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Suppose A is a Banach algebra and ε ∈ B
(0)
1 (the closed unit ball of A). In

this paper we generalize the notions of amenability, φ-amenability, φ-contractibility,
biprojectivity and biflatness of a new Banach algebra Aε. Moreover we investigate φ-

pseudo amenability, φ-Johnson amenability, φ-inner amenability, φ-biflatness and φ-
biprojectivity of Aε.
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Suppose that A is a Banach algebra and X is a Banach A-bimodule. A derivation
from A into X is a linear operator D : A −→ X satisfying

D(ab) = D(a) · b+ a ·D(b) (a, b ∈ A).

For every x ∈ X we define adx by adx(a) = a · x − x · a (a ∈ A). Note that adx is a
derivation which is called an inner derivation. A derivation D is said to be inner if there
exists x ∈ X such that D(a) = adx(a) (a ∈ A) and is approximately inner if there exists a
net (xi) ⊆ X such that D(a) = limα adxα(a) (a ∈ A). A Banach algebra A is amenable if
for any Banach A-bimodule X, every continuous derivation D : A −→ X∗ is inner and A is
called approximately amenable if D is approximately inner.

The concepts of approximate amenability and approximate weak amenability of Ba-
nach algebras was introduced and extensively studied by Ghahramani and Loy in [3]. In [2]
they also introduced and studied the notions of approximate semi-amenable and approxi-
mate semi-ontractible Banach algebras.

Let A be a Banach algebra and φ ∈ ∆(A) (the character space of A). Kaniuth et
al. [8] have introduced and studied the interesting notion of φ-amenability (see also [9]).
A Banach algebra A is called φ-amenable if for every Banach A-bimodule X with the left
module action a · x = φ(a)x (a ∈ A, x ∈ X), every continuous derivation from A into X∗ is
inner. Hu et al. [5] introduced and studied the notion of φ-contractibility of A. In fact, A is
called φ-contractible if there exists a (right) φ-diagonal for A; that is, an element m in the
projective tensor product A⊗̂A such that φ(πA(m)) = 1 and a ·m = φ(a)m for all a ∈ A,
where πA denotes the product morphism from A⊗̂A into A given by πA(a⊗ b) = ab (a, b ∈
A). Furthermore, several authors have investigated the concepts of essential φ-amenability,
essential left φ-contractibility, φ-pseudo amenability, φ-Johnson amenability and φ-inner
amenability of Banach algebras; see for example [12], [14], [11], [15] and [6].

Moreover, H. Pourmahmood Aghababa et al. [13] was introduced and studied the
concepts of approximate character amenability and approximate character contractibility of
Banach algebras and investigated the relations between these concepts.
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Suppose A is a Banach algebra and ε ∈ A with ‖ε‖ ≤ 1. Recently, authors in [7],
defined a new product on A by a�b = aεb (a, b ∈ A). A with this product is denoted by Aε.
They studied the algebraic properties, arens regularity and amenability of Aε. Also A. R.
Khoddami in [10], investigated the relation between biflatness, biprojectivity, ϕ-amenability
and ϕ-contractibility of A and Aε.

In this paper, we study the relation between approximate amenability, approximate
semi-amenability (approximate semi-contractibility), approximate weak amenability, ap-
proximate ϕ-amenability, approximate ϕ-contractibility, φ-pseudo amenability (φ-Johnson
amenability), φ-inner amenability, approximate biflatness (φ-biflatness) and approximate
biprojectivity (φ-biprojectivity) of A and Aε.

1. Generalized notions of amenability and character amenability of Aε

We commence this section with the following definition:

Definition 1.1. [7] Let A be a Banach algebra and ε ∈ B(0)
1 (the closed unit ball of A) with

‖ε‖ ≤ 1. Then A with the product a � b = aεb (a, b ∈ A) is an associative Banach algebra
which is denoted by Aε.

Let A be a Banach algebra. The net {eα} in A is called a φ-weak approximate identity
if, for every a ∈ A, |φ(eαa)− φ(a)| −→ 0.

