U.P.B. Sci. Bull., Series C, Vol. 72, Iss. 3, 2010 ISSN 1454-234x

CAD - CAM INTEGRATION OPTIMIZING DATA TRANSFER
BETWEEN DIFFERENT INTEGRATED DESIGN SYSTEMS
IN VIRTUAL ENTERPRISE ENVIRONMENT

Carmen Cristiana BUCUR?, Traian AURITE?

Rezultatele cercetarii publicate in aceasta lucrare se bazeazd pe un studiu de
caz pentru proiectarea arborilor folositi la maginile unelte, utilizand patru Sisteme
Integrate de Proiectare. Am inceput cu realizarea unui exemplu de diagrame SADT
utilizate in transferul de date §i industria CAD/CAM, pe baza lor am construit
arhitectura UML. Transpundnd arhitectura UML in limbajul de programare C++
obtinem agentul sursd care poate fi transformat intr-un agent de import/export de
cdatre un programator cu scopul de a Imbundtdti transferul de date intr-o
Intreprindere Virtuald. In aceste conditii utilizatorii ar putea importa piesele cu
istoric de la un IDS la altul.

The research results published in this paper are based on a case study for
shaft design made for machine tools using four Integrated Design Systems. At the
beginning we elaborate the SADT diagram used in CAD/CAM Industry and data
transfer. Based on these diagrams we build UML architecture. Transposing the
UML in C++ Programming language in order to improve the data transfer in a
Virtual Enterprise we obtain the agent source which can be transformed in an
import/export agent by a programmer, then the users could import the part with
historic from one IDS to another.

Keywords: data transfer, CAD/CAM, UML, ISO 10303/STEP, C++

List of Symbols

CAD - Computer Aided Design

CAM - Computer Aided Manufacturing

CAE - Computer Aided Engineering

CNC - Computer Numerical Control

IDS - Integrated Design System

ISO - International Organization for Standardization

STEP - 1SO 10303 - Standard for the Representation and Exchange of Product Data
SADT - Structured Analysis and Design Technique

UML - Unified Modeling Language

! PhD student, Faculty of Engineering and Management of Technological Systems, University
POLITEHNICA of Bucharest, Romania, e-mail: cristiana.bucur@gmail.com

2 prof., Faculty of Engineering and Management of Technological Systems, University
POLITEHNICA of Bucharest, Romania, e-mail: aurite@imst.msp.pub.ro; aurite@amcsit.ro

162 Carmen Cristiana Bucur, Traian Aurite

1. Introduction

The CAD/CAM systems in existence today have very limited capability to
allow the users to perform conceptual designs. This is because most of the
existing CAD/CAM systems require exact geometric specifications including
shapes and dimensions, even though these details are unnecessary and often
unknown at the conceptual design stage.

From at least 10 years the researchers have been studying the problem on
CAD/CAM integration and trying to optimize data transfer between different IDS
Systems.

Modern manufacturing enterprises are built from facilities spread around
the globe, which contain equipment from hundreds of different manufacturers.
Immense volumes of product information must be transferred between the various
facilities and machines. Today's digital communications standards have solved the
problem of reliably transferring information across global networks. For
mechanical parts, the description of product data has been standardized by 1SO
10303 (STEP). This leads to the possibility of using standard data throughout the
entire process chain in the manufacturing enterprise. Barriers to realizing this
principle are the data formats used at the machine level. Most computer numerical
control (CNC) machines are programmed in the 1SO 6983 "G-code" language.
Programs are typically generated by computer-aided manufacturing (CAM)
systems that use computer-aided design (CAD) information. However, "G-code"
limits program portability for three reasons. First, the language focuses on
programming the tool centre path with respect to machine axes, rather than the
machining process with respect to the part. Second, the standard defines the
syntax of program statements, but in most cases leaves the semantics ambiguous.
Third, vendors usually supplement the language with extensions that are not
covered in the limited scope of "G-code" [1].

