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1. Introduction

For a compact surface (M, g), the Gauss-Bonnet theorem asserts that
∫
M

Kdvolg =

2πχ(M), where K is the Gaussian curvature of M , dvolg is the volume element of M and

χ(M) is the Euler characteristic. Since the Euler characteristic is a topological invariant,

any metric is critical for Hilbert-Einstein functional E : g 7→
∫
M

Kdvolg. The gradient of this

functional is given by ∇E = ϱ− τ
2 g = 0, where ϱ and τ are the Ricci tensor and the scalar

curvature, respectively. Therefore, the two-dimensional curvature identity ϱ = τ
2 g holds for

any compact surface, which is the same as the Einstein condition in this dimension. The

Gauss-Bonnet theorem was generalized by Chern in [6] to even higher dimensions, which in

dimension four is given by∫
M

(∥R∥2 − 4∥ϱ∥2 + τ2)dvolg = 32π2χ(M), (1)

where ∥R∥2 is square norm of the curvature tensor, taken with the sign convention R(X,Y ) =

[∇X ,∇Y ]−∇[X,Y ], for all X,Y ∈ X(M), and ∥ϱ∥2 is square norm of the Ricci tensor. Using

the Gauss-Bonnet-Chern theorem, Berger in [1] derived the curvature identity on a four-

dimensional Riemannian compact oriented manifold as follows(
Ř− ∥R∥2

4
g

)
+ τ

(
ϱ− τ

4
g
)
− 2

(
ϱ̌− ∥ϱ∥2

4
g

)
− 2

(
R[ϱ]− ∥ϱ∥2

4
g

)
= 0, (2)

where Ř, ϱ̌ and R[ϱ] are the symmetric (0, 2)-tensor fields given by

Řij = RiabcR
abc
j , ϱ̌ij = ϱiaϱ

a
j , R[ϱ]ij = Riajbϱ

ab.

1Professor, Department of Mathematics, Basic Sciences Faculty, University of Bonab, Bonab, Iran,

e-mail: haji.badali@ubonab.ac.ir; ahajibadali@gmail.com
2Professor, Corresponding author, Department of Mathematics, Payame noor University, P.O. Box

19395-4697, Tehran, Iran, e-mail: zaeim@pnu.ac.ir
3Student, Department of Mathematics, Basic Sciences Faculty, University of Bonab, Bonab, Iran, e-mail:

p.atashpeykar@ubonab.ac.ir; parvanehatashpeykar@gmail.com

73



74 Ali Haji-Badali, Amirhesam Zaeim, Parvane Atashpeykar

Euh et al., in [8], expanded (2) to a non-compact case. Also, Labbi in [12] could expand it

to higher dimensions by using an elegant method, but he considered only the compact case.

Recently, E. Garćıa Ŕıo et al., in [9], have pursued the curvature identity on homogeneous

Riemannian four-manifolds; especially, locally conformally flat weakly-Einstein Riemannian

manifolds were studied in [10]. In [11], authors focused on three-dimensional Lorentzian

weakly-Einstein manifolds.

Clearly, if (M, g) is an Einstein manifold, then the equation (2) vanishes identically.

Thus, non-trivial cases, i.e., where the manifold is non-Einstein were considered in literature.

The tensor fields Ř, ϱ̌ and R[ϱ] were considered separately. In particular, it was investigated

whether they reduce the metric tensor up to scaling or not. Following the definition of

weakly-Einstein Riemannian manifolds which is introduced in [9], we extend it to the pseudo-

Riemannian four-dimensional manifolds as following.

Definition 1.1. Let (M, g) be a four-dimensional non-Einstein pseudo-Riemannian mani-

fold. Then, (M, g)

(i) is called Ř-Einstein if

Ř =
∥R∥2

4
g. (3)

(ii) is called ϱ̌-Einstein if

ϱ̌ =
∥ϱ∥2

4
g. (4)

(iii) is called R[ϱ]-Einstein if

R[ϱ] =
∥ϱ∥2

4
g. (5)

We will use the weakly-Einstein condition as a general setting for the Ř-Einstein,

ϱ̌-Einstein and R[ϱ]-Einstein conditions.

Four-dimensional pseudo-Riemannian manifolds have been investigated from differ-

ent aspects (see for example [3, 4, 5]). Up to our knowledge, there is no comprehensive

study over weakly-Einstein conditions in four-dimensional pseudo-Riemannian manifolds.

