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ON THE EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS

OF INFINITE SEMIPOSITONE PROBLEMS

S. H. Rasouli1, M. B. Ghaemi2, G. A. Afrouzi3, M. Choubin4

We discuss the existence of a positive solution to the infinite semipositone
problem

−∆u = −au+ bu2 − du3 − f(u)− c

uα
, x ∈ Ω, u = 0, x ∈ ∂Ω,

where α ∈ (0, 1), a, b, d and c are positive constants, Ω is a bounded domain in
RN with smooth boundary ∂Ω, ∆ is the Laplacian operator, and f : [0,∞) → R
is a nondecreasing continuous function such that f(u) → ∞ and f(u)/u → 0 as
u → ∞. We obtain our result via the method of sub- and supersolutions. We
also extend our result to classes of infinite semipositone system and p-Laplacian
problem.
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1. Introduction

Consider the boundary value problem{
−∆u = −au+ bu2 − du3 − f(u)− c

uα
, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.1)

where α ∈ (0, 1), a, b, d and c are positive constants, and Ω is a bounded domain in
RN with smooth boundary ∂Ω, ∆ is the Laplacian operator, and f : [0,∞) → R is
a continuous function. We make the following assumptions:

(H1) f : [0,+∞) → R is nondecreasing continuous functions such that
lims→+∞ f(s) = ∞.

(H2) lims→+∞
f(s)
s = 0.

Note that (1.1) is as an infinite semipositone problems (limu→0 F (u) = −∞, where
F (u) := −au+ bu2 − du3 − f(u)− (c/uα)).

In [9], the authors have studied the case when F (u) := g(u)− (c/uα) where g
is nonnegative and nondecreasing and lim

u→∞
g(u) = ∞. The case g(u) := au − f(u)
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has been studied in [8], where f(u) ≥ au − M and f(u) ≤ Aup on [0,∞) for
some M,A > 0, p > 1 and this g may have a falling zero. A simple example
of this g is g(u) = u − up, where p > 1. Note that this g has a falling zero at
u = 1, in fact g is negative for u > 1. In this article, we consider the case when
g(u) := −au+ bu2−du3−f(u) and we study more challenging infinite semipositone
problem. A example of f satisfying our hypotheses is f(x) = up; 0 < p < 1. Further,
let 0, R1 and R2 denote the zeros of −au + bu2 − du3 (such that R1 < R2), then
g(u) = −au+ bu2 − du3 − up is negative for u < R1 and u > R2.

In recent years, there has been considerable progress on the study of semi-
positione problems (F (0) < 0 but finite)(see [2],[3],[6]). Many results have been
obtained of infinite semipositone problems; see for example [7], [8], [9] and [10].

In [1], the authors establish the existence of a positive solution to −∆u =
−au+bu2−du3−ch(x) with Dirichlet boundary conditions and the method employed
in it uses the fact that −infs∈[0,R2](−au+bu2−du3) < ar, where r is the first positive

zero of (−au+ bu2 − du3)′. We will use in this paper this fact, too. The main tool
used in this study is the method of sub- and supersolutions ([4]).

2. The main result

In this section, we shall establish our existence result via the method of sub -
supersolution. A function ψ is said to be a subsolution of (1.1) if it is in C2(Ω)∩C(Ω)
such that ψ = 0 on ∂Ω and

−∆ψ ≤ −aψ + bψ2 − dψ3 − f(ψ)− c

ψα
in Ω,

and z is said supersolution of (1.1) if it is in C2(Ω) ∩ C(Ω) such that z = 0 on ∂Ω
and

−∆z ≥ −az + bz2 − dz3 − f(z)− c

zα
in Ω.

Then it is well known that if there exist a subsolution ψ and supersolution z such
that ψ ≤ z in Ω then (1.1) has a solution u such that ψ ≤ u ≤ z, see [4].