In our research we discovered barriers in product data transfer produced
by: different users operating in a different manner Integrated Design Systems
(IDS); number of different organizations involved in the definition and
manufacture of products, each having their own distinct set of rules; the
development of the second IDS, which used different data to represent the same
information as the first system, providing some new functions and types of
information; the information created in one system cannot be read and processed
by the other system; from the lifecycle of many products, which extends far
beyond the effective working life of one particular IDS and its hardware; product
support must extend until the last product is scrapped [2].

The options discovered until now to solve these problems are: the simplest
option would be to enforce the use of the same IDS system throughout a project;
the second approach is to recognize the need for multiple IDS, and to build

CAD-CAM integration optimizing data transfer between different integrated design syst. (...) 163

translators between the various systems; the third approach is to develop a neutral
form of data with which each system can communicate [2].

One problem is the discordance which appears after the data transfer
between one Integrated Design System to another, and the biggest problem is that
the part can’t be edited anymore [3].

Solving some problems which appear in virtual enterprise from industrial
organizations using different IDS from one department to another is important for
the industrial partners involved in such architecture as well as for the software
developers.

In present are built numerous translators between the various systems but
none of them are able to import the parts with historic. The main focus of this
study is to create the UML architectures for the CATIA and SOLID EDGE
Software in order to improve the data transfer in a Virtual Enterprise. Solving the
problems which appear using different IDS from one department to another is
important especially to reduce design and manufacturing time, errors and even
blanks rebooting.

2. Case Study

Based on the main issue presented, we elaborate an SADT frame of an
IDS data transfer model in order to improve CAD/CAM communication. We
develop this SADT until the “Generating the 2D or 3D parts/assemblies in CAD
Module” activity. There are two ways to elaborate the parts/assemblies in IDS: the
first one is to design the parts/assemblies directly in actual IDS and the second is
to import the parts/assemblies model built in previous IDS [4, 5].

The Structured Analysis and Design Technique (SADT) is a graphical
representation that can be transposing in a programming language in order to
improve CAD/CAM communication between different IDS using STEP format
and to elaborate a CAD/CAM interface.

After analyzing all the possibilities of improving the transfer with historic
between different IDS we considered that the proper solution to be studied further
is to intermediate the transfer with an agent. This agent is supposed to read all the
steps made by the designer and translate them in the destination IDS each at a
time. To solve this problem we need an intelligent agent that we started to develop
in UML 2.0. The model of agent source was structured only for shafts. Based on
this framework anyone is able to expand it for specific parts or other IDS.

At the beginning we defined the main objects: shaft and pocket, in four
diagrams named CATIA, SOLID EDGE, SOLID WORKS and UNIGRAPHICS.
The diagrams must have similarly architecture in order to relate the objects in
each of them.

164

Carmen Cristiana Bucur, Traian Aurite

Maodified Technical and Functional Data

c

AD

|

geometry

Functional Data
—_—

.| The 3D assemblies/

CAD CAE

l

CAM

l

The final virtual

The 3D assemblies/

}

The 2D drawings for
bli

The final 2D

l

parts modelling b parts/assemblies parts v:
Technical Data ips Designing DS Project
Part/assembly engineer Director
CAD CAD

Validated virtual

prototype

/parts 4+ drawings

The 2D drawings for

assemblies

/parts

modelling

]DRT Il)mgnmg

engineer

validating

I

) Project
Transferring standards) DS Director
CAD (STEP, IGES, dxfldwg) Actual CAD
l Modified Technical and Functional Data

The imported 3D
assembly/part

3D assemblies/
parts adaptation

I

Actual
DS

3D assemblics/
parts generating | Data about assembly/

part modifications = |

Actual Designing

The parts/assemblies models DS en, by
realized in a previous IDS ansferring standards

CAD (STEP, IGES, dxfidwg)

Designing
engineer

. Actual CAD Modified Technical and Functional Data

!