The aim of the present work is to exhibit a classification result for weakly-Einstein pseudo-

Riemannian locally conformally flat four manifolds. This paper is organized as follows. In

section 2, we have considered weakly-Einstein conditions on conformally flat algebraic curva-

ture models of dimension four. We expose classification theorems on Lorentzian and neutral

signatures separately. Section 3 is devoted to some geometric examples of weakly-Einstein

pseudo-Riemannian manifolds without Riemannian counterpart, i.e., Walker metrics. Fi-

nally, locally symmetric examples were studied in the last section.

2. Weakly-Einstein conformally flat algebraic curvature models

Let V be a real vector space of dimension four with a pseudo-Riemannian metric

⟨ ·, · ⟩. Then, M = (V, ⟨·, ·⟩,A) is called an algebraic curvature model, where A ∈ ⊗4(V ∗) is

an algebraic curvature tensor on V , i.e.,

A(v1, v2, v3, v4) = −A(v2, v1, v3, v4) = A(v3, v4, v1, v2),

A(v1, v2, v3, v4) +A(v2, v3, v1, v4) +A(v3, v1, v2, v4) = 0,

for all v1, v2, v3, v4 ∈ V . The Ricci operator R̂ic associated with A is characterized by

⟨R̂ic(vi), vj⟩ = A(vi, vk, vk, vj) for all vi, vj , vk ∈ V where i, j, k = 1, 2, 3. In the Riemannian
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case, there always exists an orthonormal basis which the Ricci operator R̂ic is diagonalizable.

While, in the pseudo-Riemannian setting, the Ricci operator require not to be diagonalizable,

even though it is self-adjoint [13].

Let M = (V, ⟨·, ·⟩,A) be an algebraic curvature model and the scalar product ⟨·, ·⟩ be
with Lorentzian signature. Regarding to the Segre type of the Ricci operator, there exists a

pseudo-orthonormal basis {e1, · · · , e4} with e4 time-like, such that for real values a, b, c, the

Ricci operator R̂ic takes one of the following forms [4, Theorem 2.3]:

I) The minimal polynomial of Ricci operator doesn’t admit any repeated roots:

Ia) [R̂ic] = diag{a, b, c, d}.

Ib) [R̂ic] =


a 0 0 0

0 b 0 0

0 0 c −d

0 0 d c

 , d ̸= 0.

II) The minimal polynomial of Ricci operator has a root with multiplicity two:

[R̂ic] =


b 0 0 0

0 1 + a 0 −1

0 0 c 0

0 1 0 a− 1

 .

III) The minimal polynomial of Ricci operator has a root with multiplicity three:

[R̂ic] =


b 0 0 0

0 a 1 −1

0 1 a 0

0 1 0 a

 .

In order to investigate weakly-Einstein conditions, we shall focus generally on all

possibilities of the Ricci operator R̂ic of both Lorentzian and neutral signatures.

Theorem 2.1. Let M = (V, ⟨·, ·⟩,A) be a conformally flat pseudo-Riemannian Lorentzian

algebraic curvature model of dimension four, then M

• is Ř-Einstein if and only if its scalar curvature vanishes identically.

• is ϱ̌-Einstein if and only if the Ricci operator is either diagonalizable with eigenvalues

{κ, κ,−κ,−κ}, {κ, κ, κ,−κ} or is two-step nilpotent.

• is R[ϱ]-Einstein if and only if the Ricci operator is either digonalizable with eigenvalues

{κ, κ,−κ,−κ}, {κ, κ, κ, 3κ}or is two-step nilpotent.

Proof. Since the algebraic curvature model M is conformally flat, so the Weyl conformal

tensor will vanish identically, and thus, the curvature tensor A will be calculated due to the

Ricci tensor by the following Weyl tensor relation

W (x, y, z, w) = A(x, y, z, w)

+ τ
(n−1)(n−2){⟨x,w⟩⟨y, z⟩ − ⟨x, z⟩⟨y, w⟩}

− 1
n−2{⟨x,w⟩ϱ(y, z)− ϱ(x, z)⟨y, w⟩

+ϱ(x,w)⟨y, z⟩ − ⟨x, z⟩ϱ(y, w)},

(6)

where τ and ϱ are the scalar curvature and the Ricci tensor respectively, and n is the

dimension of V . To study the Ǎ-Einstein condition Ǎ = ∥A∥2

n ⟨·, ·⟩, we need to calculate the

curvature tensor A through the different cases. For instance, we bring the details of the case

(II), the other cases could be treated by similar arguments.
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Let the Ricci operator be of the form (II), by using the equation (6), the non-zero

components of the (0, 4)-curvature tensor A are

A1212 = 1
6 (a+ 2b− c+ 3), A1214 = − 1

2 , A1313 = 1
3 (b− a+ c),

A1414 = 1
6 (c− a− 2b+ 3), A2323 = 1

6 (a− b+ 2c+ 3), A2334 = 1
2 ,

A2424 = 1
6 (b− 4a+ c), A3434 = 1

6 (b− a− 2c+ 3).