Theorem 2.1. Let (H1) and (H2) hold, Then there exists positive constants b0 :=
b0(a, d,Ω) and c0 := c0(a, b, d,Ω) such that for b ≥ b0 and c ≤ c0, problem (1.1) has
a positive solution.

Proof. Let λ1 > 0 be the first eigenvalue of the operator −∆ with Dirichlet boundary
condition and ϕ1 be the corresponding eigenfunction satisfying ϕ1 > 0 in Ω and
∂ϕ1

∂ν < 0 on ∂Ω, where ν is outward normal vector on ∂Ω and ∥ϕ1∥∞ = 1, see [5].
Note that λ1 and ϕ1 satisfy:

−∆ϕ1 = λ1ϕ1 in Ω

ϕ1 = 0 on ∂Ω.

Let δ > 0, µ > 0, m > 0 be such that

(
2

1 + α
){(1− α

1 + α
)|∇ϕ1|2 − λ1ϕ1

2} ≥ m in Ωδ, (2.1)

and ϕ1 ∈ [µ, 1] in Ω \Ωδ, where Ωδ := {x ∈ Ω : d(x, ∂Ω) ≤ δ}. This is possible since
|∇ϕ1| ̸= 0 on ∂Ω while ϕ1 = 0 on ∂Ω.
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Figure 1. Graph of P (s).

Let b0 > 2
√
ab and P (s) = −as + bs2 − ds3. Then the zeros of P (s) are

0, R1 = b−
√
b2−4ad
2d and R2 = b+

√
b2−4ad
2d . We note that P (s) can be factored as

P (s) = −ds(s − R1)(s − R2). Let r = b−
√
b2−3ad
3d denote the first positive zero of

P ′(s). since P (s) is convex on (0, b
3d) and r <

b
3d , we have ρ := −infs∈[0,R2]P (s) <

a(b−
√
b2 − 3ad/3d) = ar (see Fig 1). We note that

ρ

R2
<
a(b−

√
b2 − 3ad/3d)

b+
√
b2 − 4ad/2d

=
2a2d

(b+
√
b2 − 4ad)(b+

√
b2 − 3ad)

→ 0 as b→ ∞,

R2

R1
=
b+

√
b2 − 4ad

b−
√
b2 − 4ad

=
(b+

√
b2 − 4ad)

2

4ad
→ ∞ as b→ ∞

Hence there exists b
(1)
0 := b

(1)
0 (a, d,Ω) such that for every b > b

(1)
0 we have

ρ

R2
<
m

6
, (2.2)

[R2
2 µ

2
1+α , R2

2 ] ⊂ (R1, R2) and kµ := inf
s∈[R2

2
µ

2
1+α ,

R2
2
]
P (s) > 0. Next we see that

kµ
R2

=
min

{
P (R2

2 µ
2

1+α ), P (R2
2 )

}
R2

= min

{
d
R2

2
µ

2
1+α (

R2

2
µ

2
1+α −R1)(1−

µ
2

1+α

2
), d

R2

4
(
R2

2
−R1)

}
→ ∞ as b→ ∞,

and hence there exists b
(2)
0 := b

(2)
0 (a, d,Ω) such that for every b > b

(2)
0 we have

kµ
R2

>
2λ1
1 + α

.



30 S. H. Rasouli, M. B. Ghaemi, G. A. Afrouzi, M. Choubin

Finally from (H1) and (H2), f(R2) → ∞ and f(R2/2)/(R2/2) → 0 as b→ ∞.

Thus there exists b
(3)
0 := b

(3)
0 (a, d,Ω) such that for every b > b

(3)
0 we have f(R2) ≥ 0

and

f(
R2

2
ϕ1

2
1+α ) ≤ f(

R2

2
) ≤ min

{
λ1,

m

3

}
(
R2

2
). (2.3)

For a given a, d > 0, define b0 := max{b(1)0 , b
(2)
0 , b

(3)
0 } and c0 := c0(a, b, d,Ω) :=

min
{

m
3 (

R2
2 )1+α, (R2

2 )αµ2α/1+α(kµ − 2λ1
1+αR2)

}
, and let b ≥ b0 and c ≤ c0. We will

show that ψ := Rϕ1
2/1+α is a subsolution of (1.1), where R :=

R2

2
.