Note that if φ ∈ ∆(A), then ψ = φ(ε)φ ∈ ∆(Aε) (see Proposition 2.4 of [7]).

Proposition 1.1. Let A be a Banach algebra, φ ∈ ∆(A), φ(ε) 6= 0 and ψ = φ(ε)φ. Then A
has a φ-weak approximate identity if and only if Aε has a ψ-weak approximate identity.

Proof. Let {eα} be a φ-weak approximate identity for A. Then |φ(eαa)−φ(a)| −→ 0 for all
a ∈ A. Suppose that e′α = eα

φ(ε) for all α. So for every a ∈ A, we have

|ψ(e′α � a)− ψ(a)| = |ψ(
eα
φ(ε)

� a)− ψ(a)|

= |φ(ε)φ(eαa)− φ(ε)φ(a)|
= |φ(ε)||φ(eαa)− φ(a)| −→ 0.

It follows that {e′α} is a ψ-weak approximate identity for Aε.
Conversely, let {e′α} be a ψ-weak approximate identity for Aε. Hence |ψ(e′α � a) −

ψ(a)| −→ 0 for all a ∈ A. Choose eα = e′αε for all α. For every a ∈ A
|φ(eαa)− φ(a)| = |φ(e′αεa)− φ(a)|

= | 1

φ(ε)
||φ(ε)φ(e′αεa)− φ(ε)φ(a)|

= | 1

φ(ε)
||ψ(e′α � a)− ψ(a)| −→ 0.

Therefore {eα} is a φ-weak approximate identity for A. �

Theorem 1.1. Let A be a Banach algebra and ε be an idempotent element of the algebraic
center of A. Then the following statements are valid:

(i) If Aε is approximately amenable, then so is A.
(ii) If Aε is approximately semi-amenable, then so is A.

Proof. Suppose that Aε is approximately amenable. Then A#
ε (the unitalization of Aε) is

approximately amenable by Proposition 2.4 of [3]. So, Proposition 6.1 of [4] implies that
A#
ε ⊕1 A

#
ε is approximately amenable. Define h : A#

ε ⊕1 A
#
ε −→ A# by

h
(
(a, λ), (b, λ′)

)
= (a, λ) ((a, λ), (b, λ′) ∈ A#

ε ).
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Clearly h is a surjection map. Since Aε is approximately amenable, by Lemma 2.2 of [3], Aε
has left and right approximate identities. Let (eα) be a right approximate identities for Aε.
So {εeα} is a right approximate identities for A and thus for every (a1, λ1), (a2, λ2), (b1, λ

′
1)

and (b2, λ
′
2) ∈ A#

ε , we get

h
(
(a1, λ1),(b1, λ

′
1)
)
h
(
(a2, λ2), (b2, λ

′
2)
)

= (a1, λ1)(a2, λ2)

= (a1a2 + λ1a2 + λ2a1, λ1λ2)

= lim
α

(a1a2εeα + λ1a2 + λ2a1, λ1λ2)

= lim
α

(a1εa2εeα + λ1a2 + λ2a1, λ1λ2)

= (a1εa2 + λ1a2 + λ2a1, λ1λ2)

= h
(

(a1 � a2 + λ1a2 + λ2a1, λ1λ2), (b1 � b2 + λ′1b2 + λ′2b1, λ
′
1λ
′
2)
)

= h
((

(a1, λ1), (b1, λ
′
1)
)(

(a2, λ2), (b2, λ
′
2)
))
.

That is h is a homomorphism. Moreover, for every (a, λ) and (b, λ′) ∈ A#
ε ,

‖h
(
(a, λ), (b, λ′)

)
‖ = ‖(aε, λ)‖ ≤ ‖(a, λ)‖
≤ ‖(a, λ)‖+ ‖(b, λ′)‖
= ‖((a, λ), (b, λ′))‖.

Consequently, h is a continuous epimorphism. Therefore, from Proposition 2.2 of [3], it
follows that A# is approximately amenable. Again Proposition 2.4 of [3] yields that A is
approximately amenable.

