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MARKOV RANDOM FIELDS MODELING IN ARTIFICIAL
INTELLIGENCE

Cosmin Ţoca1, Carmen Pătraşcu2, Mihai Ciuc3 and Dan-Alexandru Stoichescu4

The field of Artificial Intelligence has gained increased momentum
in recent years, mainly due to the augmentation of the number of applica-
tions connected to the domain, such as object detection and classification.
This article introduces two separate algorithms based on Markov Random
Fields (MRF) for the previously mentioned applications. The solutions
are validated by analyzing the results of the algorithm on state-of-the-art
databases.
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1. Introduction

Constant progress has been registered in recent years in the field of Arti-
ficial Intelligence, mainly due to the increased interest in two of its prominent
applications, namely object detection and object recognition. Object detection
represents an essential element in all engineering devices employing automated
vision capabilities. Increased demands in the number of solutions and their
success rates is motivated by the constant evolving number and complexity of
related applications, such as advanced robotics, aided surveillance and automo-
tive safety. The high complexity associated to finding objects in a wide variety
of real world scenarios has lead to the necessity of using machine learning tech-
niques, due to their ability of deriving and storing an implicit description of
each object class from various pre-existing examples.

In the case of object classification, important progress was supported to
a significant extent by the focus on the area of Deep Learning. The ability
of integrating large neural networks into mass market appliances is already
making a profound impact on the user experience.
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This paper proposes the usage of Markov Random Fields [12, 15, 16] in
the context of the previously mentioned applications.

With respect to object detection, we introduced a new set of channel
features [5] which use the autobinomial Markov-Gibbs random fields [3]. Based
on the presumption that information in images is spatially correlated, we solely
employ close pixel neighborhoods for the probabilistic description of our object.
To enhance the available information, we use both gradient magnitude and
histograms from the image data.

Fig. 1. Structure of the AutoMarkovian Object Detector [5, 4].
(a) Feature representation; (b) Local features’ decorrelation; (c)
Cascade of boosted trees

On the other hand, when considering neural networks, we can justify
the usage of probabilistic graphical models by their common ability to predict
effects derived from multiple causes. In the current structures of convolutional
neural networks each neuron is connected only to a local region in the previ-
ous layer. This property builds a base for integrating Markov Random Fields
(MRFs) into the structure of neurons in order to consider how likely a par-
ticular pathway is. We propose a novel type of convolutional layer based on
Autobinomial Markov-Gibbs Random Fields, as shown in Fig. 2, which we call
AutoMarkov Layer.

The remainder of this paper is organized as follows. Section 2 provides
an introduction to the domain of Markov Random Fields and their proper-
ties. In Section 3 we describe the newly introduced channel features, giving
a detailed overview of the autobinomial Markov channels. We describe the
gradient magnitude and gradient histograms features, feature pyramids and
the local decorrelation employed in our model. We also provide a detailed
argumentation for the selection of the boosting method. In Section 4 we give
a detailed overview of the proposed AutoMarkov Layers, describing the for-
ward and backward propagation steps. Experimental evaluations are described
separately for each specific application. Concluding remarks are presented in
Section 5.
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2. Markov Random Fields

Markov Random Fields (MRFs) are widely used probabilistic models
providing a basis for modeling contextual constraints in visual processing and
interpretation, as they allow the integration of prior knowledge extracted from
images and scenes. This section focuses on generic Markov random fields
models for natural images and their applications in object detection and clas-
sification.

We consider the image to represent a collection of random variables,
indexed by their locations inside the image space, known as sites. Now, let
us consider that X = {Xξ}∀ξ∈Ω is a random process defined on a probability
space (Ω,F,P) where Ω is a finite set that refers to the pixel’s locations in the
image configuration, with elements denoted by ξ and called sites. Let F be a
finite set, called the phase space, that refers to all possible values of the pixels
in a spectral plane and P the assignment of probabilities for each location.

