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AN APPLICATION LEVEL MULTI-PATH ALGORITHM FOR
FAST DATA STREAMING

Dan SCHRAGER!

Data intensive computing applications which require access to geographi-
cally distributed data are increasingly important in the grid and cloud computing
field. Therefore I designed a new algorithm capable of transferring bulk data be-
tween remote hosts with support for multi-path at application level, based on the
fork-join queueing model, by combining the use of classical pipes as a mean of
serializing data locally with multiple parallel TCP connections which ensure high
bandwidth throughput. My experiments in 100 Mbps, 1 Gbps and up to 8 Gbps
high bandwidth networks have proven the wvalidity of algorithms in static as well
as in dynamic conditions. Transfers of arbitrary data streaming were done effec-
tively, efficiently, in parallel, between pairs of distributed processes connected via
extended fast pipes.
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1. Introduction

My research is placed in the context of grid and cloud computing where the
ability to transfer large amounts of data over wide area networks is increasingly
important. For example, the Atlas experiment [2] which is transferring 10 PB of
data a year; or the VIRGO collaboration [26] that has storage needs in the order of
many hundreds of TB, and very low latency requirements.

The task of moving large files among distant hosts is usually handled by using
modified enhanced versions of TCP [20] (e.g. SACK [23], Vegas [21], HighSpeed [25],
FAST [8], MulTCP [19]), active queue management algorithms in routers (e.g. RED
[12], BLUE [13], SFB [14]), non-TCP protocols (e.g. XCP [9], SCTP [10], DCCP
[11]), or dedicated applications and libraries which either use networking parallelism
(e.g. XFTP [22], PSockets [18], GridFTP [27]) or UDP [28] as a transport means
(e.g. RBUDP [17], SABUL [29]). While TCP modifications are backward compatible
they typically require long standardization times and are difficult to disseminate;
non-TCP protocols require usually expensive changes in routers or dedicated or at
least rewritten applications; libraries have to be included in new applications, while
existing programs may be too specialized.
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My approach is based on a pipeline mechanism, of high speed and capacity,
which interconnects, at application level, pairs of data producer/consumer processes
running on different hosts in a high speed network. It is worth emphasizing the
generality and elegance of the approach which manages to exploit, through encap-
sulation, the pipe programming paradigm - specific to modern operating systems
(Unix) - based on reuse of existing system components (e.g. cat, dd, tar) or dedi-
cated storage and data access tools (e.g. Castor [4] at Cern [5], rfcat [6], rftar [7]),
as opposed to building new monolithic applications.

In terms of its ability to use efficiently multiple paths of different bandwidth,

my application resembles to Multipath TCP [1] which is however implemented in the
operating system (Linux) kernel and so suffers, as the majority of TCP extensions,
from difficulties of dissemination and lenghty standardization times.
Compared to the class of applications or library functions for networking transfers
using multiple concurrent TCP connections, which is a member of, my application
differs from previous achievements by targeting high rate streaming and therefore
not being limited to file transfers of known size.

In this paper I present experiments made in high throughput networks of 100
Mbps, 1 Gbps and up to 8 Gbps which continue the line of research approached in
[31]. T was able to evaluate the streaming performance of my transfer algorithms
and I have also improved the multi-path weighting techniques meant to increase the
overall throughput and transmission stability.

The following section presents the fork-join queueing model that is underlying
my research. The main features of the weighted transmission algorithms are included
in Section 3. Section 4 presents methodology and experimental results and their
analysis is done in Section 5. Finally, conclusions and future research directions are
presented in Section 6.

2. The fork-join queue model

The architecture of my system, presented in detail in [15] and here in Fig.
1, is based on the model of synchronized queues, also known as fork-join queues
[16], specific to parallel and distributed processing in general. Thus, data read by
the parent process from a pipeline, which makes a single point of interface with the
underlying (Unix-type) OS, is split, in order, among N child processes, via a shared
memory segment, containing FIFO networking data buffers of size B (fork phase).
The join happens actually at the receiver, with a symmetrical structure, where data
is recomposed, in the same order, from its parts, and leaves the system through
another writing pipeline.

The performance of my application is determined by its sojourn time, defined
as time elapsed between the fork and join moments, or, in other terms, by its global
transmission rate R.