(ii) Assume that Aε is approximately semi-amenable. By Proposition 2.1 of [17],
A#
ε is approximately semi-amenable and so Theorem 5.1 of [2] yields that A#

ε ⊕1 A
#
ε is

approximately semi-amenable. By Lemma 2.2 of [17], Aε has an approximate identity. Now
if we define h as part (i). Then Proposition 3.11 of [2], implies that A# is approximately
semi-amenable. Now from the Proposition 2.1 of [17], we conclude that A is approximately
semi-amenable. �

Theorem 1.2. Let A be an unital Banach algebra and ε be an invertible element of A. Then
the following statements are valid:

(i) If A is approximately amenable, then so is Aε.
(ii) If A is approximately semi-amenable, then so is Aε.
(iii) If A is approximate semi-contractible, then so is Aε.
(iv) Let A be a commutative Banach algebra. If A is approximately weakly amenable, then

so is Aε.

Proof. Suppose that A is approximately amenable. Then by Proposition 6.1 of [4], A⊕1 A
is approximately amenable. Define h : A⊕1 A −→ Aε by

h(a, b) = aε−1 (a ∈ A).

For every a1, a2 ∈ A and b1, b2 ∈ B, we have

h(a1, b1)� h(a2, b2) = a1ε
−1 � a2ε−1 = a1a2ε

−1

= h(a1a2, b1b2) = h
(
(a1, b1)(a2, b2)

)
,

and for every a ∈ Aε, h(aε, b) = aεε−1 = a. So h is an epimorphism. Since A is unital
and ε is invertible, from Proposition 2.3 of [7], it follows that ε−1 is the unit of Aε. Thus
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‖ε−1‖ ≤ 1. Hence for every a, b ∈ A,

‖h(a, b)‖ = ‖aε−1‖ ≤ ‖a‖ ≤ ‖a‖+ ‖b‖ = ‖(a, b)‖.

Consequently, h is continuous. Thus h is a continuous epimorphism. Therefore, by using
Proposition 2.2 of [3], we deduce that Aε is approximately amenable.

(ii) Suppose that A is approximately semi-amenable. By Theorem 5.1 of [2], A⊕1 A
is approximately semi-amenable. Let h be defined as part (i). Then Proposition 3.11 of [2],
implies that Aε is approximately semi-amenable.

(iii) Suppose that A is approximate semi-contractible. By a similar argument as part
(ii), if we apply Theorem 2.14 of [17] and Proposition 3.11 of [2], one can prove that Aε is
approximate semi-contractible.

(iv) Suppose that A is approximately weakly amenable. Then A⊕1A is approximately
weakly amenable by Theorem 2.3 of [18]. Let h be defined as part (i). Therefore approximate
weak amenability of Aε follows from Theorem 2.1 of [1].

�

Definition 1.2. [13] A Banach algebra A is called φ-approximately amenable if there exists
a net {mα} ⊆ A∗∗ such that mα(φ) = 1 and ‖a ·mα − φ(a)mα‖ −→ 0 for all a ∈ A.

Also A is called φ-approximately contractible if there exists a net {mα} ⊆ A such that
φ(mα) = 1 and ‖amα − φ(a)mα‖ −→ 0 for all a ∈ A.

Proposition 1.2. Let A be a Banach algebra and φ ∈ ∆(A). Then the following statements
are valid:

(i) If A is approximately φ-contractible and φ(ε) 6= 0, then Aε is approximately ψ-
contractible, where ψ = φ(ε)φ.

(ii) If Aε is unital and approximately ψ-contractible, then A is approximately φ-contractible,
where φ(a) = ψ(ε−1a) (a ∈ A).

Proof. (i) Suppose that A is approximately φ-contractible. Then there exists a net (mα) ⊂ A
such that φ(mα) = 1 and ‖amα − φ(a)mα‖ −→ 0 for all a ∈ A. Let nα = mα

φ(ε) . Hence for

every a ∈ A

‖a� nα − ψ(a)nα‖ = ‖aεnα − φ(ε)φ(a)nα‖

= ‖aε mα

φ(ε)
− φ(a)mα‖

= ‖ aε
φ(ε)

mα − φ(
aε

φ(ε)
)mα‖ −→ 0.