Now, direct calculations gives the symmetric (0, 2)-tensor Ǎ by the following non-zero com-

ponents

Ǎ11 = 1
3

(
a2 + 2b2 + c2 − 2ac

)
,

Ǎ22 = 1
3

(
3a2 + b2 + c2 + 2a+ b+ c− ba− bc− ac

)
,

Ǎ24 = − 1
3 (2a+ c+ b) ,

Ǎ33 = 1
3

(
a2 + b2 + 2c2 − 2ba

)
,

Ǎ44 = − 1
3

(
3a2 + b2 + c2 − 2a− b− c− ba− bc− ac

)
.

We immediately have

∥A∥2 =
1

3

(
8a2 + 5b2 + 5c2 − 4ba− 2bc− 4ac

)
,

and thus, the Ǎ-Einstein condition satisfies if and only if τ = 2a+ b+ c = 0.

Now, direct calculations yield that

ϱ̌ =


b2 0 0 0

0 2a+ a2 0 −2a

0 0 c2 0

0 −2a 0 2a− a2

 ,

and thus, ∥ϱ∥2 = 2a2+ b2+ c2. By applying the equation (4), this model is ϱ̌-Einstein if and

only if a = b = c = 0 which concludes that the Ricci operator is two-step nilpotent. From

the last statement, we calculate the symmetric tensor A[ϱ] as follows

A[ϱ]11 = 1
3 (a

2 + c2 + 2ab− 2ac+ bc),

A[ϱ]22 = 1
3 (2a

2 + b2 + c2 + 2b− 2a+ 2c− bc),

A[ϱ]24 = 2
3 (a− b− c),

A[ϱ]33 = 1
3 (a

2 + b2 − 2ab+ 2ac+ bc),

A[ϱ]44 = − 1
3 (2a

2 + b2 + c2 + 2a− 2b− 2c− bc).

Now, according to the equation (5), this case is A[ϱ]-Einstein if and only if a = b = c = 0. □

Regarding to the scalar products with neutral signature, there exists a pseudo-orthonormal

basis {e1, · · · , e4} with e3, e4 time-like such that for real values a, b, c, d, the Ricci operator

have one of the following forms [5, Theorem 2.2]:

I) The minimal polynomial of Ricci operator does not have repeated roots:

Ia) [R̂ic] = diag{a, b, c, d},

Ib) [R̂ic] =


a 0 0 b

0 d 0 0

0 0 c 0

−b 0 0 a

 , (b ̸= 0),
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Ic) [R̂ic] =


a 0 0 b

0 c d 0

0 −d c 0

−b 0 0 a

 , (b ̸= 0, d ̸= 0).

II) The minimal polynomial of Ricci operator has a root with multiplicity two:

IIa) [R̂ic] =


1 + a 0 0 1

0 c 0 0

0 0 b 0

−1 0 0 a− 1

 ,

IIb) [R̂ic] =


1 + a 0 0 1

0 b+ 1 1 0

0 −1 b− 1 0

−1 0 0 a− 1

 ,

IIc) [R̂ic] =


1 + a 0 0 1

0 b c 0

0 −c b 0

−1 0 0 a− 1

 , (c ̸= 0),

IId) [R̂ic] =


a 1 b− 1 0

1 a 0 −b− 1

1− b 0 a −1

0 b+ 1 −1 a

 , (b ̸= 0).

III) The minimal polynomial of Ricci operator has a root with multiplicity three:

IIIa) [R̂ic] =


a 1 0 1

1 a 0 0

0 0 b 0

−1 0 0 a

 .

IIIb) [R̂ic] =


a 0 0 1

0 b 0 0

0 0 a 1

−1 0 1 a

 .

IV) The minimal polynomial of Ricci operator has a root with multiplicity four:

[R̂ic] =


a− 1 0 1 0

0 a −1 0

−1 1 1 + a 1

0 0 1 a

 .

