelor Informatice arată că dezvoltarea unor sisteme de tip Business
Intelligence trebuie inclusă în cadrul mai larg al Ingineriei de Sistem. Proiectul, în
totalitatea sa trebuie să se focalizeze în definirea cerinţelor şi livrabilului final şi să
stabilească componentele specifice ce descriu sistemul pe baza unui ciclu de
rafinări succesive. Arhitectura software clasică trebuie regândită pentru obţinerea
unei abordări complexe în care cerinţele funcţionale şi non-funcţionale sunt
depedente. Bazandu-se pe experienta autorului obtinuta in numeroase implementari
de tip Business Intelligence, acest articol ia in considerare importanta unei
arhitecturi de sistem optimizata si sublineaza relationarea modelului de date cu
performanta si capacitatea Sistemelor de tip Data Warehouse.

The actual complexity of various organizations with impact in Information
Systems reveals that the development of Business Intelligence Systems must be
integrated into the wider concept of the Systems Engineering. The whole project
should be focus in defining all the requirements and outputs and to establish the
specific pieces that compose the systems in a cycle of successive refinements. The
classical software framework must be redesign in order to enable a complex
approach where the functional and non-functional requirements are inter related.
Based on the experience achieved in several Business Intelligence implementations,
this article considers an optimal system architecture and emphasizes the proper
linkage between data model and capacity and performance of the Data Warehouse
Systems.

Keywords: Business Intelligence, Systems Engineering, Performance, Capacity,
Data Model

1. Introduction

One of the keys of management processes is the decision that can have
two forms, namely the act itself and the decision making process. The difference
between these two approaches is done by the complexity of the environment that
involves a decision. Management decision is the choice of action for one or more
goals. R.T. Clemen [1] remarks that the decision context is the framework of
events that determine the set of objectives that actually matters (and nothing more

1 IT Architect, “Global Business Services” Department, IBM, Romania, codrin.popa@ro.ibm.com

84 Codrin Popa

or less) for a decider at the time of drafting the decision, even if the values remain
relatively unchanged.

Even if some simple patterns could be achieved based on generic or
structured data, a depth and systematic analysis, using a specific class of
information systems in order to assist managerial decision – Decision Support
Systems (DSS), could show more complex patterns and trends. The objective of a
DSS is to minimize the effects of the limitations and constraints in solving of a
large and complex area of decisional problems by implementing automatic
processes of decision support [2].

From a historical perspective P. Keen and S. Morton [3] allege that the
concept of decision support systems evolved from the theoretical studies of
organizational decision making done at the Carnegie Institute of Technology
during the late 1950s and early'60s and the technical work on interactive computer
systems, mainly carried out at the Massachusetts Institute of Technology in the
1960s.

Most definitions of decision support systems have shown the integration of
those systems into the organization framework. Data warehouse system is only
one component of decisional support systems. A modern data driven decision
support system – Business Intelligence System is consisting of four main
components: the data storage component (data warehouse), the extraction and
filtration component, data query and analysis component and data presentation
and visualization component. The business needs to know what is happening right
now, faster, in order to determine and influence what should happen next time.
The goal of business intelligence (BI) systems [4] is to capture (data, information,
knowledge) and respond to business events and needs better, more informed, and
faster, as decisions.

The complexity of such systems involves the integration into the broader
vision of system engineering. BI systems could be decomposed into a set of
interrelated components based on a flexible and unified architecture that considers
all the aspects and process of the information system.

Systems engineering is a robust approach to the design, creation, and
operation of systems. In simple terms, the approach consists of identification and
quantification of system goals, creation of alternative system design concepts,
performance of design trades, selection and implementation of the best design,
verification that the design is properly built and integrated, and post-
implementation assessment of how well the system meets (or met) the goals [5] .
It represents [6] an interdisciplinary approach and means to enable the realization
of successful systems. In the system engineering a system is a set of interrelated
components which interact with one another in an organized fashion toward a
common purpose. Every system exists in the context of a broader super system, a
collection of related systems. It is in that context that the system must be judged.

Business intelligence performance and capacity impact 85

2. Business Intelligence Systems Lifecycle Processes

The term life-cycle depends on the context and the scope. There are several
definitions including Software Development Lifecycle or Systems Development
Lifecycle.

P. Rob and C. Coronel allege that the processes used to create and define
information systems are known as systems development. The system development
lifecycle traces the history (life cycle) of an information system [7].

In conformity with IEEE Standard for Developing Software Life Cycle
Processes [8] a Software Life Cycle Process represents the project-specific
description of the process that is based on a project’s software life cycle (SLC)
and the Organizational Process Assets (OPA). The components of the SLCP
consist of a number of activities organized into activity groups: Project
Management, Pre-Development, Development, Post-Development and Integral.