Also

ψ(nα) = ψ(
mα

φ(ε)
) =

1

φ(ε)
φ(ε)φ(mα) = 1,

for all α. So Aε is approximately ψ-contractible.
(ii) Suppose that Aε is unital and approximately ψ-contractible. Then there exists

a net (nα) ⊂ Aε such that ψ(nα) = 1 and ‖a � nα − ψ(a)nα‖ −→ 0 for all a ∈ Aε. Since
1 = ψ(nα) = φ(ε)φ(nα) it follows that φ(nα) 6= 0. Also since Aε is unital, by Proposition
2.3 of [7], ε−1 is the unit of Aε and thus ψ(ε−1) 6= 0. Choose mα = nα

φ(nα) . Then φ(mα) = 1
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for every α and for every a ∈ A, we obtain

‖amα − φ(a)mα‖ = ‖a nα
φ(nα)

− φ(a)
nα

φ(nα)
‖

= ‖a nα
ψ(ε−1nα)

− φ(a)
nα

ψ(ε−1nα)
‖

= | 1

ψ(ε−1)
|‖anα − φ(a)nα‖

= | 1

ψ(ε−1)
|‖aε−1 � nα − ψ(aε−1)nα‖ −→ 0.

Therefore A is approximately φ-contractible and the proof is now complete. �

The proof of the following proposition is omitted, since it can be proved in the same
direction of Proposition 1.2.

Proposition 1.3. Let A be a Banach algebra and φ ∈ ∆(A). Then the following statements
are valid:

(i) If A is approximately φ-amenable and φ(ε) 6= 0, then Aε is approximately ψ-amenable,
where ψ = φ(ε)φ.

(ii) If Aε is unital and approximately ψ-amenable, then A is approximately φ-amenable,
where φ(a) = ψ(ε−1a) (a ∈ A).

Definition 1.3. [15] Let A be a Banach algebra and φ ∈ ∆(A). A is called φ-Johnson
amenable if there exists a bounded net {mα} ⊆ A⊗̂A such that φ ◦ πA(mα) −→ 1 and
‖a ·mα −mα · a‖ −→ 0, for every a ∈ A.

Definition 1.4. [11] Let A be a Banach algebra and φ ∈ ∆(A). A is called φ-pseudo
amenable if there exists a net {mα} ⊆ A⊗̂A such that φ ◦ πA(mα) −→ 1 and ‖a · mα −
φ(a)mα‖ −→ 0, for every a ∈ A.

Before turning the next theorem we note that if A is an unital Banach algebra and

ε ∈ B(0)
1 , then A = (Aε)ε−2 (see Proposition 2.3 of [10]).

Theorem 1.3. Let A be a Banach algebra, Aε be unital and let φ ∈ ∆(A) be such that
φ(ε) 6= 0. Then the following statements are valid:

(i) A is φ-Johnson amenable if and only if Aε is ψ-Johnson amenable, where ψ = φ(ε)φ.
(ii) A is φ-pseudo amenable if and only if Aε is ψ-pseudo amenable, where ψ = φ(ε)φ.

Proof. (i) Suppose that A is φ-Johnson amenable. Then there exists a bounded net {mα} ⊆
A⊗̂A such that φ ◦ πA(mα) −→ 1 and ‖a · mα − mα · a‖ −→ 0, for every a ∈ A. Let
k : Aε⊗̂Aε −→ Aε⊗̂Aε be the bounded linear map such that k(a⊗ c) = aε−1⊗ c (a, c ∈ Aε).
k is an Aε-bimodule map (see the proof of Theorem 2.3 of [10]). Consider nα = k(mα)

φ(ε) and

let mα =
∑∞
i=0 a

α
i ⊗ bαi . So,

ψ ◦ πAε
(nα) = ψ ◦ πAε

(
k(mα)

φ(ε)
) = ψ ◦ πAε

(

∑∞
i=0 a

α
i ε
−1 ⊗ bαi

φ(ε)
)

=
ψ

φ(ε)

∞∑
i=0

aαi ε
−1εbαi =

ψ

φ(ε)