Now, study of weakly-Einstein conditions on the conformally flat algebraic curvature

models of neutral signature gives the following result.

Theorem 2.2. Let M = (V, ⟨·, ·⟩,A) be a conformally flat pseudo-Riemannian neutral sig-

nature algebraic curvature model of dimension four, then M

• is Ř-Einstein if and only if its scalar curvature vanishes identically.

• is ϱ̌-Einstein if and only if the Ricci operator is either diagonalizable with eigenvalues

{κ, κ,−κ,−κ}, {κ, κ, κ,−κ}, {ib, ib,−ib,−ib} or is two-step nilpotent.

• is R[ϱ]-Einstein if and only if the Ricci operator is either diagonalizable with eigen-

values {κ, κ,−κ,−κ}, {κ, κ, κ, 3κ}, {ib, ib,−ib,−ib} or is two-step nilpotent.



78 Ali Haji-Badali, Amirhesam Zaeim, Parvane Atashpeykar

Proof. By similar arguments to the Lorentzian signature, the proof is based on case by case

study. We bring here the details of the case (IIIa) and other cases could be handled by

similar arguments.

Let the Ricci operator be of the form (IIIa). By using the equation (6), the compo-

nents of the curvature tensor A are calculated as

A1414 = A2424 = −A1212 = 1
6 (−3a+ b),

A1224 = A1323 = A1424 = −A1334 = − 1
2 ,

A1313 = A2323 = A3434 = − 1
3b,

and the Ricci tensor is

ϱ =


a 1 0 1

1 a 0 0

0 0 −b 0

1 0 0 −a

 .

The tensor field Ǎ is calculated as

Ǎ =


1
3 (3a

2 − 2ab+ b2) a+ 1
3b 0 a+ 1

3b

a+ 1
3b

1
3 (3a

2 − 2ab+ b2) 0 0

0 0 − 2
3b

2 0

a+ 1
3b 0 0 − 1

3 (3a
2 − 2ab+ b2)

 ,

and have ∥A∥2 = 3a2 − 2ab+ 5
3b

2. According to the equation (3), by direct calculations the

curvature model M is Ǎ-Einstein if and only if b = −3a which concludes that τ = 3a+b = 0.

Now, we calculate the tensor filed ϱ̌ as follows

ϱ̌ =


a2 2a 0 2a

2a a2 + 1 0 1

0 0 −b2 0

2a 1 0 1− a2

 .

Since ∥ϱ∥2 = 3a2+b2, by using the equation (4), the curvature model M is never ϱ̌-Einstein.

Direct calculation yields that the non-zero components of the tensor A[ϱ] are

A[ϱ]11 = 1
3 (3a

2 − ab+ b2),

A[ϱ]12 = A[ϱ]14 = 2
3b,

A[ϱ]22 = 1
3 (3a

2 + b2 − ab− 3),

A[ϱ]24 = −1,

A[ϱ]33 = −ab,

A[ϱ]44 = − 1
3 (3a

2 + b2 − ab+ 3).

By using the equation (5), the curvature model M is never A[ϱ]-Einstein in this case. □

Remark 2.1. In the theorems 2.1 and 2.2, we studied conditions for the conformally flat

algebraic curvature model M to be weakly Einstein. By a more accurate view, since the

condition ϱ̌-Einstein is just related to the Ricci tensor and its components, so in fact, we

can discard the assumption of conformally flatness in this case.
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3. Weakly-Einstein Walker manifolds of dimension four

A Walker manifold is a pseudo-Riemannian manifold admitting a null parallel distri-

bution D. Walker in [14], proved the existence of local coordinates (x1, · · · , xn) on a Walker

manifold (M, g) which the metric tensor is given by

g =

 0 0 Idr

0 A H

Idr
tH B

 ,

where A and B are symmetric matrices, A and H are independent of the coordinates

(x1, · · · , xr) and the null parallel r-plane D is locally generated by the coordinate vec-

tor fields {∂x1 , · · · , ∂xr}. The Walker manifold (M, g) is called strictly Walker whenever

the distribution D is parallel by any of its generators. With respect to the above canonical

coordinates, this property means that the matrix B is also independent of the coordinates

(x1, · · · , xr) (see [2] and the references therein).