Depending on the user requirements a number of software development
life cycles (SDLC) models have been developed: sequential, incremental and
evolutionary.
The sequential model is the first SDLC pattern, it is easy to understand and is
based on the assumption that the requirements can be understand and defined
before designing the solution. There are two basic sequential models: the waterfall
and V-model.

Fig. 1 - The Waterfall Model

The pure sequential models are very expensive because if there are errors in early
stages they will be discovered in the last stages thus involve a serious impact on
the whole project. In the V-model each task is verified by a corresponding test
task.

Fig. 2 - The V-Model

86 Codrin Popa

The incremental development lifecycle model was created based on the
assumption that for reducing and splitting the risks associated with complex
developments and implementations another technique must be used -
decomposing the project into small pieces.

Fig. 3 - The Incremental Model

In the evolutionary models the requirements user needs and system requirements
are partially defined up front, then are refined in each succeeding build / release.
Sometimes this approach is chosen if the amount of functionality required by the
business is too expensive to be implemented in a single release. Only prototypes
are developed where all the requirements can not be known in advance. The spiral
model is one of the most known designed evolutionary models.

Theoretical, a data warehouse/business intelligence system must be
implemented based on the V-model. This is wrong. The complexity of business
intelligence – data warehouse systems is very high so it is better to consider from
the beginning various foreseen aspects that could impact the overall cost and
increase the initial investment of the project but even with a good analysis there
are still remaining a large numbers of variables to be considered. The correct life
cycle approach is the incremental iterative approach, with different iterations
between the requirements phase and development phase, resulting in successive
refinements of the architectural decisions, parameters or even requirements.

Based on the various implementations, it result that it is impossible to
consider a data warehouse as a black box software system and is more or less a
never ending story. After the first released of the project is finished other
application will start based on the information ‘greed’ of the organizations.

S.S. Iliescu [9] remarks that a model is a mathematic representation of
measures dependency. If the dependence corresponds to a physical reliable
process we can consider a systemic model. The systemic model represents a
causality relation between measures. There are input and output measures.

I emphasized that business intelligence development lifecycle shouldn’t be
considered a common v-model; in fact it is a system with continuous and specific
dynamic. A data warehouse can be considered a complex cyclic systemic model.

Business intelligence performance and capacity impact 87

3. Business Intelligence Layers Dependency

A data model is a graphical, simplified representation of a real world
complex environment. It is an abstraction of a complex data structure.

Within the database environment, a data model represents data structure
and their characteristics, relations, constraints, transformations and other
constructs with the purpose of supporting a specific problem domain [7]

ANSI Standards Planning and Requirements Committee propose a
framework based on three levels of abstraction [10]: the conceptual level is based
on the entire organization view regarding the database; the internal level matches
the conceptual level to the specific implementation model; the external model is a
subset of internal model and represents the users’ view of the data.

In order to translate the inputs realized into the analysis phase for a
complex, organized and scalable system that must fulfill organization
requirements, the specific data models can be split into the following categories:
 a) Conceptual model is the highest level of abstraction for business
organization environment in order to produce a type of conceptual schema or
semantic data model of a system. The entity-relationship diagram is the widely
used model; it was introduced by Peter Chen [11] in 1976 and represents an
informal model for real world representation.

b) Logical model it is between conceptual and physical model in order to
translate the functional requirements into the physical requirements.
 c) Physical model is describing the database access and storage systems
inputs.

Theoretically it seems that this kind of formalization is synchronized with
software development life cycle: analysis, design, development and
implementation.

To consider all the aspects and process of the data warehouse information
system and even the correlation between functional and non-functional
requirements with focus on logical model and performance interrelations, I
propose an inter-layers schema that will enhance the functionality of the standard
ANSI/X3/SPARC framework layers (external, conceptual and internal model) and
will show the interdependencies and influences between information
requirements, logical design and performance and capacity of the system.

4. Case study – Reporting Component over the BI Performance and
Capacity

The primary objectives of the Performance and Capacity Management
processes are to ensure that adequate capacity and sufficient performance exist in
the IT infrastructure to support day-to-day operations in a cost-effective manner.

88 Codrin Popa

W. Inmon [12] defines the data warehouse system as a database
environment integrated from various locations with different formats, subject-
oriented in order to allow answers to different compartments, time variant having
a historical structure unlike the traditionally operational systems and non-volatile,
the data from these databases are added and represent a history of organization
activity. The dichotomy between transactional systems and business intelligence
systems is shown by the data types existing in such systems. While the
transactional systems load current transactions and keep a relative small log, a
data warehouse works with large volumes of historical data which are then
summarized.

There must be distinguished two types of operations on a data warehouse
with different impact: extract, transform and load (ETL) batch jobs and queries.

