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A GENERALIZED APPROACH FOR APPROXIMATE 
SOLUTIONS TO THE N BODY PROBLEM 

ABU BAKR MEHMOOD, GHULAM SHABBIR, M. RAMZAN* 

An approach is developed to find approximate solutions to the classical 
Newtonian problem of N bodies. Sets of N gravitating bodies having spherically 
symmetric mass distributions, small angular velocities (< 1 rad/s) and bounded 
position vectors have been taken into consideration. In addition, it is assumed that 
the masses form an isolated system in free space and perform free gravitating 
motion. Although the problem is not exactly solvable, a new approach will be 
developed to find approximate solutions using N number of two body motion 
analogues.  

Introduction 

In our recent paper [1], an approach was developed for solving the 
restricted circular three body problem. This procedure is a generalization of the 
approach developed in [1]. The effect is that of examining what happens in the 
limit as the negligible mass in [1] approaches a considerable value, and then as the 
number of gravitating masses extends beyond three. We aim at finding 
approximate solutions and other approaches can be found in [1-5]. Before 
proceeding with our discussion on the procedure that we have developed for 
solution, we present a formal definition of the problem.  

The problem by definition is to solve explicitly for each of the position 
vectors of N  gravitating masses, all of which perform free motion under each 
other’s gravitational attraction in free space. The masses form an isolated system 
in space, and hence the motion of the kth  mass say, is under the influence of the 
remaining 1N −  masses only. Some of the critical assumptions considered while 
solving the problem have been briefly discussed in the following paragraph.  

We specifically assume that all of the gravitating masses posses mass 
distributions that are spherically symmetric in nature. This would give us the 
liberty to approximate each of the N masses as a point mass. Note that this 
assumption should simplify our derivations, and yet, have negligible effect on the 
accuracy of our results. The reason behind this fact is that celestial bodies (planets 
and stars) truly posses mass distributions that are almost exactly spherically 
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symmetric in nature. Hence this assumption, apart form simplifications, should 
also provide us with nearly an exact replication of the real situation. It is worth 
mentioning here that the procedure that we have developed is not valid for 
explosions or collisions. We will consider solving the problem for angular 
velocities that are small, and position vectors that are bounded. A frame of 
reference will be attached to the centre of mass of this system, and use of 
Newton’s Laws will be made for mathematical representation. Since it can be 
shown that the centre of mass of such a system has zero acceleration for all time, 
the attachment of a frame of reference to this centre of mass along with the use of 
Newton’s laws is justified. Since we want to represent the generalized situation, 
we will solve for the motion of the kth  mass. We represent the position vector of 
this mass by kr . Figure 1 shows the diagrammatic illustration of this generalized 
situation.  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1 
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and kθ  is the rotation angle of vector kr . Note that we are representing the 
generalized situation, and the allowable values of k  are 1 2 3 N, , , ..., . Here the 
index k  is being used as a label for the masses. When 1k = , for example, we are 

representing all associated quantities for the mass 1m . We now introduce a few 
more assumptions. We specifically assume that all the position vectors involved 
remain bounded i.e. they are not arbitrarily large, and that all the associated 

angular velocities (
.

kθ , 1 2 3k N= , , ,... ) are considerably smaller than one radians 
per second. The reason behind these assumptions should become obvious when 
the solution procedure is presented, since they will serve to considerably simplify 
our derivations. Commenting on the validity of these added assumptions, we 
claim that they are practically feasible in the sense that they provide a reasonably 
accurate replication of the exact situation. Angular velocities involved in celestial 
orbital motion of planets and stars are considerably smaller than one radians per 
second. Therefore our assumption of angular velocities being considerably smaller 
than 1 rad/s is reasonable and should cause negligible inaccuracies in our results. 
Also, we have considered solving the problem for the case when all the position 
vectors remain bounded. It would make no sense trying to include the case when 
any number of position vectors approach unboundedness, since the associated 
masses would then be essentially free of the gravitational pull of the remaining 

bodies. The Mathematical translation of this condition would then be k < ∞r . 
Since we are free to scale the position vectors according to our convenience, it 
follows that we can always scale them in a manner such that they attain values 
much smaller than infinity. This gives us the liberty to modify our condition about 

boundedness of position vectors as k << ∞r . Stated mathematically, we have 
assumed the following.  