In dimension four, we choose local coordinates (x, y, z, t) on the Walker manifold

(M, g). When the null parallel distribution D admits the maximum dimension, the metric

g is of neutral signature and has the following form

g =


0 0 1 0

0 0 0 1

1 0 a c

0 1 c b

 , (7)

where a, b, c are smooth functions of coordinates x, y, z, t. Moreover, the two-dimensional

null parallel distribution D is strictly parallel if and only if the defining functions are just

depended to the coordinates z, t.

In the case where the distribution D is of dimension one, the Walker metric g with

respect to the local coordinates (x, y, z, t) is given by

g =


0 0 0 1

0 p q k

0 q s h

1 k h f

 , (8)

where the defining functions p, q, s, k, h are arbitrary functions of coordinates y, z, t and f is

depended to x, y, z, t. This metric is Lorentzian or of neutral signature.

To see some geometric realizations of results of the previous section, we study weakly-

Einstein conditions on four-dimensional locally conformally flat Walker manifolds in this

section.

Let (M, g) be a Walker manifold, where g is described by the equation (7). In [7],

Davidow and Muškarov considered the four-dimensional conformally flat Walker manifolds

of this kind. They specified functions a, b, c as

a = x2C + 2xyD + xE + yF +G,

b = −y2C + 2xyL+ xM + yN + P,

c = x2L+ y2D + xQ+ yR+ S,

where C,D, · · · , are arbitrary smooth functions of z, t, satisfying several extra conditions.

For simplicity, we set the functions E,F,G,M,N, P,Q,R, S equal to zero and rewrite the

results of [7] as following.
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Theorem 3.1. [7] A four-dimensional Walker metric of the equation (7) is conformally flat

if the functions a, b, c have the form

a = x2C + 2xyD,

b = −y2C + 2xyL,

c = x2L+ y2D.

(9)

where C,D,L are smooth functions of z and t obeying the following equations

Ct − 2Lz = 0,

Cz + 2Dt = 0.
(10)

Now, we take our attention to the Walker metrics of the equation (7) which satisfy

in the equations (9) and (10). Summarizing, by using the local coordinates (x, y, z, t), the

locally conformally flat Walker metric is

g = 2dxdz + 2dydt+ (x2C + 2xyD)dz2 + 2(x2L+ y2D)dzdt+ (2xyL− y2C)dt2, (11)

where the equation (10) is valid.

In this case, the non-zero components of the Levi-Civita connection are as

∇∂x∂z = (xC + yD)∂x + xL∂y, ∇∂x∂t = xL∂x + yL∂y,

∇∂y
∂z = xD∂x + yD∂y, ∇∂y

∂z = yD∂x − (yC − xL)∂y,

∇∂z∂z = x(
1

2
xCz + yDz + x2DL+ 2x2C2 + 3y2D2 + 3xyCD)∂x

+ (−1

2
x2Ct + x2Lz + y2Dz − xyDt + 3x2yDL+ x3CL+ y3D2)∂y

− (xC + yD)∂z − xD∂t,

∇∂z
∂t = (

1

2
x2C + xyDt + 3x2yDL+ x3CL+ y3D2)∂x

+ (−1

2
y2Cz + xyLz − y3CD + 3xy2DL+ x3L2)∂y

− xL∂z − yD∂t,

∇∂t
∂t = (

1

2
y2Cz − xyLz + x2Lt + y2Dt + x3L2 − y3CD + 3xy2DL)∂x

+ y(−1

2
yCt + xLt + y2C2 − 3xyCL+ 3x2L2 + 2y2DL)∂y

− yL∂z − (xL− yC)∂t.

Also, the non-zero components of the curvature tensor are

R∂x∂z
∂x = C∂x + L∂y, R∂x∂z

∂y = R∂y∂z
∂x = D∂x, R∂x∂t

∂x = L∂x,

R∂y∂t∂y = D∂x − C∂y, R∂x∂t∂y = R∂y∂t∂x = L∂y, R∂y∂z∂y = D∂y,

R∂z∂t
∂x = (xLz − xCt − yDt)∂x + (yLz − xLt)∂y,

R∂z∂t∂y = (yDz − xDt)∂x − (yCz − xLz + yDt)∂y,

R∂x∂z∂t = (2xyDL+ x2CL+ xCt + yDt − xLz)∂x + (x2L2 + y2DL)∂y − L∂z,

R∂x∂t∂z = (2xyDL+ x2CL)∂x + (x2L2 + y2DL− xLt + yLz)∂y − L∂z,

R∂x∂t
∂t = (x2L2 + y2DL− yLz + xLt)∂x + (−y2CL+ 2xyL2)∂y − L∂t,

R∂y∂z
∂z = (2xyD2 + x2CD)∂x + (y2D2 + x2DL+ yDz − xDt)∂y −D∂z,
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R∂y∂z∂t = (x2DL+ y2D2 + xDt − yDz)∂x + (2xyDL− y2CD)∂y −D∂t,