We first note that

∇ψ = R(
2

1 + α
)ϕ1

1−α
1+α∇ϕ1

and

−∆ψ = −R( 2

1 + α
){ϕ1

1−α
1+α∆ϕ1 +

(1− α

1 + α

)
ϕ1

− 2α
1+α |∇ϕ1|2}

= R(
2

1 + α
)

1

(ϕ1
2

1+α )α
{λ1ϕ12 −

(1− α

1 + α

)
|∇ϕ1|2}.

Next for x ∈ Ωδ since 1

(ϕ1

2
1+α )α

≥ 1, from (2.1),(2.2),(2.3) and c ≤ c0 we have

−∆ψ = R(
2

1 + α
)

1

(ϕ1
2

1+α )α
{λ1ϕ12 −

(1− α

1 + α

)
|∇ϕ1|2}

≤ −mR 1

(ϕ1
2

1+α )α

= − mR

3(ϕ1
2

1+α )
α − mR

3(ϕ1
2

1+α )
α − mR

3(ϕ1
2

1+α )
α

≤ −mR
3

− mR

3
− mR

3(ϕ1
2

1+α )
α

≤ −ρ− f(Rϕ1
2

1+α )− mR1+α/3

(Rϕ1
2

1+α )α

≤ −aψ + bψ2 − dψ3 − f(ψ)− c

ψα
. (2.4)
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Also for x ∈ Ω \ Ωδ, since 0 < µ ≤ ϕ, from (2.3) and c ≤ c0,

−∆ψ = R(
2

1 + α
)

1

(ϕ1
2

1+α )α
{λ1ϕ12 −

(1− α

1 + α

)
|∇ϕ1|2}

≤ R(
2

1 + α
)λ1ϕ

2
1+α

≤ R(
2

1 + α
)λ1

= 2
[
R(

2

1 + α
)λ1

]
−R(

2

1 + α
)λ1

≤ 4λ1
1 + α

R−Rλ1

≤ kµ − c

(Rµ
2

1+α )α
− f(Rϕ1

2
1+α )

≤ −aψ + bψ2 − dψ3 − f(ψ)− c

ψα
. (2.5)

According to (2.4) and (2.5), we can conclude that ψ is a subsolution of (1.1). We
also show that z := R2 is a supersolution, by noting that

−∆z = 0 ≥ −f(z)− c

zα
= −az + bz2 − dz3 − f(z)− c

zα
.

Further z ≥ ψ. Thus, (1.1) has a positive solution. This completes the proof
of Theorem 2.1. �

3. Extension of (1.1) to system (3.1)

In this section, we consider the extension of (1.1) to the following system:
−∆u = −a1u+ b1u

2 − d1u
3 − f1(u)−

c1
vα
, x ∈ Ω,

−∆v = −a2v + b2v
2 − d2v

3 − f2(v)−
c2
uα
, x ∈ Ω,

u = 0 = v, x ∈ ∂Ω,

(3.1)

where α ∈ (0, 1), a1, a2, b1, b2, d1, d2, c1 and c2 are positive constants, Ω is a bounded
domain in RN with smooth boundary ∂Ω, and fi : [0,∞) → R is a continuous
function for i = 1, 2. We make the following assumptions:

(H3) fi : [0,+∞) → R is nondecreasing continuous functions such that
lims→+∞ fi(s) = ∞ for i = 1, 2.

(H4) lims→+∞
fi(s)
s = 0 for i = 1, 2.

We prove the following result by finding sub-super solutions to infinite semi-
positone system (3.1).