2D drawings
aet Bl /

The imported 2D
drawings
Data about drawing
modifications

2D drawings
assemblies/parts
generating

L

parts adaptation

Actual Designing Actual Designing
IDS engineer DS engineer

Fig. 1. Generating the 2D or 3D parts/assemblies in CAD Module

CATIA diagram presented in Fig. 2, incorporate the PART name Class
which import the Shafi and Pocket commands. In PART name Class is defined
the part name attribute and operation as String type, witch shall import the real
name of the part. The Shaft Class defines the shaft no attribute, in order to import
them in chronological order and operation as Integer type and is associated with
Angle, Axis and Sketch options. The Angle Class is characterized by Value
attribute and operation defined as Integer type, to import/export the degrees
number. Axis Class appeals the 3D Line that uses 3D Point Class. Axis no
parameter is described as Boolean type. The Pocket option is associated with
Sketch and Height Class. Pocket no attribute and operation is described as Integer
type. Each of these classes is importing/exporting the values, the coordinates, the
elements that are used by the command from the other classes that are reading
them from the original model in order to write them in the new one.

CAD-CAM integration optimizing data transfer between different integrated design syst. (...) 165

[zl Model Explorer 52 = 0|/ cATAemx [|8 CATIA:CATIA 22
& (© PART Name
= Ef?zm fil o part_name : String
9
) 1 4 part_name ()
- @ 3D Line part name
-3 3D Point : < part name 1 importl
-0 Angle = import - pocket
@@ Ads " =
-G Height © Shaft e © Pocket
-3 PART Name o Ghaft_no : Integer - shaft o pocket_no : Integer
E;g :I:;fktet & Shalft no 1 with9 _axe Y 2 Podket no
+ shaft o Axi < Bool —pocket
5 Sketch 1 is_no: Bool...
i 4 Axis no () 1 B
/ appeal with12 . shaft N with10
/ import ; 1 - axis 1
/ importl 4 angle appeal =enien
o/ Include 3 Angle L- 3d.|IHE 1 - height
-/ Includel o Value: Integer 3D Line
/ Include2 E & Value () 30 Paint () @ Height
- Included o Value:Inte...
s use 1 -3dline ® Value ()
o/ usel with useB
/ use2 2- 3d point with11
-/ used (® 3D Point
-/ used ® XVelue ()
7 A _sketch | © YValue ()
/ uses s ® ZValue() B
; ”5:; ~ sketch
e/ US
7 with © Sketch
o withl o sketch_no : Integer
e with10 & sketch_no

v with1l it
. 3

Fig. 2. The UML architectures for shafts designed for CATIA made in IBM Rational Software
Avrchitect

In Fig. 3 is shown the diagram that we design for the Sketch. This diagram
contains the following classes: Absolute Axis, Constrains and Geometry. The
Constrains Class includes the next attributes: Coincidence, Parallelism,
Tangency, Offset, Perpendicularity, Angle, Radius and Length. The Geometry
Class includes the Point, Line and Circle attribute and options. All of these are
supposed to take from the original part sketch the information like: sketch plan
coordinates, the axis directions, the geometry, the value attributed to each object,

constrains between witch objects and value if necessary, to export them to another
IDS.

m

166

Carmen Cristiana Bucur, Traian Aurite

(3 Constrains
"o Coincidence_no : Integer
o Paralelism_no : Integer
o Tangency_no : Integer
o Offset_no : Integer
o Perpendicularity_no : Integer
o Angle_no : Integer
o Radius_no : Integer
o Length_no : Integer

| - tonstrains
1 constiains g,

Y,
- cgnstrains

PE 2 '
- constramepnstrains | with2
/ 1 h
- constrding’ with5 |
+ 4 offset se7
withd (& Offset
oo W First Line (]
ith
e W Secund Line ()
@ Value () I
with3
= paralelism2
“® Paralelism
: # Firct Line (]
. anglle @ Secund Line ()
(@ Angle
= tangenc S
| gency ® First Line () - angle
B Secund Line () ; :
1
-tangency —
(3 Tangency _———~tangency
W Circle () 1
W Line ()

© Absolute Axis
"o Origin = UnfimitedNatural
o X Direction : Boolean
o Y Direction : Boolean
o Z Direction : Boolean
@ Origin ()