Evidently, it depends on individual TCP transmission rates, r;, with ¢ € [1, N].
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The above equation poses a problem for unequal transmission rates, so I de-
cided to adapt the utilization degree of network buffers depending on measured
throughput, according to formula:
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which makes an ideal approximation of R as sum of all transmission rates, provided
that the individual measured times t; are accurate.

Control confection
1

L L

Sharad memony  Chib paasics Conestn dedste

Client Server

child grocesies  Shaved imemiony

Fic. 1. Architecture of Parallel Streaming System

3. Streaming algorithms with multi-path support

The overall structure of my transmission algorithms is formed out of:

e an infinite transmission loop with independent synchronization regions at each
individual transmission/reception buffer level.
e an agreed data streaming ordered over N parallel TCP connections.
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It is seen as a global fork-join queue which interconnects with speed, through a gen-
eralized long and large pipeline, pairs of remote data producer/consumer processes.

To accommodate multi-path support at application level I superposed trans-
mission weighting strategies, implemented, for simplity and efficiency, exclusively at
the sender side, and having three main phases:

e measurement of per connection/queue sojourn times, {t;}, when all buffers are
of equal size, followed by adjustment (weighting) of buffer sizes according to
formula (2) above.

e a short waiting period to attain steady-state TCP transmission.

e a feedback loop, determining eventual reweighting when some paths change
or/and transmission rates are throttled dynamically, in time.

These strategies are meant to obtain the shortest global sojourn time, setting the
overall throughput closer to that computed by equation (4).

From a control systems theory perspective, the weighted transmission algo-
rithm is a proportional only (P-only) type of control [30], as shown in Fig. 2 below.
Thus, the sensor computes the average of individual transmission times ¢; which is
compared to the initial reference value and if the average value has increased with
more than 33%, the controller triggers a reevaluation of the degree of use of buffers
that in turn sets new individual transmission rates and transfer times, ensuring
an optimal global transmission rate given the existing disturbance caused by the
connection rate variablility.

To better support a larger class of network bandwidths, I identified, during
experiments presented in the next section, a few improvements to my multi-path
algorithms, leading to an improved performance and overall stability.

3.1. A more precise sojourn times measurement

I averaged the transmission times over a number of steps varying inversely
proportional to N (but no less than 2 steps), instead of a fixed number of steps.
I used the mean and standard deviation of the N times as indicators whether the
weighted buffer times are better than those initially measured with equally sized
buffers: when both mean and standard deviation were bigger, I decided to continue
with the equally sized buffers; when only the mean was bigger, an early reweighting
was triggered, without entering the feedback loop at all. I also considered an alarm
mechanism, able to trigger a clocked reweighting, correcting rare cases when the
global transmission rate was wrongly driven by the slowest connection.

These strategies helped with reducing rate measurement errors, due to the
characteristically uneven TCP rate over time.

3.2. Stability improvements

I managed to reduce unnecessary reweighting phases, and got better stability
and throughput, by considering only significant (more than 33%) increases in the
mean sojourn times as a reason for triggering reweighting, discounting decreases.
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In the same time, I employed a moving reference to the feedback loop - a rolling
average (over last three values) of the mean sojourn times, instead of a fixed initial
mean value of them. This approach makes the control system a proportional and
integral one (PI), having the error function summed over time. It follows that the
offset specific to P-only controllers gets eliminated when operating levels change.
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Fia. 2. P-only Control of Weighted Transmission

4. Methodology and experimental results

To evaluate the performance of the new transfer algorithms I created an appli-
cation (bbftpPRO [3]) that implements the fast data streaming model (using pipes
forked/joined over parallel TCP connections), with multi-path support and without
it - used as a term of comparison. Integrating both algorithms in the same ap-
plication has allowed accurate configuration of networking parameters of the TCP
protocol, in the same way for each of the experimented transfer modes. In addition,
instrumentation was also common, which gave confidence in the results obtained
measuring the transfer rate for each of the cases considered.