∞∑
i=0

aαi b
α
i

= φ ◦ πA(mα) −→ 1.
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Moreover, for every a ∈ A, we have

‖a� nα − nα � a‖ = ‖a� k(mα)

φ(ε)
− k(mα)

φ(ε)
� a‖

=
1

|φ(ε)|
‖a� k(mα)− k(mα)� a‖

=
1

|φ(ε)|
‖k(a�mα)− k(mα � a)‖

≤ ‖k‖
|φ(ε)|

‖aεmα −mαεa‖

=
‖k‖
|φ(ε)|

‖aε ·mα −mα · εa‖ −→ 0.

Therefore Aε is ψ-Johnson amenable.
Conversely, suppose that Aε is ψ-Johnson amenable. Since (Aε)ε−2 = A and φ =

ψ(ε−2)ψ, the proof is an immediate consequence of above argument.
(ii) Suppose that A is φ-pseudo amenable. So there exists a net {mα} ⊆ A⊗̂A such

that φ ◦ πA(mα) −→ 1 and ‖a ·mα − φ(a)mα‖ −→ 0, for every a ∈ A. Choose nα = k(mα)
φ(ε) .

Similar arguments to the proof of part (i), show that ψ ◦πAε(nα) −→ 1 and for every a ∈ A,
we get

‖a� nα − ψ(a)nα‖ = ‖a� k(mα)

φ(ε)
− ψ(a)

k(mα)

φ(ε)
‖

= ‖k
(
a� mα

φ(ε)

)
− k
(
ψ(a)

mα

φ(ε)

)
‖

≤ ‖k‖‖a� mα

φ(ε)
− ψ(a)

mα

φ(ε)
‖

≤ ‖k‖‖ aε
φ(ε)

·mα − φ(
aε

φ(ε)
)mα‖ −→ 0.

Consequently, Aε is ψ-pseudo amenable.
Conversely, suppose that Aε is ψ-pseudo amenable. Since (Aε)ε−2 = A and φ =

ψ(ε−2)ψ, it follows that A is φ-pseudo amenable. �

Definition 1.5. [6] Let A be a Banach algebra, ϕ ∈ ∆(A) and Aφ = {a ∈ A : φ(a) = 1}.
A is called φ-inner amenable if there exists a bounded linear functional m on A∗ satisfying
m(φ) = 1 and m(f · a) = m(a · f) for all f ∈ A∗ and a ∈ Aφ.

Note that A is φ-inner amenable if and only if there is a bounded net (vα) in Aφ such
that ‖vαa− avα‖ −→ 0 for all a ∈ Aφ (see Theorem 2.1 of [6]).

Proposition 1.4. Let A be a Banach algebra and let φ ∈ ∆(A) be such that φ(ε) 6= 0. If A
is φ-inner amenable, then Aε is ψ = φ(ε)φ-inner amenable. In the case that ε is an element
of the algebraie center of A, the converse is also valid.

Proof. Suppose that A is φ-inner amenable. Then there is a bounded net (vα) in Aφ such
that ‖vαa− avα‖ −→ 0 for all a ∈ Aφ. Choose wα = vα

φ(ε) . Hence, for every α

ψ(wα) = ψ(
vα
φ(ε)

) = φ(vα) = 1.

That is wα ∈ (Aε)ψ. Now let a ∈ A be such that ψ(a) = 1. So

φ(εa) = φ(ε)φ(a) = ψ(a) = 1,
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and it follows that

‖wα � a− a� wα‖ = ‖ vα
φ(ε)

aε− aε vα
φ(ε)
‖ = | 1

φ(ε)
|‖vαaε− aεvα‖ −→ 0.

This means that ‖wα�a−a�wα‖ −→ 0 for all a ∈ (Aε)ψ. Therefore Aε is ψ-inner amenable.
Conversely, Suppose that ε is an element of the algebraie center of A and Aε is ψ-inner

amenable. So there is a bounded net (wα) in (Aε)ψ such that ‖wα � a − a � wα‖ −→ 0
for all a ∈ (Aε)ψ. Define vα := εwα. Thus φ(vα) = φ(ε)φ(wα) = ψ(wα) = 1. Also since
ψ( a

φ(ε) ) = 1 for every a ∈ Aφ, it follows that

‖vαa− avα‖ = ‖εwαa− aεwα‖
= ‖wα � a− a� wα‖

= |φ(ε)|‖wα �
a

φ(ε)
− a

φ(ε)
� wα‖ −→ 0.