R∂y∂t∂z = (y2D2 + x2DL)∂x + (−y2CD + 2xyDL+ xLz − yCz − yDt)∂y −D∂t,

R∂x∂z∂z = (x2DL+ x2C2 + 2xyCD + y2D2)∂x + (2xyDL+ x2CL+ xLz − xCt

− yDt)∂y − C∂z −D∂t,

R∂y∂t
∂t = (−y2CD + 2xyDL− xLz + yCz + yDt)∂x + (y2C2 − 2xyCL+ x2L2

+ y2DL)∂y − L∂z + C∂t,

R∂z∂t∂z = (2x2yDLz − 2x2yCtD + x2yDzL− x3CCt − x2yCDt − 3xy2DDt + y3DDz

+ x3CLz − x3LDt)∂x − (2x2yDLt − 4xy2DLz − xyLzz + x2Lzt + y2Dzt

− 1

2
x2Ctt − xyDtt + 2y3DCt + x3CLt −

1

2
x3LCt +

1

2
x2yCCt +

1

2
xy2CtD

− 2x2yCLz + xy2CDt)∂y − (xLz − xCt − yDt)∂z − (yDz + xDt)∂t,

R∂z∂t∂t = (−4x2yDtL− 2x2yDzL− xyLzz − y3CDz + 2x3LLz + x2Lzt + y2Dzt

− 1

2
x2Ctt − xyDtt −

3

2
x3LCt +

1

2
x2yCCt −

1

2
xy2CtD − x2yCLz + 2xy2CDt)∂x

− (xy2CLz − 3x2yLLz + xy2DLt + 2xy2DtL+ x3LLt − y3DLz − y3CDt)∂y

+ (xLt − yLz)∂z − (xLz + yDt)∂t.

Then, the Ricci operator R̂ic, with respect to the basis {∂x, ∂y, ∂z, ∂t} is described as

follows

R̂ic =


C 2D 2yDz − 2xDt xCt − yCz

2L −C xCt − yCz −2yLz + 2xLt

0 0 C 2L

0 0 2D −C

 . (12)

Theorem 3.2. Let (M, g) be a four-dimensional locally conformally flat Walker metric of

the equation (11). Then

• (M, g) is Ř-Einstein.

• (M, g) is ϱ̌-Einstein if and only if one of the following cases occurs:

(1) C = κ1, D = κ2, L = κ3,

(2) C = L = 0, D = f1(z),

(3) C = D = 0, L = f2(t),

where κi, i = 1, · · · , 3 are arbitrary real constants and f1(z), f2(t) are arbitrary smooth

functions on M .

• (M, g) is R[ϱ]-Einstein if and only if be ϱ̌-Einstein.

Proof. According to the algebraic results of the Theorem 2.2, since the scalar curvature is

equal to zero, the four-dimensional conformally flat Walker metric (11) is always Ř-Einstein.

For the ϱ̌-Einstein condition, the only possibility for the Ricci operator to be digonalizable

is the case with eigenvalues κ, κ,−κ,−κ which happens if and only if the functions C,D,L

be real constants. In this case, the conformally flat equations (10) will be valid trivially and

so case (1) of the statement is deduced. On the other hand, according to the equation (12),
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the Ricci operator of confornally flat manifold (M, g) is two-step nilpotent if and only if
C2 + 4DL = 0,

C(yDz − xDt) +D(xCt − yCz) = 0,

D(−yLz + xLt) + L(yDz − xDt) = 0,

L(xCt − yCz)− C(−yLz + xLt) = 0.

Therefore, a straightforward computation shows that one of the following cases will occur

(1) C = L = 0, D = f1(z),

(2) C = D = 0, L = f2(t),

which results in the cases (2)-(3) of the statement.