I compared the average throughput of the weighted streaming algorithm with
its unweighted form. I used a special testbed made out of a number of independent
channels with different transfer rates, overlapping the underlying physical network.
I configured the network topology using the traffic control program tc. I set three
channels in the 100 Mbps network, of 10, 20, and 30 Mbps each; three channels of
100, 200, and 300 Mbps maximum throughput in the 1 Gbps network; and similarly,
another three channels of 1, 2, and 3 Gbps maximum rate, in an IPoIB, 8 Gbps
network.

4.1. Static mode

My static tests were of type memory-to-memory and lasted for 60 seconds each,
so to achieve TCP stability. I varied the number of concurrent TCP connections,
their distribution per channel and the number of channels used in the same time.
I allocated 1 connection per channel in the 100 Mbps and 1 Gbps network, in a
round-robin mode, until all connections got alloted. Same allocation strategy was
used in the 8 Gbps network, except that the number of connections per channel
was 2, at each step, in order to provide enough TCP connections to cover for the
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available bandwidth. For example, out of a total of 3 connections (in the 1 Gbps
network), 2 went to the 200 Mbps channel and 1 to the 100 Mbps one; out of 8
connections (in the 8 Gbps network), 4 went to the 3 Gbps channel, 2 to the 2 Gbps
channel, and another 2 to the 1 Gbps one, etc.

Figure 3 presents the average throughput over two channels (20 + 10 Mbps) and 2
to 8 parallel TCP connections; and Fig. 4 the case of three channels (30 + 20 + 10
Mbps) and 3 to 9 parallel TCP connections, in the same 100 Mbps network.
Figure 5 presents the average throughput for two channels (200 + 100 Mbps) and 2
to 8 parallel TCP connections; and Fig. 6 the case of three channels (300 + 200 +
100 Mbps) and 3 to 9 parallel TCP connections, in the same 1 Gbps network.
Finally, Fig. 7 presents the average throughput for two channels (2 + 1 Gbps) and
4 to 24 parallel TCP connections; and Fig. 8 the case of three channels (3 + 2 + 1
Gbps) and 6 to 24 parallel TCP connections, in the same 8 Gbps network.
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4.2. Dynamic mode

I was also interested to evaluate the dynamic response of my streaming al-
gorithms when the maximum throughput of the participant connections fluctuates.
Thus, I reconfigured alternatively, every 20 seconds, the maximum rate of individ-
ual connections, by associating them with channels having different bandwidth, in
a continous memory-to-memory transfer loop.
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I captured networking snapshots of the System Monitor program, for experiments
in the 100 Mbps and 1 Gbps network. Figure 9 shows 4 unweighted parallel connec-
tions, 2 in a 10 Mbps channel, and the other 2 in a 20 and then 30 Mbps channel,
alternatively. Snapshot in Fig. 10 illustrates the weighted transmission, in the same
context.

Figure 11 shows 8 unweighted parallel connections, 4 in a 100 Mbps channel, and
the other 4 in a 200 and then 300 Mbps channel, alternatively. Snapshot in Fig. 12
illustrates the weighted transmission, in the same context.

In the 8 Gbps network I instrumented my dynamic experiments by intermediary
piping the transferred data through the pmr [24] program and collecting its instan-
taneous rate reports once every second. Figure 13 shows both the weighted and
unweighted transmission of 12 parallel connections, 6 in a 1 Gbps channel, and the
other 6 in a 2 and then 3 Gbps channel, alternatively.
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5. Analysis of Experimental Results

The static and especially the dynamic mode performance evaluation shows
that the weighted transmission algorithm uses to a greater extent the available
overall bandwidth and has a superior responsiveness to dynamic bandwidth changes
than the unweighted one.
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5.1. Static Analysis

Thus, in the static 100 Mbps case: data presented in Fig. 3 shows, for two
channels (of 20 and 10 Mbps), that the average throughput is 18.1% higher, with
a peak of +33.8% for 4 concurrent TCP connections, when using the weighted
algorithm. The utilization degree of the available bandwidth (equal to 30 Mbps)
averages 82.9% in the weighted mode, while only 70.1% in the unweighted mode.
Data shown in Fig. 4, for three channels (of 30, 20, and 10 Mbps), computes
an average throughput 34.5% higher, peaking at +66.9% for 3 parallel connections,
when weighting is in use. The utilization degree of the available bandwidth (equal to
60 Mbps) averages 76.3% in the weighted mode, while only 56.6% in the unweighted
mode.