Theorem 3.1. Let (H3) and (H4) hold, Then there exists positive constants b∗0 :=
b∗0(a1, a2, d1, d2,Ω) and c

∗
0 := c∗0(a1, a2, b1, b2, d1, d2,Ω) such that for min{b1, b2} ≥ b∗0

and max{c1, c2} ≤ c∗0, problem (3.1) has a positive solution.
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Proof. Let (R
(i)
1 , R

(i)
2 , ρ(i), k

(i)
µ ), Pi(s) := −ais+bis2−dis3 for i = 1, 2 be given, as in

section 2. By the same argument as in section 2, there exists b∗0 := b∗0(a1, a2, d1, d2,Ω)
such that for min{b1, b2} > b∗0 we have

ρ(i)

R
(i)
2

<
m

6
,

k
(i)
µ

R
(i)
2

>
2λ1
1 + α

,

and fi(
R

(i)
2
2 ϕ1

2
1+α ) ≤ min

{
λ1,

m
3

}
(
R

(i)
2
2 ) for i = 1, 2. Define

c∗0 := c∗0(a1, a2, b1, b2, d1, d2,Ω)

:= min
{m
3
(
R

(1)
2

2
)(
R

(2)
2

2
)α,

m

3
(
R

(1)
2

2
)α(

R
(2)
2

2
), (

R
(2)
2

2
)αµ2α/1+α(k(1)µ − 2λ1

1 + α
R

(1)
2 ),

(
R

(1)
2

2
)αµ2α/1+α(k(2)µ − 2λ1

1 + α
R

(2)
2 )

}
and (ψ1, ψ2) := (R(1)ϕ1

2/1+α, R(2)ϕ1
2/1+α), where R(i) = R

(i)
2 /2. Let min{b1, b2} >

b∗0 and max{c1, c1} ≤ c∗0, then for x ∈ Ωδ we have

−∆ψ1 = R(1)(
2

1 + α
)

1

(ϕ1
2

1+α )α
{λ1ϕ12 −

(1− α

1 + α

)
|∇ϕ1|2}

≤ −mR(1) 1

(ϕ1
2

1+α )α

≤ −mR
(1)

3
− mR(1)

3
− mR(1)

3(ϕ1
2

1+α )
α

≤ −ρ(1) − f(R(1)ϕ1
2

1+α )− mR(1)[R(2)]α/3

(R(2)ϕ1
2

1+α )α

≤ −aψ1 + bψ2
1 − dψ3

1 − f(ψ1)−
c1
ψα
2

.

And for x ∈ Ω \ Ωδ, we have

−∆ψ1 = R(1)(
2

1 + α
)

1

(ϕ1
2

1+α )α
{λ1ϕ12 −

(1− α

1 + α

)
|∇ϕ1|2}

≤ R(1)(
2

1 + α
)λ1

= 2
[
R(1)(

2

1 + α
)λ1

]
−R(1)(

2

1 + α
)λ1

≤ 4λ1
1 + α

R(1) −R(1)λ1

≤ k(1)µ − c2

(R(2)µ
2

1+α )α
− f(R(1)ϕ1

2
1+α )

≤ −a1ψ1 + b1ψ
2
1 − d1ψ

3
1 − f(ψ1)−

c1
ψα
2

.
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Similarly

−∆ψ2 ≤ −a2ψ2 + b2ψ
2
2 − d2ψ

3
2 − f(ψ2)−

c2
ψα
1

, x ∈ Ω.

Thus the (ψ1, ψ2) is a subsolution of (3.1). It is obvious that (z1, z2) := (R
(1)
2 , R

(2)
2 )

is a supersolution of (3.1), such that (z1, z2) ≥ (ψ1, ψ2). Thus Theorem 3.1 is
proven. �

4. Extension of (1.1) to problem (4.1)

In this section, we consider the extension of (1.1) to the following problem:{
−∆pu = −au+ bu2 − du3 − f(u)− c

uα
, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(4.1)

where ∆pz = div(|∇z|p−2∇z), p > 1, α ∈ (0, 1), a, b, d and c are positive constants,
Ω is a bounded domain in RN with smooth boundary ∂Ω, and f : [0,∞) → R is a
continuous function. Then we have the following result.