Fig. 3. The Sketch Content from UML architectures

SOLID EDGE diagram exposed

© Geometry
o Point_no : Integer
o Line_no : Integer
o Circle_no : Integer

-jconstrains | Lo @ X Direction () @ l'i.n'\nt_nnmij }
1 : @ Y Direction {) ; @ Line_no ()
- coincidence 7 DI[ECtIUI‘\.(_] In(lhd.E'.- geometry® Circle_no ()
@Coln:ldenFe i I o gt
| - coincidence point ® point 1
- constrains i First Paint (] = L 1 “gpeometry
e : | @ Secund Point (] | 1 2 | © HDiection : Integer H P
1 g @ V Direction : Integer ~/deometry /
- with8 @®@H() g 4
- _ - radius 76\4‘(]
- paralelism — /
= (3 Radius Include2
© Perpendicularity & Grde()
® First Line () bl |
8 Secund Line () Ecil
- | Tncludel
~sy = tength "~ paralelism “Taclude3 * qcircle
© Length 1 - circle
" W Line () e |
.u“set & Value () Seii = Center_Paint: Point
F o Radius : Integer
- length F 2 o
= Center_Point ()
il 1 @ Radius ()
: © Fline
with7 |
i -line | 1/ -circle
PRl o -line L find
1 —_useS IS \
E I @ Line
2 [o Start_Point : Point |
o End Polt :Pont: {
-line - & Start_Point () |
e 1' ® End_Point ().
useb— - line
use2 X
_ use3

in Fig. 4, also incorporate the

PART name Class which import the Revolved Protusion and Cutout commands.
The Revolved Protusion Class is associated with Angle, Axis of Revolution and
Profile options. The Cutout Class is associated with Profile and Height Class. The
attribute and operation type defined in class diagrams are the same like in CATIA
diagram to make the import/export operations of the attribute in each object
functionally between the four IDS considered. This way we will be able to relate
the shaft _no from the CATIA to Revolved Protusion from this diagram and all the

other items.

CAD-CAM integration optimizing data transfer between different integrated design syst. (...) 167

gl Model Explorer &3

B

4 CATIA.emx

[8) CATIAZCATIA | [3) CATIA:SketchiSketch \ i SOLID EDGE.emx

@ SOLID EDGE:SOLID EDGE 57

S

&£} S0UD EDGE
[@) sOLID EDGE
-3 Angle
-3 Axis of Revelul
-3 Cutout
@3 Height
-3 PART_name
=3 Profile

E Profile

- @ cutout

- a profile_no

- 8 revolved py
- & profile_no

@ Angle

@ Circle

@ Coincidend|
@ Constrains
(® Geometry
3 Length

@ Line
w3 Offset
- @ Paralelism
-3 Perpendict
-3 Point
=3 Radius
B3 Tangency
- Revolved Proty
-/ import

-/ importl

-/ Includel

n]

- @ Absolute &

(3 Angle
o Value : Integer
@ Value ()

(3 PART_na

o part_name : String
A part_name ()

1 ~part_name

importl

(O Revolved Protusion
o Revolved Protusion_no : Integer

- revolved protusion

@ Revolved Protusion_no ()
1 1

B revolved protusion
- revalied prafEiglyed protusien

with1
with11 with10 - profile

L @ Profile
a profile_no : Integer
4 profile_no ()

1
~angle - axix of revolution

(5 Axis of Revolution
o Axis i Line
W Line ()

1 .- part_name
import
- cutout
(3 Cutout

o Cutout_no : Integer
A Cutout_no ()

- cutout i

- height
1
(3 Height
o Value : Integer
@ Value ()

<

i

Fig. 4. The UML architectures for shafts designed for SOLID EDGE made in IBM Rational
Software Architect

=420 UNIGRAPHICS NX.emx

-} UMIGRAPHICS

B

@ Angle
o revolved body
o Value
@ Value()
Axis
o Axis_no
A Axis_no ()
Part Name
o Part_name
-0 pocket
-0 revolved body
- & Part_name (]
Pocket
o part name
o Pocket_Mame
- & Pocket_Mame (
Revolved Body

[ra]

o angle
..... o part name
o RB_Mame

o sketch

- & RB_Mame ()
Sketch

[@) Sketch

)

Fig. 5. a) The UML architectures for sketch and the diagram tree designed for
UNIGRAPHICS made in IBM Rational Software Architect