A neighborhood system on Ω is a family N = {Nξ}∀ξ∈Ω of subsets of
Ω such that for all ξ ∈ Ω a site is not neighboring to itself ξ 6∈ Nξ, and the
neighboring relationship is mutual η ∈ Nξ ⇔ ξ ∈ Nη.

The Markov property states that each site ξ is conditionally independent
of all other variables in the random field, except its neighboring system. The
vicinity for each location can be described as:

Nξ =
{
η ∈ Ω | η 6= ξ, d2(ξ, η) ≤ ∆

}
, (1)

where ∆ is a fixed positive integer and d2(ξ, η) is the squared Euclidean
distance between ξ and η. To get the probability that at a site ξ the state is γ,
we need to define a potential function VC(γ) in the neighboring system, here
denoted by a collection of cliques C:

VC(γ) =


−ln

(
Γ
γξ

)
+ γξ if C = {ξ}

γξ · γη
ν

if C = {ξ, η}
0 otherwise

(2)

In this model, the only cliques participating in the energy function are
singletons and pairs of mutual neighbors, the set of cliques appearing in the

energy function being a disjoint sum of collections of cliques C =
∑ω(δ)

k=1 Ck with
ω(δ) representing the number of possible cliques for each local specification.

The local property of a Markov Random field can be interpreted in terms
of energy (Eq. 3) and potential (Eq. 2), leading to the following definition:

πξ =
e
−

∑
Rξ

VR(γ)∑
ϕ∈F

e
−

∑
Rξ

VR(ϕ, γ)
, (3)

where VR is the potential function and ϕ ∈ F.
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3. AutoMarkov Channels for Object Detection

The algorithm employed for object detection applications proposed by
the authors is based on a cascade of boosted trees, learned from a feature space
consisting of several registered channel features. The motivation behind the
usage of a boosted cascade of trees is to compute a series of weak classifiers
in the form of simple regression trees, with each tree using the prediction
residuals of the preceding levels. The authors propose learning a cascade of
boosted trees from a feature space consisting of several registered channel
features. By determining the best partitioning of the dataset at each step, the
method separates the data into two sets at each split node, generating a set
of binary trees. The next tree in the cascade will be fitted to the residuals
representing the deviations of the previously observed values from the means.
Based on the assumption that each partition represents the best scenario for
the current stage, we ensure that the residual variance of the data is minimal.
For the proposed algorithm, we keep a minimum depth of two levels for each
binary tree, leading to a maximum of three decisional nodes and four leaves.

Fig. 2. Potential Architecture of Deep AutoMarkov Residual
Network [6]. AutoMarkov Layers compute the response of a
neuron as being the local property of a Markov Random Field.

A channel feature in this case represents a function of the same spatial
variables as the initial image, meaning we can see it as an independent image.
For feature calculation, if we replace Eq. 2 in Eq. 3, we get the probability
assigned to the local system as:

πξ(γ) = Z−1

(
Γ
γξ

)
σγξ(1− σ)Γ−γξ , (4)

where Z =

(
Γ

Γ/2

)
is a normalization constant, and σ = σ(Nξ) = (e〈α,β〉)/(1+

e〈α,β〉).
Here 〈α, β〉 is the scalar product of two vectors α and β of sizes ω(δ), and

elements in α normalize the absolute difference of gray levels between pairs of
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cliques (as shown in Tab. 1) found in the same neighborhood of a certain pixel
βk = βk(γNξ

) = |γη − γη′|, for η 6= η′, and η, η′ ∈ Nξ, where {η, ξ} and {η′, ξ}
are two pairs in Ck containing ξ.

Table 1

Examples of neighbourhood systems. The maximum distance between two

sites {ξ, η} is denoted by δ and ω(δ) and represents the number of possible cliques

for each local specification, including only singletons and pairs of mutual

neighbours.