Theorem 4.1. Let (H1) and (H2) hold, Then there exists positive constants b∗∗0 :=
b∗∗0 (a, d,Ω) and c∗∗0 := c∗∗0 (a, b, d,Ω) such that for b ≥ b∗∗0 and c ≤ c∗∗0 , problem (4.1)
has a positive solution.

Proof. We shall establish Theorem 4.1 by constructing positive sub-super solutions
to equation (4.1). Let λ1 be the first eigenvalue of the problem

−∆pϕ1 = λ1ϕ
p−1
1 , x ∈ Ω, ϕ1 = 0, x ∈ ∂Ω,

where ϕ1 denote the corresponding eigenfunction, satisfying ϕ1 > 0 in Ω and |∇ϕ1| >
0 on ∂Ω, see [5]. Without loss of generality, we let ∥ϕ1∥∞ = 1. Let δ > 0, µ > 0,
m > 0 be such that

(
p

p− 1 + α
)p−1

{
(1− α)(p− 1)

p− 1 + α
|∇ϕ1|p − λ1ϕ1

p

}
≥ m in Ωδ,

and ϕ1 ∈ [µ, 1] in Ω \Ωδ, where Ωδ := {x ∈ Ω : d(x, ∂Ω) ≤ δ}. This is possible since
|∇ϕ1| ̸= 0 on ∂Ω while ϕ1 = 0 on ∂Ω. Also let R1, R2 be as in section 2 and b∗∗0 be
such that for every b > b∗∗0

ρ

R2
p−1 <

m

6
,

kµ

R2
p−1 > (

λ1
2
)(

p

p− 1 + α
)p−1,

and

f([
R2

2
]p−1ϕ1

p
p−1+α ) ≤ min

{
λ1,

m

3

}
(
R2

2
)p−1.

Define

c∗∗0 := c∗∗0 (a, b, d,Ω)

:= min
{m
3
(
R2

2
)(p−1)(1+α), (

R2

2
)α(p−1)µ

αp
p−1+α [kµ −R2λ1(

p

p− 1 + α
)p−1]

)
,

and ψ := Rϕ1
p

p−1+α . Then

∇ψ = R(
p

p− 1 + α
)ϕ1

1−α
p−1+α∇ϕ1
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and

∆pψ = div(|∇ψ|p−2∇ψ)

= Rp−1(
p

p− 1 + α
)p−1div(ϕ1

(1−α)(p−1)
p−1+α |∇ϕ1|p−2∇ϕ1)

= Rp−1(
p

p− 1 + α
)p−1

{
∇

(
ϕ1

(1−α)(p−1)
p−1+α

)
|∇ϕ1|p−2∇ϕ1 + ϕ1

(1−α)(p−1)
p−1+α ∆pϕ1

}
= Rp−1(

p

p− 1 + α
)p−1

{
(1− α)(p− 1)

p− 1 + α
ϕ1

−αp
p−1+α |∇ϕ1|p − λ1ϕ1

p(p−1)
p−1+α

}
= Rp−1(

p

p− 1 + α
)p−1 1(

ϕ1
p

p−1+α

)α

{
(1− α)(p− 1)

p− 1 + α
|∇ϕ1|p − λ1ϕ1

p

}
,

thus

−∆pψ = Rp−1(
p

p− 1 + α
)p−1 1(

ϕ1
p

p−1+α

)α

{
λ1ϕ1

p − (1− α)(p− 1)

p− 1 + α
|∇ϕ1|p

}
.

By the same argument as in the proof of theorem 2.1, we can show that ψ is a
subsolution of (4.1) for b ≥ b∗∗0 and c ≤ c∗∗0 . Next, it is easy to check that z := R2

is a supersolution of (4.1) with z ≥ ψ. Hence (4.1) has a positive solution and the
proof is complete. �
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