168

Carmen Cristiana Bucur, Traian Aurite

. Goe
o Radius : Integer
o Center : Point

® Radius ()
Center ()
@ Absolute Axis ey T N
o XC: Boolean e e e pir3
o YC: Boolean 1 7 include2 oy CF\
o ZC : Boolean /'-/cir:\i (O
= Qrigin : UnlimitedNatural o ety \ use,
exc () /'/ L i S 3 Constrains
| \
e yc() e © Geometry Y N1 o Paralelism_no : Integer
@ ZzC() P o Point_no : Integer - radius, o Coincidence_no : Integer
& Origin () - o Line_no : Integer use! e a Perpendicularity_no : Integer
usel2 o Circle_no ;I]ntegw s O Radius | 1 | o Offset_no : Integer
s @ Point_no Y = o Angle_ne : Integer
s 1 | @Llneno() 3 : 5‘;‘?‘: (()) radius "3 constrans, Tangency_no : Integer
s g " @ Circle_no () L LA Wi 1 | o Radus_no : Integer
// P geometry + grometry N1 | = Length_no : Integer
1 P - tangericy < constrain
y Enint o include indude1 i3 1 withe 1 / F ‘
el i R, T 7 ! \
;:// ol = -line © Tangency - tangency - constrains - Eonsimhsst Ly \
@ Point |- point _ 1 reamn vl / i wns\ 3
= Hbirection : Infeger 2 g O'tme 1 e e () J / T
o VDirection : Integer o Start_Point : Point - use@ tangerl Ve / t c?nst‘ s
eH() _ point usell @ o End_Point : Point - line /\Dﬂt with4 Y \
ra . 1
ev() ® Start_Point () / / |
- & End_Paint () 2 1 g |
] . P /
\ ; _, 1 withs |
N LN ey 1 e angle ~langth 3 | 4
Y I 4 N N ... ’f | 1
s \,‘ 2 \ 14 -angle © Angle T / | 4
point, -lnel 5 b i @ Length / | |
Y | L line, - A | A
\ Cind| 2 S l R ® First_Line () / 1 \\
\ Foiom® o e seandune)] [Eel) [N
\ / | S L || @ivaue() -parsesn | \
\\ [4 N, Lt “length with7 1
W ugﬁé \‘,‘ A g (3 Paral I I\.
useld / ! g) 1
\ / \ iisez 1 ot)
~\ i \ s ———— ® First_Line () et el
\ ‘ \-\7_ " - panalelsm | @ secund Line ()| 7 7
b 5 sarls 55
i -offset | use? - " Ve
\\ / L ")pe“ruend\(uhntv _/’
d‘\ i) ! el s A
=iie o | -pemendaubity . G Parpandiculaty | P
A
\ WFst Lne () | & First_Line () withg
@ Coincit ® Secund_Line ()| T . 2 ® Secund_Line () 4 S
®Frst Pont () |- e ~ /
W Secund_Point () B 1 R el 1
ol —~—
- coincidence —

Fig. 5. b) The UML architectures for sketch and the diagram tree designed for UNIGRAPHICS
made in IBM Rational Software Architect

For UNIGRAPHICS (Fig. 5) and SOLID WORKS (Fig. 6) we designed
similar arhitectures like for CATIA and SOLID EDGE, for the same compability
issue.

CAD-CAM integration optimizing data transfer between different integrated design syst. (...) 169

[zl Model Explorer 5 = B[cATAemx | B CATIAZCA.. | [) CATIA:SKke.. | %JSOLIDEDG.. | (@ SOLIDEDG.. | %2 UNIGRAPHL.. 6] UNIGRAPHL. e Solid Wo.. | @
-
/ withs - {3 Part name
o/ With
w1 With?
o/ withd & Part.name ()
/ withg 1
ity (UML2) - part name 1
148 Solid Works.emx ™ importl
B8 Solid Works import
[@) Solid Works b
o3 Angle = revolve
.@ Cut-Exrude & Revolve (3 cut-Extrude