3-by-3 5-by-5

(a) (b) (c) (d)

δ 1 2 4 1
ω(δ) 3 5 7 3

However, pixel values do not hold information only about the luminance
intensity of color, but knowledge about features, such as weighted averages,
gradient magnitudes and gradient orientations. In object detection applica-
tions it is considered good practice to extract multiple diverse features to get
the maximum relevant information from the data. This is especially true for
the case of person detection algorithms, where we focus on highlighting hu-
man body characteristics, regardless of the contextual information present in
images.

It can easily be observed that the selection of channel features has a
strong impact on the learning algorithm and is highly dependent on the ap-
plication at hand. The highest influencing factors for the learning algorithm
are the need for quick rejection or good performance measured at the end of
the scanning process. In terms of features, we must take into consideration
both the computational cost, as well as the memory space required to store
all channel features at different scales. An important factor in the overall per-
formance of the detector is the ability of each independent feature to separate
between positive and negative classes.

The gradient magnitude (M(γξ)) at each site ξ is used to capture the
undirected edge strength. To compute it we use a convolution with a discrete
derivative mask in both horizontal and vertical directions, as can be seen in
Eq. 5:

M(γξ) =

√
∂

∂x
N2
ξ +

∂

∂y
N2
ξ . (5)

Using an inverse tangent function, we get the orientation of the gradients
from the magnitude map, as seen in Eq. 6:
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O(ξ) = arctan

(
∂

∂y
Nξ/

∂

∂x
Nξ

)
. (6)

We can compute the channel features in the form of gradient histograms
by weighting the gradient angles using the precomputed magnitudes. Based
on the values from the gradient computation, each angle gets a weighted vote,
as seen in Eq. 7:

Hθ(ξ) = δ
(
O(ξ)

)
·M(ξ), (7)

where bin indexes can be determined by matching the orientation of each
site to its corresponding angle:

δ
(
O(ξ)

)
=

{
1, O(ξ) = θ
0, O(ξ) 6= θ

(8)

The orientations are quantized in a fixed number of bins, leading to a
set of six histogram channels computed from the luminance plane. The most
important advantage of this approach is the usage of spatial distribution of
orientations at each pixel location, helping predict the behavior of gradients
in resampled images without the need of using computationally expensive an-
alytical derivations.

Highly correlated data allow the user to check multiple features during
each stage, which translates to oblique splits in the case of our boosted cascade
of decisional trees. In order to reduce the computational cost required for
processing, orthogonal trees trained on decorrelated data are used. A set
of 4 decorrelation filters of 5 × 5 pixes were learned from training sets for
the AutoMarkov Channels and applied in both training and scanning stages.
Moreover, in order to speed up the scanning process we only compute the
channels for the native resolution of the input data, approximating another
twenty four scales based on the feature pyramids.

3.1. Performance Evaluation of the AutoMarkov Channels

In the case of computer vision methods, the algorithms’ performance is
constantly improved by learning from the available data. For this reason, con-
tinuous evaluation and testing represents an important part of the algorithm
design process, helping isolate the practical use-cases where the algorithm fails,
thus refocusing the research efforts on the most difficult scenarios. Object de-
tection evaluation is mostly affected by the low number of samples in publicly
available datasets. Adding to this problem is the reduced range of scales, oc-
clusions and pose variations, which increase the difficulty of measuring the
performance of the algorithm in real-life scenarios.

Given these considerations, we focus on pedestrian detection in order to
perform the quality evalution of the proposed algorithm. We employ two state-
of-the-art datasets to evaluate the proposed algorithm. The INRIA Pedestrian
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Dataset is used as a benchmark to assess various parameter settings, thus
leading to a thorough analysis of the proposed feature model. The selection
of this dataset is motivated by the existence of high quality annotations of
pedestrians in diverse settings and scenarios.

We evaluate the performance of different algorithms on INRIA Pedes-
trian Dataset and show the results and some additional information about the
features types used by each algorithm in Tab. 2.