.
and 1 1 2 3kk rad s k Nθ<< ∞ << / ∀ = , , ,...r    (1) 

We now introduce another critical assumption. We assume that while 
executing free motion with the 1N −  bodies, the kth  body having mass km  and 
position vector kr  remains approximately in two body motion with a body of 
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Fig. 2 

 

Here kr  and kMr  are the position vectors of bodies km  and kM  

respectively. Also 
^

kre  is a radial unit vector in the direction of kr , and 
^

keθ  is a unit 

vector perpendicular to 
^

kre , in the direction of increasing kθ . kθ  is the rotation 

angle for vector kr . Similar arguments hold for 
^

Mkre  and 
^

Mkeθ  in the case of vector 
kMr . The position vector of km  and kM  i.e. kr  and kMr  respectively, are assumed 

to remain approximately collinear for all time since the motion between km  and 
kM  has been assumed to be approximately two body motion. It then follows that 

the respective unit vectors in those directions namely 
^

kre  and 
^

Mkre  also remain 

approximately collinear for all time i.e. 
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that this assumption is only approximately true, had it been exactly true, the N  
body problem would have been reducible to the two-body problem, and exact 
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solutions could have been obtainable. Having had an adequate introductory 
discussion, we now go on to present the formal procedure for our solutions.  

Main Results 

We will quite often need to express the position vectors as time functions 
being multiplied by the respective radial unit vectors. For this purpose we will use 

the notation 
^

( ) ( ) krk kt r t e=r  and 
^

( ) ( ) Mkk k
rM Mt r t e=r . Now we define the vector 

^
( )

k
xkkk M kx t e− ==x rr , illustrated in figure 3. Here 

^

xke  is a radial unit vector in 

the direction of kx , and 
^

xkeθ  is a unit vector perpendicular to 
^

xke  in the direction 
of increasing xkθ . xkθ  is the rotation angle of vector kx .  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 
 
Making use of the figures 2 and 3, the following relations can be shown to hold 
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 ( ) ( ) ( )
kk k Mx t r t r t= +       (2d) 

 ( ) ( ) ( )
kxk k Mt t tθ θ θ π= = +      (2e) 

 
. . .

( ) ( ) ( )xk k Mkt t tθ θ θ= =      (2f) 

Modeling the system in figure 2 now by the use of Newton’s second law 
and Newton’s law for gravitation, and making use of (2 )b  and (2 )d , we get  

  
..

2 ˆ xk

k
k r
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= −⎜ ⎟

⎝ ⎠
r       (3a) 
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We could now make use of (2 )a  to express this model in a more compact 
form  
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2

( )x ˆ k

k k
k x

k

G m M
ex

⎛ ⎞+
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     (3c) 

Resolving (3 )c  in polar coordinates and comparing coefficients of the unit 
vectors on both sides of the equation, we can obtain the following scalar analogue 
of (3 )c .  

  
2.. .

2

( )k k
k kk

k

G m Mx x
x

θ
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    (4a) 

  
.. . .

2 0k kk kx xθ θ+ =       (4b) 

We argued at the beginning that the angular velocities involved were 
smaller than 1 radians per second, and that the position vectors were not 
arbitrarily large. In (1),  we have already provided a mathematical representation 
of this fact.  

 Considering the expression defining 
kMr  and taking into account 

(1) , we can conclude that ( )
kMr t << ±∞ . Taking this fact and (2 )d  into 

consideration, it can be shown that ( )kx t << ±∞ . Use of this information along 
with (2 )e  allows us to set 02 =kkx θ  in equation (4 )a , which then takes the form  
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making use of (4 )b  we can show that  

  
. .

2 2
k kok kox xθ θ=        (4d) 

where (0)ko ko kx r r= = , and 
. . .