Queries are the primary mechanism for retrieving information from a data
warehouse database and consist of questions presented to the database in a
predefined format. The methodology for calculating the number of CPU’s is based
on the expected maximum number of concurrent queries. The procedure is to
calculate the maximum number of concurrent users times the maximum number
of concurrent reports per user that the end-user business intelligence tool permits.
The size of the memory is based on the size of tables, type of sorts, number and
types of users, ETL tools transformations

For representing the dependency between data warehouse implementation
variables, architectural overall decisions and designer decisions, I propose an
inter-layers schema based on influences diagram. These diagrams where proposed
by R. Howard and J. Matheson [13] for the purpose of qualitative, intuitive and
especially compact representation of all the essential elements of a decision
problem [14]. Influence diagrams are directed acyclic graphs that contain three
types of nodes: rectangular decision nodes that represent the choices being made,
oval chance nodes that represent the relevant random variables, and diamond-
shaped value nodes that represent aspects of the decision maker’s utility [15].
 The inter-layers schema (data warehouse decisions schema) consists of:
a) Decision nodes represent the architectural decisions (database granularity,
physical allocated memory and types of memory, degree of parallelism if there are
multiple cores, database partitioning option, unique and non unique index usage –
the count of output records is less than 15% of the input records) and also the
software system parameters or “knobs” listed in Table 1. These parameters can be
adjusted to improve the system’s performance. There are two kinds of
architectural decisions, implementation decisions consist of decisions regarding
the physical implementation and placement of the database, ETL and reporting
components and logical data model decisions (example: the trade-off between
normalized and de normalized tables in terms of redundancy and data anomalies
etc).

Business intelligence performance and capacity impact 89

Table 1
Decision Nodes - Knobs

Parameters Remarks

Large Pool Cache parallel execution message buffers.
Cache Buffer Holds copies of data blocks read from data files

PGA Work areas allocated by memory-intensive operators: Sort-based operators
(order by, group-by, rollup, window function), Hash-join

Multi block
read count

Because the blocks are adjacent, I/O calls larger than a single block can be used
to speed up the process

Block Size Database blocks stored in the database files and cached in the SGA

b) Chance nodes (with deterministic nodes subtype), listed in Table 2, represent
the relevant random variables or deterministic variables, can be extrapolated to
some processes (reading process, sorting process) and are metrics associated with
technical performance measurements - the continuing verification of the degree of
anticipated and actual achievement of technical parameters [6].

Table 2
Chance nodes

Metrics Remarks

UW Number of units of work required to get data from a base table
MB Message Buffers allow parallel query server processes to communicate with each

other
AP Access path: Table scan, a fast full index scan, or an index scan.

WAB The amount of data (buffers) to be processed in the work area by memory-
intensive operators

LRUB Buffers processed based on LRU algorithm
c) Value nodes are associated with Measures of Effectiveness [6], operational
measures of success that are closely related to the achievement of the mission or
operational objective, in the intended operational environment.

The data warehouse decisions schemas should consider the following non-
functional requirements metrics that are specific with BI Reporting Environment:
Response Time, Static Volumetric, Dynamic Volumetric and Utilization. The
variables listed in Tables 3, 4 and 5 represent only a part of the overall data
warehouse variables.

Table 3
Response Time

Metrics Remarks

Response time for
simple Queries

Simple queries are assumed to make extensive use of indexes. They are quite
CPU-intensive

Response time for
medium Queries Medium queries make some use of indexes

Response time for
Complex Queries

Complex queries involve tables scans and make sequential accesses, they are
very I/O intensive

90 Codrin Popa

Table 4
Static Volumetric

Metrics Remarks
Number of active users The total number of users that are connected to the data

warehouse during day.
Total raw data Raw data is not the same as database size as it excludes row

overheads, free space, indexes, work areas etc
Active data The data most users will only be interested in, for example

aggregates or results tables.
Disk expansion factor Convert raw data into disk space sizing, allowing for row

overheads, free space, indexes, work areas etc.)
Contingency Reserve capacity for other applications running alongside the

Data Warehouse System
Data touched by avg. query
for simple Queries For simple or medium queries, the use of indexes will generally

reduce disk I/O Data touched by avg. query
for medium Queries
Data touched by avg. query
for complex Queries In the case of a full-table scan this will be the entire table

Query mix for simple query Specifies the percentage of simple, medium and complex queries
for the DW workload Query mix for medium query

Query mix for complex query

Table 5
Dynamic Volumetric

Metrics Remarks

Simple queries of an active
user per day

Number of daily queries influences the performance of the
system.