To achieve a complete understanding of the algorithm’s performance we
use different color spaces, combinations of features computed on separate color
planes or combinations between channels, as well as vary the smoothing factor
and number of neighborhood systems.

Each of the algorithms can use one or more types of features such as
Color Channels, Gradient Magnitude (GM), Gradient Histograms (GH) and
AutoMarkov Channels. A smoothing may be applied across channels, and
channel features may be Locally Decorrelated (LD) or not. The Miss Rates
(MRs) have been obtained by averaging only the results in the [4 ·10−3−10−1]
range of False Positive (FP) rates.

Table 2

Detection on INRIA Pedestrian Dataset
AutoMarkov Channels Color Channels

3
GM

1
GH
6

Smooth
LD
×4

Log-Avg.
MR

[4 · 10−3 − 10−1] FP
Gray

1
Color

3
Multispectral

1
ACF [7] X X X X 22.38%
LDCF [13] X X X X X 17.45%
AutoMarkov X X X X X X X 15.57%
Sp.Pool [14] - - - - - - - - 14.49%
Franken [11] - - - - - - - - 14.24%

However, to comply with the increased demands of the field and cover a
large range of real scenarios, we also perform an extensive evaluation [4] using
the Caltech Pedestrian Dataset. The usage of this dataset allows the authors
to perform an in-depth evaluation used to better characterize and understand
the algorithm’s behavior in a wide range of situations.

Table 3

Detection on Caltech Pedestrian Dataset
AutoMarkov Channels Color Channels

3
GM

1
GH
6

Smooth
LD
×4

Log-Avg.
MR

[4 · 10−3 − 10−1] FP
Gray

1
Color

3
Multispectral

1
ACF [7] X X X X 86.00%
Franken [11] - - - - - - - - 85.27%
Roerei [1] - - - - - - - - 84.27%
AutoMarkov X X X X X X X 79.80%
Sp.Pool [14] - - - - - - - - 78.95%
LDCF [13] X X X X X 76.05%
Katamari [2] - - - - - - - - 78.86%

The results shown in Tab. 3 represents the most general test case with
respect to the variability criterion, including all marked pedestrians in the
Caltech Pedestrian Dataset.
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We have shown that combining the AutoMarkov Channels together with
gradient-based features in a cascade of boosted trees we outperform the ma-
jority of the existing features and methods for pedestrian detection.

Results computed with respect to the both datasets can be observed in
the previous tables. When using the Caltech dataset, our results outperform
the majority of the state-of-the-art solutions. For this scenario, our novel
features are combined with gradient-based descriptors and a decorrelation al-
gorithm is applied to each channel.

4. AutoMarkov Layers for Object Recognition

This article focuses on finding methods to improve the general outcome of
a convolutional neural network, without limiting to specific problems. For this
reason, we aim to add prior knowledge in specific points of a generic network
configuration. Given the ability of the neurons in each convolutional layer to
respect the Markov Property, we can employ probabilistic models. This means
that the response of a neuron η is directly influenced only by the values of the
receptive neurons Rξ, which implies that the neurons inside a layer Ωη are only
connected to a compact subset of the previous layer.

Considering the values of all the neurons in the receptive field, we can
compute the response (πξ) of a neuron ξ as the local characteristic of a random
field, defined as the probability of assigning to each neuron η a certain prob-
ability. Mapping the outputs in a probability space ensures that the learned
filters β produce a stochastic response to a spatially local input.

The set of inputs of a certain layer is Ωξ = Rm×n×d and the connections
space is F : N → R, where m,n, d ∈ N and Γη represents the number of
activations given by βξ in relation to the total number of inputs Γξ. Generally
speaking, a larger difference between the two numbers Γξ and Γη accounts for
an increase to the overall certainty level.