Therefore A is φ-inner amenable. �

2. Generalized biprojectivity and biflatness of Aε

We start this section with the following definitions:

Definition 2.1. [16] A Banach algebra A is called approximately biprojective if there is a
net {ρα} ⊆ A of continuous A-bimodule maps from A into A⊗̂A such that πA ◦ρα(a) −→ a.

A is called approximately biflat if there is a net {θα} of continuous A-bimodule maps
from (A⊗̂A)∗ into A∗ such that w∗ − limα θα ◦ πA∗ = idA∗ where w∗ is the weak* operator
topology on B(A∗).

Let φ ∈ ∆(A). Then φ has a unique extension on A∗∗ denoted by φ̃ and defined by

φ̃(F ) = F (φ) for every F ∈ A∗∗. Clearly this extension remains to be a character on A∗∗.

Definition 2.2. [15] Let A be a Banach algebra and φ ∈ ∆(A). A is called φ-biprojective if
there exists a continuous A-bimodule map ρ : A −→ A⊗̂A such that φ ◦ πA ◦ ρ = φ.

Also A is called φ-biflat if there exists a continuous A-bimodule map ρ : A −→
(A⊗̂A)∗∗ such that φ̃ ◦ π∗∗A ◦ ρ = φ.

Note that if A is a Banach algebra and ε ∈ B(0)
1 , then f �a = f ·aε and a�f = εa ·f ,

for all a ∈ Aε and f ∈ A∗ε . Also a � u = aε · u and u � a = u · εa for every a ∈ Aε and
u ∈ Aε⊗̂Aε (see Proposition 2.4 of [10]).

The proof idea of the following Theorem is taken from the proof of Theorem 2.3 and
Theorem 2.4 of [10].

Theorem 2.1. Let A be a Banach algebra and Aε be unital. Then the following statements
are valid:

(i) A is approximately biprojective if and only if Aε is approximately biprojective.
(ii) A is approximately biflat if and only if Aε is approximately biflat.

Proof. (i) Suppose that A is a approximately biprojective Banach algebra. Then there exists
a net {ρα} of continuous A-bimodule maps from A into A⊗̂A such that πA ◦ ρα(a) −→ a
for every a ∈ A. Set ρεα = k ◦ ρα such that k : Aε⊗̂Aε −→ Aε⊗̂Aε be the bounded linear
map defined by k(a ⊗ c) = aε−1 ⊗ c (a, c ∈ Aε). By the same argument as in the proof
of the theorem 2.3 of [10], one can show that ρεα is an Aε-bimodule map for every α. Let
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ρα(a) =
∑∞
i=1 a

α
i ⊗ bαi . So, for every a ∈ A, we have

lim
α

(
πAε
◦ ρεα(a)

)
= lim

α

(
πAε
◦ k ◦ ρα(a)

)
= lim

α

(
πAε
◦ k
( ∞∑
i=1

aαi ⊗ bαi
))

= lim
α

(
πAε

( ∞∑
i=1

aαi ε
−1 ⊗ bαi

))
= lim

α

( ∞∑
i=1

aαi ε
−1 � bαi

)
= lim

α

( ∞∑
i=1

aαi b
α
i

)
= lim

α

(
πA
( ∞∑
i=1

aαi ⊗ bαi
))

= lim
α

(
πA(ρα(a))

)
= lim

α

(
πA ◦ ρα(a)

)
= a.

