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A GENERALIZED APPROACH FOR APPROXIMATE
SOLUTIONS TO THE N BODY PROBLEM

ABU BAKR MEHMOOD, GHULAM SHABBIR, M. RAMZAN"

An approach is developed to find approximate solutions to the classical
Newtonian problem of N bodies. Sets of N gravitating bodies having spherically
symmetric mass distributions, small angular velocities (< 1 rad/s) and bounded
position vectors have been taken into consideration. In addition, it is assumed that
the masses form an isolated system in free space and perform free gravitating
motion. Although the problem is not exactly solvable, a new approach will be
developed to find approximate solutions using N number of two body motion
analogues.

Introduction

In our recent paper [1], an approach was developed for solving the
restricted circular three body problem. This procedure is a generalization of the
approach developed in [1]. The effect is that of examining what happens in the
limit as the negligible mass in [1] approaches a considerable value, and then as the
number of gravitating masses extends beyond three. We aim at finding
approximate solutions and other approaches can be found in [1-5]. Before
proceeding with our discussion on the procedure that we have developed for
solution, we present a formal definition of the problem.

The problem by definition is to solve explicitly for each of the position
vectors of N gravitating masses, all of which perform free motion under each
other’s gravitational attraction in free space. The masses form an isolated system
in space, and hence the motion of the kth mass say, is under the influence of the
remaining N —1 masses only. Some of the critical assumptions considered while
solving the problem have been briefly discussed in the following paragraph.

We specifically assume that all of the gravitating masses posses mass
distributions that are spherically symmetric in nature. This would give us the
liberty to approximate each of the N masses as a point mass. Note that this
assumption should simplify our derivations, and yet, have negligible effect on the
accuracy of our results. The reason behind this fact is that celestial bodies (planets
and stars) truly posses mass distributions that are almost exactly spherically

" Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi,
Swabi, NWFP, PAKISTAN



28 A. Mehmood, G. Shabbir, M. Ramzan

symmetric in nature. Hence this assumption, apart form simplifications, should
also provide us with nearly an exact replication of the real situation. It is worth
mentioning here that the procedure that we have developed is not valid for
explosions or collisions. We will consider solving the problem for angular
velocities that are small, and position vectors that are bounded. A frame of
reference will be attached to the centre of mass of this system, and use of
Newton’s Laws will be made for mathematical representation. Since it can be
shown that the centre of mass of such a system has zero acceleration for all time,
the attachment of a frame of reference to this centre of mass along with the use of
Newton’s laws is justified. Since we want to represent the generalized situation,
we will solve for the motion of the kth mass. We represent the position vector of
this mass by r, . Figure 1 shows the diagrammatic illustration of this generalized

situation.
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Here O is an inertial frame of reference attached to the centre of mass of

A A

the N bodies, € is a radial unit vector along the direction of rk, €ok is a unit

A

vector perpendicular to €« (in the direction of increasing rotation angle of rk)
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and 2 is the rotation angle of vector ", Note that we are representing the

generalized situation, and the allowable values of K are 123N Here the
index K is being used as a label for the masses. When k=1 , for example, we are

representing all associated quantities for the mass ™ We now introduce a few
more assumptions. We specifically assume that all the position vectors involved
remain bounded i.e. they are not arbitrarily large, and that all the associated

angular velocities (‘9 k, k=123,.N ) are considerably smaller than one radians
per second. The reason behind these assumptions should become obvious when
the solution procedure is presented, since they will serve to considerably simplify
our derivations. Commenting on the validity of these added assumptions, we
claim that they are practically feasible in the sense that they provide a reasonably
accurate replication of the exact situation. Angular velocities involved in celestial
orbital motion of planets and stars are considerably smaller than one radians per
second. Therefore our assumption of angular velocities being considerably smaller
than 1 rad/s is reasonable and should cause negligible inaccuracies in our results.
Also, we have considered solving the problem for the case when all the position
vectors remain bounded. It would make no sense trying to include the case when
any number of position vectors approach unboundedness, since the associated
masses would then be essentially free of the gravitational pull of the remaining

. . . . .. I |<oo
bodies. The Mathematical translation of this condition would then be ‘ k‘ .