Medium queries of an active
user per day
Complex queries of an active
user per day

For the purposes of this workload characterization, simple queries are

assumed to make extensive use of indexes, access data in single blocks and are
not I/O intensive. Medium queries make some use of indexes, access data in
multiple blocks and are somewhat I/O intensive. Complex queries involve full
table scans, make use of complex joins, access data sequentially in multiple
blocks and are very I/O intensive.
The mixture of queries to be run can greatly affect the amount of resources
required. For example although the number of complex queries planned to be run
may be small compared to the number of simple queries, complex queries are very
resource intensive and may drive the need for a larger system.

Business intelligence performance and capacity impact 91

D
es

ig
n

de
ci

si
on

s
at

 p
hy

si
ca

l a
nd

 lo
gi

ca
l l

ay
er

s

Fig. 4 – Data Warehouse Decisions Schema

The data warehouse decisions schema, is in fact a dependency diagram

that considers the dependencies between architectural overall decisions, data
warehouse database implementation decisions (Knobs), data model decisions and
requirements. In the fig. 4, I considered only some of the important database
parameters, overall decisions and designer decisions. In that case study the value
node is referring to response time. In a complex environment, this diagram must
be extended, all the reports must be categorized, non-functional requirements
must be indicated very precisely and decisions nodes must be clear emphasized.

5. Conclusions

The ideas exposed so far have shown the complexity of a business
intelligence/data warehouse system and emphasized that a proper approach must
be done based on the systems engineering. This article considers the
implementation of a flexible data warehouse framework using an inter-layers
schema based on influences diagram and also emphasizes that the activities
involved in the development of a business intelligence systems are not necessary
included into a standard v-model development lifecycle. The inter-layers schema

92 Codrin Popa

(data warehouse decisions schema) will show the interdependencies between
information requirements, overall architecture and performance and capacity of
the system.

An important aspect is the logical data model which according to a
classical approach is influenced only by the conceptual level and in turn
influences the physical layer. This article allege the importance of considering the
necessary relationships between all the systems inputs/outputs and emphasizes
the bidirectional link between the design of the data model and capacity and
performance of the system in order to obtain an optimal system architecture.

In fact an optimal business intelligence system must enforce user’s
information analysis with acceptable performance based on the integration and
loading criteria’s.

R E F E R E N C E S

[1] R.T Clemen, Making Hard Decisions. An Introduction to Decision Analysis. 2nd Edition.
Duxbury Press, Belmont, 1996

[2] F.G. Filip, Sisteme Suport Pentru Decizii: O Incercare de Istorie, Revista Informatica
Economica, vol 29, no.1, 2004

[3] P. Keen, S. Morton, Decision Support Systems: An Organizational Perspective, Addison-
Wesley Publishing Company, Reading MA, 1978

[4] M. Guran, A. Mehanna, B. Hussein, Real Time On-Line Analytical Processing for Business
Intelligence, U.P.B. Sci. Bull., Series C, vol 7, no. 3, 2009

[5] National Aeronautics and Space Administration, Systems Engineering Handbook, NASA SP-
610S, 1995

[6] INCOSE, Systems Engineering Handbook, Incose Central Office, Seattle, 2000
[7] P. Rob, C. Coronel, Database Systems: Design, Implementation, and Management, Thomson-

Course Technology, Boston, Massachusetts, 2007
 [8] The Institute of Electrical and Electronics Engineers, IEEE Standard for Developing Software

Life Cycle Processes, New York, 1998
[9] S.S. Iliescu, I. Făgărăşan, D. Pupază, Analiza de Sistem in Informatica Industriala (System

Analysis in Informatics), Academia de Ştiinţe Tehnice din România, Seria Conducerea
Proceselor Energetice, Editura AGIR, Bucureşti, 2006

[10] ANSI/X3/SPARC Study Group on Data Base Management Systems: (1975), Interim Report.
FDT, ACM SIGMOD bulletin. vol 7, no. 2, 1975

[11] P.P. Chen, The Entity-Relationship Model-Toward a Unified View of Data, ACM
Transactions on Database Systems, vol 1, no 1, 1976, pages 9-36

[12] W. Inmon, C. Kelly, The Twelve Rules of Data Warehouse for a Client/Server World, Data
Management Review, 1994, pp 6-16

[13] R. Howard, J. Matheson, Principles and Applications of Decision Analysis, Strategic
Decisions Group, Menlo Park, California, p.719-762, 1984

[14] F.G. Filip, Decizie asistata de calculator. Metode si tehnici de asistare a deciziilor centrate pe
judecata umana, (Computer-assisted Decision. Methods and Techniques Focused on Human
Mind), Revista Informatica Economica, vol 15, no.3, 2000,

[15] D. Sullivan, M. Seltzer, A. Pfeffer, Using probabilistic reasoning to automate software tuning,
ACM SIGMETRICS Performance Evaluation Review, vol 32, no.1, 2004.