Therefore Aε is approximately biprojective.
Conversely, suppose that Aε is approximately biprojective. Since (Aε)ε−2 = A, from

the above argument we conclude that A is approximately biprojective.
(ii) Suppose that A is approximately biflat. Then there is a net {θα}α of continuous

A-bimodule maps from (A⊗̂A)∗ into A∗ such that w∗ − limα θα ◦ πA∗ = idA∗ . Suppose
that l : Aε⊗̂Aε −→ Aε and σ : Aε⊗̂Aε −→ Aε⊗̂Aε are the bounded linear maps such that
l(a⊗b) = aε⊗b (a, b ∈ Aε) and σ(a⊗b) = aε−1⊗b (a, b ∈ Aε). Define θεα : (Aε⊗̂Aε)∗ −→ A∗ε
by θεα(f) = θα ◦ σ∗(f) (f ∈ (Aε⊗̂Aε)∗). A similar argument as in the proof of theorem
2.4 of [10], shows that θεα is an Aε-bimodule map for every α. Now from the fact that
l∗ ◦ π∗A(f) = π∗Aε

(f) and l∗(π∗A(f)) ◦ σ = π∗A(f) (f ∈ A∗), it follows that

w∗ − lim
α

(
θεα ◦ π∗Aε

)(f)
)

= w∗ − lim
α

(
θεα ◦ l∗ ◦ π∗A(f)

)
= w∗ − lim

α

(
θα ◦ σ∗ ◦ l∗ ◦ π∗A(f)

)
= w∗ − lim

α

(
θα
(
l∗(π∗A(f)) ◦ σ

))
= w∗ − lim

α

(
θα
(
π∗A(f)

))
= f,

for every f ∈ A∗. Therefore Aε is approximately biflat.
Conversely, suppose that Aε is approximately biflat. From the facts that (Aε)ε−2 = A,

we deduce that A is approximately biflat. �

Theorem 2.2. Let A be a Banach algebra and Aε be unital. Then the following statements
are valid:

(i) A is φ-biprojective if and only if Aε is ψ-biprojective, where ψ = φ(ε)φ.
(ii) A is φ-biflat if and only if Aε is ψ-biflat, where ψ = φ(ε)φ.

Proof. (i) Suppose that A is φ-biprojective. So there exists a continuous A-bimodule map
ρ : A −→ A⊗̂A such that φ ◦ π ◦ ρ = φ. By a similar argument as in the proof of part(i)
of Theorem 2.1, if we define ρAε

= k ◦ ρA, one can show that ψ ◦ πAε
◦ ρAε

= ψ. So Aε is
ψ-biprojective.

Conversely, φ-biprojectivity of A follows from the facts that (Aε)ε−2 = A and φ =
ψ(ε−2)ψ.



Generalized notions of amenability and character amenability of a certain class of Banach algebras 169

(ii) Suppose that A is φ-biflat. Hence there exists a continuous A-bimodule map

ρA : A −→ (A⊗̂A)∗∗ such that φ̃ ◦ π∗∗A ◦ ρ = φ. Clearly, ρA is an Aε-bimodule map. Indeed

ρA(a� b) = ρA(aεb) = ρ(a)εb = ρ(a)� b,

Similarly

ρA(b� a) = ρA(bεa) = bερA(a) = b� ρA(a).

Let l and σ be Aε-bimodule maps defined as in the proof of Theorem 2.1. Obviously,
πAε

= πA ◦ l. Consequently, π∗∗Aε
= π∗∗A ◦ l∗∗. Now define ρAε

: Aε −→ (Aε⊗̂Aε)∗∗, by

ρAε
(a) = σ∗∗ ◦ ρA(a) (a ∈ A).

Since ρA and σ are twoAε-bimodule maps, it follows that ρAε
isAε-bimodule map. Moreover,

for every a ∈ A, we have

ψ̃ ◦ π∗∗Aε
◦ ρAε

(a) = ψ̃ ◦ π∗∗A ◦ l∗∗ ◦ σ∗∗ ◦ ρA(a)

= ˜(φ(ε)φ) ◦ π∗∗A ◦ ρA(a)

= φ(ε)φ̃ ◦ π∗∗A ◦ ρA(a)

= φ(ε)φ(a)

= ψ(a).

So Aε is ψ-biflat.
The converse follows from the facts that (Aε)ε−2 = A and φ = ψ(ε−2)ψ. �
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