Since we are free to scale the position vectors according to our convenience, it
follows that we can always scale them in a manner such that they attain values
much smaller than infinity. This gives us the liberty to modify our condition about

boundedness of position vectors as ‘rk‘<<oo. Stated mathematically, we have
assumed the following.
Ir,|<<ooand|0«| <<1rad/s vV k =1,2,3,...N (1)

We now introduce another critical assumption. We assume that while
executing free motion with the N —1 bodies, the kth body having mass m, and

position vector I, remains approximately in two body motion with a body of
mass M, = ZL m, (n=K) placed at a point given by the centre of mass of the

N
Zn:l mar, (n#k)

remaining N -1 bodies, ry = ST

. Figure 2 presents a diagrammatic

illustration of this situation.
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Here ' and '™ are the position vectors of bodies M and M,

A A

respectively. Also €% is a radial unit vector in the direction of 'k ,and ®% is a unit

A

€, in the direction of increasing 49,(_ 2 is the rotation

A A

vector perpendicular to

angle for vector ", Similar arguments hold for € and ®% in the case of vector

M

r . . r :
M« The position vector of M and M« ie. T and "™ respectively, are assumed

to remain approximately collinear for all time since the motion between M and
M, has been assumed to be approximately two body motion. It then follows that

the respective unit vectors in those directions namely e, and ey, also remain

A A

approximately collinear for all time i.e. e, .e,, =—1 V t. Note that by using this
assumption we have in effect considered replicating N body motion by the use of
N number of two body motion analogues, one for each body in turn. We claim
that this assumption is only approximately true, had it been exactly true, the N

body problem would have been reducible to the two-body problem, and exact
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solutions could have been obtainable. Having had an adequate introductory
discussion, we now go on to present the formal procedure for our solutions.

Main Results

We will quite often need to express the position vectors as time functions
being multiplied by the respective radial unit vectors. For this purpose we will use

the notation r,(t)=r(t)es and r, ()=r, (1)e;, . Now we define the vector
X =ri—ly, =X (t)€x , illustrated in figure 3. Here ex is a radial unit vector in

the direction of X, , and €, is a unit vector perpendicular to ex in the direction

of increasing 6, . 6,, is the rotation angle of vector X, .
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Making use of the figures 2 and 3, the following relations can be shown to hold
true.
Xk: rk_er (23)
Exk = erk = —eer (2b)

A N A

€0, = €9, = —€g,, (ZC)
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X () =r®+r, O (2d)
O, =6,1)=6, O+ (2e)
O (t) = Ok (t) = Ok (1) (2)

Modeling the system in figure 2 now by the use of Newton’s second law
and Newton’s law for gravitation, and making use of (2b) and (2d), we get

. GM
o :—( je (3a)

Xk

- Gm
Ik z( - jéxk (3b)

Xk
We could now make use of (2a) to express this model in a more compact
form
Xk = _(G(k—jk)]éxk (3¢)
Xk

Resolving (3c) in polar coordinates and comparing coefficients of the unit
vectors on both sides of the equation, we can obtain the following scalar analogue

of (3¢).
Re—X, 0. _[WJ (4a)

X, ék+2xk9k =0 (4b)

We argued at the beginning that the angular velocities involved were
smaller than 1 radians per second, and that the position vectors were not
arbitrarily large. In (1), we have already provided a mathematical representation

of this fact.
Considering the expression defining 1, and taking into account

(1), we can conclude that r, (t)<<zZeco. Taking this fact and (2d) into
consideration, it can be shown that X, (t) <<too. Use of this information along
with (2e) allows us to set x, 67 =0 in equation (4a), which then takes the form

‘. [Mj (40)

2
Xk
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making use of (4b) we can show that
2y 2 4
Xi Ok = Xio Oxo (4d)

where X, =1, ="r(0), and Oxio = O = Qk(O). As a next step,

multiplication of (4c) by xc dt allows us to integrate the resulting equation on
the left hand side w.r.t. ‘t’ and on the right hand side w.r.t. ‘r’, and simplification
yields the form
o,
dt

A

X

=+ —+B,

(5a)

2_2G(mk +M,)

where A =2G(m, +M,) and B, = X
X

. We now separate
ko

variables and apply integration to both sides of the equation to get

j[ A +1}2dxk=i\/B—k j: dt (5b)