Fig. 3. Forward and Backward Propagation. Simplified diagram
of a neuron ξ from an AutoMarkov Layer. The response πξ is an
autobinomial function with respect to the result of a convolution
Cξ between a filter β and the receptive field Rξ, where E stands
for the error of the output given a target response Tη and α is a
bias.
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We achieve the probability values needed in the Markovian probabilistic
model by transforming the response of each convolutional layer. The results
take into account both the receptive field and the certainty induced by sys-
tematic variations in the connections between adjacent layers.

After computing the values of the previous layer nodes, one can generate
the activation value of the propagation’s output as being the probability πξ

assigned to a local system, as seen in Eq. 4. It should be mentioned that the
forward step is shaped through a binomial distribution, modeling Γξ indepen-
dent success-failure experiments, each of them yielding success with probability
σ(Rξ). The sigmoid function σ(Rξ) incorporates the convolution between the
receptive field in Ωξ and the kernel field β, which allows to separately for-
ward the convolution followed by the sigmoid and ending with the binomial
mapping, as shown in Fig. 3.

We compute the derivative of the error function with respect to the
weights ∂E/∂βξ,η to propagate the error E = 1

2
(Tη − πξ)2 back through an

AutoMarkov node. In this case, Tη represents the target output.
The derivative of the error function is easy to solve by using the chain

rule that may be written using Leibniz’s notation:

∂E

∂βξ,η
=
∂E

∂πξ
· ∂π

ξ

∂σ
· ∂σ

∂Cξ,β
· ∂Cξ,β
∂βξ,η

. (9)

The derivative of the error with respect to the network output gives
∂E/∂πξ = −(Tη−πξ), while the derivative of the total network input with re-
spect to the weights results in ∂Cξ,β/∂βξ,η = Fξ, which are similar consequences
to those of a regular convolutional layer.

The derivative of the sigmoid function σ with respect to Cξ,β has been
often used as typical activation function in many neural networks. As the
sigmoid always has a positive derivative ∂σ/∂Cξ,β = σ(1− σ) the slope of the
error function provides a descent direction which can be followed.

We perform a similar calculation to determine how the probability as-
signed to a local system πξ changes with respect to variations of σ(Rξ):

∂πξ

∂σ
= πξ · Γη − σ · Γξ

σ(1− σ)
. (10)

Reducing the multiplication between the two middle terms by a common
factor, we get:

∂E

∂βξ,η
= Fξ · (σΓξ − Γη) · πξ(Tη − πξ) . (11)

This section shows how to integrate AutoMarkov layers in a multi-layer
convolutional neural network. It is important to note that the computation of
the error terms must proceed backwards through the whole network, beginning
with the output layer and ending with the first hidden layer.
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4.1. Performance Evaluation of the AutoMarkov Layers

To have a complete overview of the proposed solution, the authors per-
form the functional testing of the algorithms on MNIST [10], CIFAR-10 [9]
and CIFAR-100 [9] datasets. The aim of the testing is to assess and analyze
the performance gain if the standard convolutions are replaced with the prob-
abilistic model proposed in the present article by keeping the same network
architecture (in terms of hyper-parameters) and the same configuration for the
learning method (momentum, learning rate and batch size) as advised by the
authors. For these experiments, the models have been trained for ten hours,
with each training output evaluated on the corresponding testing dataset. We
retain the classification error in Tab. 4, Tab. 5 and Tab. 6.

Table 4

Classification on MNIST. Comparison between standard Convolution Layers -

AutoMarkov Layers within ResNet models on 28-by-28 gray level images divided

into 10 classes.

MNIST Testing Error - Top 1st

Regular Convolutions AutoMarkov Layers

ResNet-56 [8] 0.59% 0.43%

Table 5

Classification on CIFAR-10. Comparison between standard Convolution

Layers - proposed AutoMarkov Layers within ResNet models on 32-by-32 color

images divided into 10 classes.