£

[

6@ Hight o Cut-Extrude_no : Inte...
k

£

[

o Part_name: String
- part name

- cut-extrude

3 g Part name o Revolve_no : Integer A Cut-Extrude no ()
£ Revolve A —_——
@ Sketch Revolve.no () 1
/ import 1 - revolve
/ importl -‘revalve 1

-/ Include .
- Includel with3 with2 withl
/" Include? 1

/ with i
-/ withl —ange = sketch

o with? (@ Angle 1 6 Ou

/ with3 o Value : Integer Sketch Hight

A (UML2) o Sketch_no : Integer o Value: Integer
(=24 UNIGRAPHICS NX.em @ Value ()
- UNIGRAPHICS A Sketch.no (). @ Value ()
[8) UNIGRAPHICS
@ Angle
-0 Axis

w3 PartName 7 =
« n v « i

- cut-extrude
- cut-extrude 1

m

with

- sketch 1 ~ hight

Fig. 6. The UML architectures for shafts designed for SOLID WORKS made in IBM Rational
Software Architect

Transposing the UML in C++ Programming language, we obtain the agent
source that can be transformed by a programmer in an import/export agent. This
agent can be developed in software that will be able to import and export parts
with full historic, between CAD software. The logical scheme of this source is
presented in Fig. 7.

Fig. 8 is presenting the final stage of our project, the validation of the C++
fragments that define each class of the UML diagrams.

170

Carmen Cristiana Bucur, Traian Aurite

[E51 Model Explorer &2 =g
@4 L o-
B2 SADT C++ -
=-[A] 3D_Lineh
- # 3D_LINEH
= _3D_Line =
@ _3d_point: 3D_Point™[]

oo axis : Axis®

@ _3D_Linelvoid)

- @ _3D_Point(): _3D_Point
@ ~_3D_Linelvoid)

- [R] _3D_Pointh

- [] Angle.h

H

=}

-

[B] Axis.h
-[8] Height.h
- # HEIGHT_H
=& Height
- o pocket: Pocket™

m

o Value:int
--- @ ~Height{veoid)
@ Height(void)
@ Operationl() : int
=B
- # PART_MAME_H
=--{& PART_Name

- @ part_name: const char®

pocket : Pocket™

shaft: Shaft*

- @ ~PART_MName(void)
@ part_name() : int

- @ PART_MName(void)

- [8] Pocketh
& [6] Shafth
- ## SHAFT_H
5@ Shaft -
«header files wclases wilasss wclasss
[PART_Name.h @ Angle @ Axis @ Sketch
V[\ "] -lsket
- angle 1 ax/_ i /?sket
\, o
Pl
Vg -3 fine "\ ocket
1 \\(2 aft 1 ° 1.
wclasss «classs «classe
(@ Shaft ® @ Pocket
B ;hﬂfﬁ 1 3 puk 1
lgLr[_name i J
=classs s|part wclases
(3 PART_Name @ _3D_Point (3 Height

o part_name: const char®
® PART_Name ()
@ ~PART_Mame ()

Fig. 7. The logical scheme of the code

CAD-CAM integration optimizing data transfer between different integrated design syst. (...) 171

@ Modeling - PART_Mame.cpp - IBM Rational Software Development Platform

File

Edit Mavigate Search Project Modeling Run Windo Help

rEH& | & [Q- [0~ |® 4 G g &
EglModel Explorer 52 i+ 4L + = B| B 30.Lineh [€] PART_Mame.cpp 5
E-5 SADT C++ @ #include "Shaft.h"

-[8] _3D_Lineh #include "Pocket.h"

-[H] _3D_Point.h #include "PART Name.h"

-[H] Angleh

Axis.h int PART Name::part name (}{
[Height.h
[PART_Nameh
[A] Pocket.h

-[5] Shaft.h

K] Sketch.h s
[€] _2D_Line.cpp i
-[6] _3D_Point.cpp

(8] Angle.cpp PART Name::~PART Hame (void)

[€] Asis.cpp 1 - -

-[€] Height.cpp // TODO Ruto-generated destructor

/ TODO Auto-generated method stub

PART Name::PART Name (void)