In the static 1 Gbps network case: data presented in Fig. 5 shows, for two

channels (of 200 and 100 Mbps), that the average throughput is 16.6% higher, with
a peak of +32.7% for 4 concurrent connections, when using the weighted algorithm.
The utilization degree of the available bandwidth (equal to 300 Mbps) averages
79.9% in the weighted mode, while only 68.5% in the unweighted mode.
Data shown in Fig. 6, for three channels (of 300, 200, and 100 Mbps), computes
an average throughput 31.8% higher, peaking at +64.5% for 6 parallel connections,
when weighting is used. The utilization degree of the available bandwidth (equal to
600 Mbps) averages 71.8% in the weighted mode, while only 54.5% in the unweighted
mode.
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In the static 9 Gbps network case: data presented in Fig. 7 shows, for two

channels (of 2 and 1 Gbps), that the average throughput is 19.4% higher, with a peak
of +39.1% for 8 connections, when using the weighted algorithm. The utilization
degree of the available bandwidth (equal to 3 Gbps) averages 84% in the weighted
mode, while only 70.3% in the unweighted mode.
Data shown in Fig. 8, for three channels (of 3, 2, and 1 Gbps), computes an average
throughput 27.2% higher, peaking at +50.5% for 18 connections, when weighting is
in use. The utilization degree of the available bandwidth (equal to 6 Gbps) averages
67.9% in the weighted mode, while only 53.4% in the unweighted mode.

It is noteworthy, from a qualitative standpoint, the clear distinction between
the rates achieved by the weighted algorithm as compared to the unweighted one.
While the former maintains approximately the same higher throughput regardless
of TCP connections distribution to channels, the latter is obviously affected by it,
hence the sawtooth shape of its throughput line.

5.2. Dynamic Analysis

In the absence of weighting, throughput stays unmodified, at around 20 Mbps

as shown in Fig. 9 for the 100 Mbps network experiments; at about 200 Mbps as
shown in Fig. 11 for the 1 Gbps network experiments; and at about 1.95 Gbps as
shown in Fig. 13 for the 8 Gbps network. These values correspond to the rate of
the slowest connection, multiplied by the number of connections, as predicted by
theory.
In contrast, the weighted algorithm is sensible to the £50% bandwidth variation
happening every 20 seconds. Figure 10 shows, for the 100 Mbps network case, two
average throughput levels, one of about 28 Mbps and the other of about 38 Mbps,
both approximating the bandwidth sum of the channels in use. Figure 12 shows, for
the 1 Gbps network case, two average throughput levels, one just below 300 Mbps
and the other just below 400 Mbps, both approximating the bandwidth sum of the
used channels, as expectedly. In Fig. 13, for the 8 Gbps network case, the two
average throughput levels are about 2.62 Gbps and 3.48 Gbps, both representing
about 87% of the channels’ bandwidth sum, in their respective states.

Finally, these results also demonstrate that the design of my multi-path al-
gorithms, described in Section 3 above, has indeed contributed to a better overall
transmission stability.

6. Conclusions

This paper has presented the features and behavior of improved data streaming
algorithms over an extended range of networks capable of high bandwidth of 100
Mbps, 1 Gbps and up to 8 Gbps. I managed to preserve the advantages of the pipe
programming model by extending it between fast data reading/writing processes
distributed over the Internet.
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The experiments and results described and analyzed in the previous sections
demonstrate that my application implements improved algorithms that handle the
multi-path transmission case efficiently, in both static and dynamic regimes, yielding
better throughput and stability.

Based on these results, I am confident that the proposed model and the new
fast transfer algorithms meet the modern requirements of today’s research domains
interested in transmitting massive bulk data elegantly, efficiently, effectively and at
parallel speeds.

6.1. Future Research Directions

I consider further improving the stability and efficiency of transfer algorithms,
and also automating transmission parameter choosing, like optimal number of par-
allel connections, buffer sizes, or transparent choosing of participating paths at local
IP level. I appreciate that the expected diversification and continuous development
of networks in the future would certainly benefit from further research extending
my current work.
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