Finally, the R[ϱ]-Einstein condition is valid whenever one of the forms of diagonal-

izable Ricci operator establish or be two-step nilpotent. These conditions are exactly the

same for ϱ̌-Einstein condition, so the proof is complete. □

Next, we examine the weakly-Einstein conditions on four-dimensional Walker metrics

admitting a one-dimensional null parallel distribution. In order to make the results more

elegant and readable we set in the metric g of the equation (8), p = s = 1, q, k, h = 0. In

this case, we study the following Walker metric in the local coordinates (x, y, z, t) which is

Lorentzian.

g = 2dxdt+ dy2 + dz2 + f(x, y, z, t)dt2. (13)

By using the well known Koszul formula, the non-zero components of the Levi-Civita

connection of the Walker metric (13) are given by

∇∂x
∂t =

1

2
fx∂x, ∇∂y

∂t =
1

2
fy∂x, ∇∂z

∂t =
1

2
fz∂x,

∇∂t
∂t =

1

2
((ffx + ft)∂x − fy∂y − fz∂z − fx∂t).

Then, non-zero components of the curvature tensor are calculated immediately as

R∂x∂t
∂x =

1

2
fxx∂x, R∂x∂t

∂y =
1

2
fyx∂x, R∂x∂t

∂z =
1

2
fzx∂x

R∂y∂t
∂x =

1

2
fyx∂x, R∂y∂t

∂y =
1

2
fyy∂x, R∂y∂t

∂z =
1

2
fzy∂x,

R∂z∂t
∂x =

1

2
fzx∂x, R∂z∂t

∂y =
1

2
fzy∂x, R∂z∂t

∂z =
1

2
fzz∂x,

R∂x∂t
∂t =

1

2
(ffxx∂x − fyx∂y − fzx∂z − fxx∂t),

R∂y∂t
∂t =

1

2
(ffyx∂x − fyy∂y − fzy∂z − fyx∂t),

R∂z∂t
∂t =

1

2
(ffzx∂x − fzy∂y − fzz∂z − fzx∂t).

Also, the Ricci tensor of the Walker metric (13) is given by

ϱ =
1

2


0 0 0 fxx

0 0 0 −fyx

0 0 0 fzx

fxx fyx fzx ∆

 ,
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where ∆ = ffxx − fyy − fzz. The non-zero components of the Weyl tensor of the Walker

metric (13) are

W (∂x, ∂y, ∂y, ∂t) =
1

12
fxx, W (∂x, ∂z, ∂z, ∂t) =

1

12
fxx, W (∂x, ∂t, ∂y, ∂t) = −1

4
fyx,

W (∂x, ∂t, ∂z, ∂t) = −1

4
fzx, W (∂x, ∂t, ∂x, ∂t) = −1

6
fxx, W (∂y, ∂z, ∂y, ∂z) =

1

6
fxx,

W (∂y, ∂z, ∂y, ∂t) = −1

4
fzx, W (∂y, ∂z, ∂z, ∂t) =

1

4
fyx, W (∂y, ∂t, ∂z, ∂t) = −1

2
fzy, (14)

W (∂y, ∂t, ∂y, ∂t) = − 1

12
(ffxx + 3fzz − 3fyy),

W (∂z, ∂t, ∂z, ∂t) = − 1

12
(ffxx − 3fzz + 3fyy).

Now, we can calculate the four-dimensional locally conformally flat Lorentzian Walker

metric.

Theorem 3.3. Let (M, g) be a Lorentzian Walker metric, where g is described by the equa-

tion (13). The following statements hold

(i) (M, g) is flat if and only if

f(x, y, z, t) = f1(t)x+ f2(t)y + f3(t)z + f4(t).

(ii) (M, g) is Einstein if and only if be Ricci-flat if and only if

f(x, y, z, t) = f1(t)x+ f2(y, z, t),

where (∂2
zz + ∂2

yy)f2(y, z, t) = 0.

(iii) (M, g) is locally conformally flat if and only if

f(x, y, z, t) = f1(t)x+ f2(t)y + f3(t)z + f4(t) + f5(t)(y
2 + z2), (15)

where fi(t), i = 1, · · · , 5 and f2(y, z, t) are arbitrary smooth functions.

Proof. The Walker metric (13) is flat if and only if its curvature tensor vanishes, which is

equivalent to

fxx = fyx = fzx = fyy = fzy = fzz = 0.

Thus, the Walker metric (13) is flat if and only if the function f satisfies

f(x, y, z, t) = f1(t)x+ f2(t)y + f3(t)z + f4(t).

Moreover, the Walker metric (13) is Einstein if ϱ = τ
4 g. On the other hand, it follows from

the Ricci tensor that the Ricci operator is given by

R̂ic =
1

2


fxx fyx fzx −fyy − fzz

0 0 0 fyx

0 0 0 fzx

0 0 0 fxx

 .