B.X,

Note that B, 20 in the above relation. Now although (5b) can be
integrated in its current form and an implicit equation relating X, and t can be

found, however X, (t) cannot be explicitly solved for. This fact encourages us to

try a simple binomial approximation of the form A +1| =1- A
B, X, 2B, X,

X, | >|%|. Use of this approximation simplifies (5b) so that we are capable of
k

integrating on both sides and deriving the following implicit equation
X, +Inx " = f (1) (6)

where h, = [%} and f (t)= i\/B_k (t—t,)+x,—Inx. Here again, it
k
should be noted that B, should not be allowed to attain negative values for the

validity of result (6) . Solving for X, (t) explicitly from (6) we get
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X, (t) = —h, *lambertw| —

(7

k

where ‘lambertw’ is the notation used for the Lambert’s wave function.
Replacing the expressions for h, and f,(t) into (7) and performing a few

manipulations, we can derive the expression

X (1) = —(%} Iambertw[c4ke°5k‘} )

k

A
2B, | (-2B)(xo-nx2B)
where ¢, = ClkeCZktO > G =Cus Gy = _(_k g AT and

2B, /B
Cyy =i[#j. Having computed X, (t), we will now make use of relation
A

(3a) to find r (t) and 6, (t) . It is worth stating directly that in a manner similar to
one adopted in the derivation of (4c) and (4d) from (3c), we can derive the
following set of relations from (3c).

re = —(GQMkJ (9a)
X, (1)
12 0k =12 o (9b)

We now substitute (8) in (9a) and integrate twice w.r.t. to get our

approximation for r, (t).
1 Cst N4 Csit N3 1 Cskt N2
—(Iambertw[c4ke sk }) +(Iambertw{c4ke * }) +5(Iambertw{c4ke * })

h
r(t)y=h —2k
PN

1 Cskto )4
h, E(Iambertw{cétke D+

M, [—J | +r,  (10)
sk (lambertw c,, %" )’ +5(|ambertw[c4kec5kto 5

Where I’ko = rk (O), l;kO == rk(O), hlk = I;ko_[zhék J[l+2|ambertW(C4kQCSkt° ):| ,

5k
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2

h, = M and h, =— 4Bk—Gsz . Having accomplished the above
2¢y A

result, we are now free to substitute equation (10) in (9b), separate variables, and

integrate w.r.t. time to obtain the following explicit solution for 6, ().

4Xfo éko Bk2 Csit csito N2
O,(t) =0, +——5—(1+ 2Iambertw{c4ke ° })(Iambertw{cétke ° })

5k

— —XEO 'ko k2 (1+ lar |bertw[c ecfk‘])(lan bertw{c g% })2 (11)
> 2 4k 4k
5k

It should be noted that we have successfully approximated the motion of
body m,, given by (10) and (11). We now go on to sum up the conditions for

which this solution is valid. First of all, we require that (5) and (6) hold true.

Secondly this solution is rendered infeasible in case of collisions or explosions.
Recall that the condition required for the validity of the binomial approximation

A

used to simplify (5b) was ‘Xk‘ > Bl Also, a careful look at the various equations

k
encountered while solving the problem, should help us to conclude that we also
require B, to be positive. Reason being that the explicit solution (6) would not

hold true, in case of any complex terms arising in the definition of f(t) (defined
below (6)). Also, since B, occurs in various denominators, it cannot be allowed a
zero value. Therefore we require B, > 0. As a concluding remark we state that by
solving for r, (t) and 6, (), we have in effect described the vector r, (t) and thus
completely defined the motion of the kth body having mass m, .

Summary

In this paper, we developed an approach to solving the classical
Newtonian problem of N bodies. It was assumed that the bodies have spherically
symmetric mass distributions, small angular velocities (< 1 rad/s) and bounded
position vectors. Approximate solutions were then derived using N two body
motion analogues to approximately represent the free gravitating motions of N
bodies. This solution procedure deviates considerably from [1] in terms of
simplification assumptions. However the method for analyzing two body motion
is based on similar lines. The Poincare’s Dictum comprehensively proves that the
problem is not exactly solvable, and is doubtlessly one of the oldest of unsolved
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problems of classical mechanics. Applications of the problem could vary from
describing the evolution of the universe to space mission design.
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