.[6] PART_Name.cpp 3
[€] Pocket.cpp Progress Information
-[] Shaft.cpp
[€] Sketch.cpp 0' Validation completed.
SADT i

424 CATIA.emx

J SOLID EDGE.emx

) Solid Works.emx
-89 UNIGRAPHICS NX.emx

B
B
-
B
B
-
5
-
-
&
.
B
i
B
.
B
il

=R=

Status

Validation of project SADT_C++ is complete.

b

P& Outline &2 . Inheritance Explorer Bax esO | = Properties 22 . Tasks| Console | Bookmarks | Problems
Writable Smart Insert 19:1

Fig. 8. A sequence of C++ Programming language
5. Conclusion

The biggest problem in virtual industries is the need to work with the same
IDS, in order to keep the historic of each piece of an assembly. This is nowadays
one of the criteria of choosing the partners. If the IDS used by the designer is
different by the one used by the programmer, the last one will use an imported
model with no historic. If there is a revision of the model made by the designer,
all the programs for the machining will be lost, just because the model used has no
historic and it is like a read only model. In most of the companies there are lots of
stories about this transfer issue, all of them with time, money lose.

The compatibility of CAD/CAM/CAE is similar to that used to justify any
technology-based improvement in manufacturing. It grows out of a need to
continually improve productivity, quality and competitiveness. There are also
other reasons why a company might make a conversion from manual processes to

172 Carmen Cristiana Bucur, Traian Aurite

CAD/CAM: increased productivity, common database with manufacturing, better
quality, better communication between posts, common database with
manufacturing, reduced prototype construction costs, faster response to
clients/partners.

All these issues would disappear if the parts/assembly transfers between
different IDS with historic would be possible. This is the reason why a transfer
solution is searched for so many people.

Starting from the similarity of design commands in any IDS, Shaft,
Revolved Protusion, Revolve, Revolved Body and Pocket, Cut Extrude, Cutout, We
created the UML 2.0 architectures for shafts designed in CATIA, SOLID EDGE,
UNIGRAPHICS and SOLID WORKS in order to transpose the UML in C++
Programming language and to obtain the agent source which can be transformed
in import/export software by a programmer. After that the users of different IDS
will be able to work on the part with full historic.

The main idea of this architecture is to be the start point of the future
professional software that will improve CAD/CAM/CAE communication between
any software.

This software is going to be able to read the steps made by the designer in
the IDS that he is using and to actually redesign the part in the destination IDS,
making the same moves like the designer, but using the other IDS commands.
This way the part will be editable after each transfer.

REFERENCES

[1] J. Sddski, T. Salonen, J. Paro, “Integration of CAD, CAM and NC with StepNC”, in VTT
Working Papers, no. 28, ISBN 951.38.6580.0 (URL.: http://www.vtt.fi/inf/pdf/), June 2005,
23p

[2] José Barata, “Introduction to Modelling and STEP”, Available at: http://www.uninova.pt/
~escn/storage/U2P1Uninova.pdf, Accesed on 2009-03-18

[3] C.C. Constantinescu (Bucur), L.F. Ciobanu, C.L. Popa, “Study about the Manufacturing
Integration in the Design Phase Using Several CAD-CAM Integration Systems Software”,
Proceedings of The 1% International Conference “From Scientific Computing to
Computational Engineering” IC-SCCE 2004, Tsahalis, T. (Ed.), ISBN 960-530-071-0,
Greece, September 2004, Patras University Press, Athena, pp. 1195-1202

[4] C.C. Bucur, “SADT Frame of an IDS Data Transfer Model Using STEP Format”, Proceedings
of The 16" International DAAAM Symposium, Katalinic, B. (Ed.), ISSN 1726-9679,
Austria, Published by DAAAM International, Vienna, October 2005, pp. 47-48

[5] C.C. Bucur, L.F. Ciobanu, “Data Transfer and Simulation for Virtual Enterprise Environment
Integration” Proceedings of The 7™ Conference on Management of Innovative
Technologies. MIT 2004, Chircor, M. & Dragoi, G. (Ed.), ISBN 973-700-028-5, Romania,
AIUS, Constanta, October 2004, pp. 19-22