Therefore, the scalar curvature of a Walker metric (13) is τ = fxx, and the Einstein equations

are as follows

fxx = fyx = fzx = 0, fzz − fyy = 0,
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which are the same equation as for the Ricci-flat Walker metric (13). Thus, the Walker

metric (13) is Einstein if and only if be Ricci-flat, so if and only if the function f takes the

special form

f(x, y, z, t) = f1(t)x+ f2(y, z, t),

where (∂2
zz + ∂2

yy)f2(y, z, t) = 0. A Walker metric (13) is conformally flat if and only if the

Weyl tensor is zero. So, regarding to the components of the Weyl tensor (14), the Walker

metric (13) is conformally flat if and only if
fxx = fyx = fzx = 0,

ffxx − 3fyy + 3fxz = 0,

ffxx − 3fyy − 3fzz = 0.

By solving the above equations, f is as claimed in (15) and the proof is complete.

□

Now, let (M, g) be a four-dimensional conformally flat Lorentzian Walker manifold,

where g is the metric tensor of the equations (13) and (15). Then, the Ricci operator R̂ic,

with respect to the basis {∂x, ∂y, ∂z, ∂t} is given by

R̂ic =


0 0 0 −2f5(t)

0 0 0 0

0 0 0 0

0 0 0 0

 . (16)

Clearly, if f5(t) = 0, then the four-dimensional conformally flat Lorentzian Walker manifold

is Ricci flat.

Theorem 3.4. The four-dimensional conformally flat Lorentzian Walker metric is weakly-

Einstein (non-Einstein) if and only if f5(t) ̸= 0.

Proof. According to the Theorem 2.1, as the scalar curvature is zero, the four-dimensional

conformally flat Lorentzian walker metric is Ř-Einstein. On the other hand, since the Ricci

operator is two-step nilpotent, Thus the metric is ϱ̌-Einstein and R[ϱ]-Einstein. □

4. Locally symmetric examples

Following the results in [10], locally symmetric spaces constitute a large class of weakly

Einstein locally conformally flat manifolds. So, this is good idea to identify locally symmetric

examples of the spaces which were considered through the previous section. We undertake

this study in the following theorems.

Theorem 4.1. Let (M, g) be a locally symmetric four-dimensional conformally flat Walker

metric of the equation (11). Then

• (M, g) is Ř-Einstein.

• (M, g) is ϱ̌-Einstein.

• (M, g) is R[ϱ]-Einstein.

Proof. The Walker metric (11) is locally symmetric if and only if ∇R = 0. So, by calculating

the covariant derivative of the curvature tensor, it follows that the Walker metric (11) is

locally symmetric if and only if the functions C,D,L are real constants. Thus, the locally

symmetric Walker metric (11) is given by

g = 2dxdz + 2dydt+ (κ1x
2 + 2κ2xy)dz

2 + 2(κ3x
2 + κ2y

2)dzdt+ (2κ3xy − κ1y
2)dt2. (17)
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In this case, the Ricci operator is given by

R̂ic =


κ1 2κ2 0 0

2κ3 −κ1 0 0

0 0 κ1 2κ3

0 0 2κ2 −κ1

 . (18)

The Ricci operator is digonalizable with eigenvalues κ, κ,−κ,−κ. Then, according to the

Theorem 3.2, all conditions establish simultaneously. □

About locally symmetric Lorentzian Walker metrics (13) we have the following result.

Theorem 4.2. A four-dimensional weakly-Einstein locally conformally flat Lorentzian Walker

metric (13) is locally symmetric if and only if f1(t) = − f
′
5(t)

f5(t)
.

Proof. The Walker metric (13) is locally symmetric if and only if ∇R = 0. Long but routine

calculations denote that non-zero components of the covariant derivative of R are given by

(∇∂t
R)(∂y, ∂t, ∂y) = (∇∂t

R)(∂z, ∂t, ∂z) = (f1(t)f5(t) + f
′

5(t))∂x,

(∇∂t
R)(∂t, ∂y, ∂t) = (f1(t)f5(t) + f

′

5(t))∂y,

(∇∂tR)(∂t, ∂z, ∂t) = (f1(t)f5(t) + f
′

5(t))∂z.

Thus, the Walker metric (13) is locally symmetric if and only if f1(t) = − f
′
5(t)

f5(t)
. □
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