(0)xko ko kθ θ θ= = . As a next step, 

multiplication of (4 )c  by 
.

kx dt  allows us to integrate the resulting equation on 
the left hand side w.r.t. ‘ t ’ and on the right hand side w.r.t. ‘ r ’, and simplification 
yields the form  
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k k
k

k

dx A B
dt x
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where 2 ( )k k kA G m M= +  and kB =  
2. 2 ( )k k

ko

ko

G m Mx
x
+

− . We now separate 

variables and apply integration to both sides of the equation to get  
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B x
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Note that 0kB ≥  in the above relation. Now although (5 )b  can be 
integrated in its current form and an implicit equation relating kx  and t  can be 
found, however ( )kx t  cannot be explicitly solved for. This fact encourages us to 

try a simple binomial approximation of the form 

1
2

1 1
2

k k

k k k k

A A
B x B x

−
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  ∀  

k
k

k

Ax
B

>| | . Use of this approximation simplifies (5 )b  so that we are capable of 

integrating on both sides and deriving the following implicit equation  
 ln ( )kh

k k kx x f t−+ =       (6) 

where 
2

k
k

k

Ah
B

⎛ ⎞
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⎝ ⎠

 and ( ) ( ) ln kh
k k o ko kof t B t t x x= ± − + − . Here again, it 

should be noted that kB  should not be allowed to attain negative values for the 
validity of result (6) . Solving for ( )kx t  explicitly from (6)  we get  
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  ( )
fk
hk
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k

ex t h lambertw
h

−⎡ ⎤−⎢ ⎥= − ∗
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    (7) 

where ‘ lambertw ’ is the notation used for the Lambert’s wave function. 
Replacing the expressions for kh  and ( )kf t  into (7)  and performing a few 
manipulations, we can derive the expression  
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. Having computed ( )kx t , we will now make use of relation 

(3 )a  to find ( )kr t  and ( )k tθ . It is worth stating directly that in a manner similar to 
one adopted in the derivation of (4 )c  and (4 )d  from (3 )c , we can derive the 
following set of relations from (3 )c .  
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We now substitute (8)  in (9 )a  and integrate twice w.r.t. to get our 
approximation for ( )kr t .  
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. Having accomplished the above 

result, we are now free to substitute equation (10)  in (9 )b , separate variables, and 
integrate w.r.t. time to obtain the following explicit solution for ( )k tθ .  
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It should be noted that we have successfully approximated the motion of 
body km , given by (10)  and (11) . We now go on to sum up the conditions for 
which this solution is valid. First of all, we require that (5)  and (6)  hold true. 
Secondly this solution is rendered infeasible in case of collisions or explosions. 
Recall that the condition required for the validity of the binomial approximation 

used to simplify (5 )b  was k
k

k

A
B

>x . Also, a careful look at the various equations 

encountered while solving the problem, should help us to conclude that we also 
require kB  to be positive. Reason being that the explicit solution (6)  would not 
hold true, in case of any complex terms arising in the definition of ( )f t  (defined 
below (6) ). Also, since kB  occurs in various denominators, it cannot be allowed a 
zero value. Therefore we require 0kB > . As a concluding remark we state that by 
solving for ( )kr t  and ( )k tθ , we have in effect described the vector ( )k tr  and thus 
completely defined the motion of the kth  body having mass km .  

Summary 

In this paper, we developed an approach to solving the classical 
Newtonian problem of N bodies. It was assumed that the bodies have spherically 
symmetric mass distributions, small angular velocities (< 1 rad/s) and bounded 
position vectors. Approximate solutions were then derived using N two body 
motion analogues to approximately represent the free gravitating motions of N 
bodies. This solution procedure deviates considerably from [1] in terms of 
simplification assumptions. However the method for analyzing two body motion 
is based on similar lines. The Poincare’s Dictum comprehensively proves that the 
problem is not exactly solvable, and is doubtlessly one of the oldest of unsolved 
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problems of classical mechanics. Applications of the problem could vary from 
describing the evolution of the universe to space mission design.  
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