CIFAR-10 Testing Error - Top 1st

Regular Convolutions AutoMarkov Layers

ResNet-20 [8] 8.26% 7.83%

ResNet-56 [8] 6.43% 5.55%

Table 6

Classification on CIFAR-100. Comparison between standard Convolution

Layers - proposed AutoMarkov Layers within ResNet models on 32-by-32 color

images divided into 100 classes

CIFAR-100 Testing Error - Top 1st

Regular Convolutions AutoMarkov Layers

ResNet-56 [8] 28.29% 27.61%

Testing the proposed neuronal architecture within a configuration of
ResNet with 56 layers on the MNIST database of handwritten digits offered
an improvement of 0.16% and a correct classification rate of 99.57%.

In the case of the same model, the proposed convolutions led to an im-
provement from 93.57% to 94.45%, corresponding to 3rd position on CIFAR-10,
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while in the case of a shallow model composed of 20 convolutional layers, the
measured improvement was 0.45%.

If the number of classes is much bigger, as is the case of CIFAR-100, the
improvements brought by the proposed convolutional layers have increased up
to 0.68%.

Deep neural networks usually have a large number of parameters detailing
the complicated relationships between their inputs and outputs. With limited
training data, these relationships will be the result of sampling noise leading
to overfitting. If the network is just large enough to provide an adequate fit,
it is unlikely for the model to overfit the training data, but the computation
of a network’s depth for specific scenarios represents an extremely difficult
problem. Our results prove that the proposed AutoMarkov Layers improve
the network generalization making it less prone to overfitting.

5. Conclusions

This work has been motivated by the inherent characteristic of natural
images, namely the fact that adjacent pixel values are correlated. This char-
acteristic allowed us to use probabilistic methods that, by their nature, are
suitable for such problems. More precisely, we proposed the use of Markov
Random Fields both for object detection and classification.

The object detection task deals with detecting instances of semantic ob-
jects of a certain class and is usually done by sliding window detectors in corre-
lation with hand-crafted feature descriptors. The main advantage of using the
proposed AutoMarkov Channels as feature descriptor comes from the property
of randomly selecting pixels to be part of the neighborhood system, having a
significant contribution for pedestrian detection in noisy scenarios. We have
shown that combining the AutoMarkov Channels together with gradient-based
features in a cascade of boosted trees and using a method that substitutes the
need for oblique splits, we outperform the majority of the existing features and
methods for pedestrian detection.

The object classification task is accomplished by a novel type of con-
volutional layer based on Autobinomial Markov-Gibbs Random Fields, called
the AutoMarkov Layer. We have exploit the standardized architectures of
various configurations of deep neural networks developed in recent years and
added prior knowledge to the neurons by integrating a probabilistic model
which focuses on their interaction and computes probabilities associated to
each particular pathway.

The functional testing is performed using the MNIST, CIFAR-10 and
CIFAR-100 datasets. By replacing the Standard Convolutional Layers with
the AutoMarkov Layers have been measure improvements of up to 1% correct
classification on the previously mentioned datasets leading to a correct clas-
sification rate of 99.57% on MNIST, 94.45% on CIFAR-10 corresponding to
3rd position on the object classification benchmark and respective 72.39% on
CIFAR-100.



60 C. Ţoca, C. Pătraşcu, M. Ciuc and D. Stoichescu

Acknowledgement
The work has been funded by the Sectoral Operational Programme Human

Resources Development 2007-2013 of the Ministry of European Funds through the
Financial Agreement POSDRU/159/1.5/S/134398.

R E F E R E N C E S

[1] R. Benenson, M. Mathias, T. Tuytelaars, and L. Van Gool. Seeking the strongest rigid
detector. In CVPR, 2013.

[2] Rodrigo Benenson, Mohamed Omran, Jan Hendrik Hosang, and Bernt Schiele. Ten
years of pedestrian detection, what have we learned? CoRR, 1411.4304, 2014.

[3] Pierre Bremaud. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues.
Texts in Applied Mathematics. Springer, 1999.
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