

ITERATIVE ALGORITHMS FOR GENERALIZED VARIATIONAL INEQUALITIES

Yonghong Yao¹, Mihai Postolache², Jen-Chih Yao³

A generalized variational inequality problem is considered. An algorithm for finding the solutions of the generalized variational inequality is formally constructed. Strong convergence analysis of the suggested algorithm is given.

Keywords: generalized variational inequality, iterative algorithm, strong convergence.

MSC2010: 49J53, 90C25.

1. Introduction

Let \mathcal{H} be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and induced norm $\| \cdot \|$. Let $\mathcal{C} \subset \mathcal{H}$ be a nonempty closed convex set. Let $\mathcal{A}: \mathcal{C} \rightarrow \mathcal{H}$ and $\psi: \mathcal{C} \rightarrow \mathcal{C}$ be two nonlinear operators. Recall that the generalized variational inequality (in short, GVI) is to find a point $x^\dagger \in \mathcal{C}$ such that

$$\langle \mathcal{A}x^\dagger, \psi(y) - \psi(x^\dagger) \rangle \geq 0, \quad \forall y \in \mathcal{C}. \quad (1)$$

The solution set of (1) is denoted by $GVI(\mathcal{A}, \psi, \mathcal{C})$.

If $\psi \equiv \mathcal{I}$, then GVI (1) reduces to the variational inequality of finding $x^\dagger \in \mathcal{C}$ such that

$$\langle \mathcal{A}x^\dagger, y - x^\dagger \rangle \geq 0, \quad \forall y \in \mathcal{C}. \quad (2)$$

The solution set of (2) is denoted by $VI(\mathcal{A}, \mathcal{C})$.

Variational inequalities were introduced by Stampacchia [18] and provide a convenient mathematical tool for researching a large variety of interesting problems arising in physics, finance, economics, network analysis, elasticity, optimization, water resources, medical images and structural analysis ([4, 14, 15, 20, 21, 27, 28, 35, 36, 41]). There are several iterative methods for solving VI (2). See, e.g., [2, 5, 7, 10, 19, 26, 31, 32, 37, 38]. The simplest one is the natural extension of the projected gradient algorithm for solving optimization problems by replacing the operator \mathcal{A} with the gradient, so that we obtain a sequence $\{u_k\}$ generated

¹ Professor, School of Mathematical Sciences, Tianjin Polytechnic University, Tianjin 300387, China, e-mail: yaoyonghong@aliyun.com

² (CORRESPONDING AUTHOR) Professor, Center for General Education, China Medical University, Taichung 40402, Taiwan; & Romanian Academy, Gh. Mihoc-C. Iacob Institute of Mathematical Statistics and Applied Mathematics, Bucharest 050711, Romania; & University "Politehnica" of Bucharest, Department of Mathematics and Informatics, Bucharest 060042, Romania, e-mail: emscolar@yahoo.com

³ Professor, Center for General Education, China Medical University, Taichung, Taiwan, e-mail: yaojc@mail.cmu.edu.tw

the following manner: for given initial value u_0 ,

$$u_{k+1} = \text{proj}_{\mathcal{C}}[u_k - \nu \mathcal{A}u_k], \quad k \geq 0,$$

where ν is some positive real number and $\text{proj}_{\mathcal{C}}$ is the metric projection from \mathcal{H} onto \mathcal{C} .

Note that the above algorithm can acquire convergence under quite strict hypotheses. In order to overcome this flaw, Korpelevich suggested in [11] an algorithm of the following form: for given initial value u_0 ,

$$\begin{cases} v_k = \text{proj}_{\mathcal{C}}[u_k - \nu \mathcal{A}u_k], \\ u_{k+1} = \text{proj}_{\mathcal{C}}[u_k - \nu \mathcal{A}v_k], \quad k \geq 0. \end{cases}$$

Consequently, Korpelevich's algorithm and its variant form have been presented and studied in the literature, see for instance, [1, 3, 6, 8, 13, 16, 17, 22, 23, 25, 29, 33, 39, 40]. In this article, we will study the following generalized variational inequalities of finding a point \tilde{x} such that

$$\tilde{x} \in GVI(\mathcal{A}, \psi, \mathcal{C}) \cap GVI(\mathcal{B}, \psi, \mathcal{C}). \quad (3)$$

Motivated by the work of [5, 22, 42], in this paper, we introduce a new iterative algorithm for solving (3). We prove the strong convergence of the presented algorithm under some mild conditions.

2. Notation and Lemmas

Let \mathcal{C} be a nonempty closed convex subset of a real Hilbert space \mathcal{H} . An operator $S: \mathcal{C} \rightarrow \mathcal{C}$ is said to be L -Lipschitz if $\|Sx^\dagger - Sy^\dagger\| \leq L\|x^\dagger - y^\dagger\|$, $\forall x^\dagger, y^\dagger \in \mathcal{C}$, where $L > 0$ is a constant.

Definition 2.1. An operator $\mathcal{A}: \mathcal{C} \rightarrow \mathcal{H}$ is said to be

- *Monotone* if $\langle \mathcal{A}u - \mathcal{A}v, u - v \rangle \geq 0$, $\forall u, v \in \mathcal{C}$.
- *Strongly monotone* if $\langle \mathcal{A}u - \mathcal{A}v, u - v \rangle \geq \delta\|u - v\|^2$, $\forall u, v \in \mathcal{C}$, where $\delta > 0$ is a constant.
- λ -*inverse strongly monotone* if $\langle \mathcal{A}u - \mathcal{A}v, u - v \rangle \geq \lambda\|\mathcal{A}u - \mathcal{A}v\|^2$, $\forall u, v \in \mathcal{C}$, where $\lambda > 0$ is a constant.
- λ -*inverse strongly ψ -monotone* if $\langle \mathcal{A}u - \mathcal{A}v, \psi(u) - \psi(v) \rangle \geq \lambda\|\mathcal{A}u - \mathcal{A}v\|^2$, $\forall u, v \in \mathcal{C}$, where $\psi: \mathcal{C} \rightarrow \mathcal{C}$ is a nonlinear operator and $\lambda > 0$ is a constant.

An operator $R: \mathcal{H} \rightarrow 2^{\mathcal{H}}$ is said to be monotone on \mathcal{H} iff $\langle x - y, u - v \rangle \geq 0$ for all $x, y \in \mathcal{H}$, $u \in Rx$, and $v \in Ry$. A monotone operator R on \mathcal{H} is said to be maximal iff its graph is not strictly contained in the graph of any other monotone operator on \mathcal{H} .

For $\forall x^\dagger \in \mathcal{H}$, there exists a unique nearest point in \mathcal{C} , denoted by $\text{proj}_{\mathcal{C}}[x^\dagger]$ such that $\|x^\dagger - \text{proj}_{\mathcal{C}}[x^\dagger]\| \leq \|y - x^\dagger\|$, for all $y \in \mathcal{C}$. Now it is known that the operator $\text{proj}_{\mathcal{C}}: \mathcal{H} \rightarrow \mathcal{C}$ is firmly nonexpansive, that is,

$$\|\text{proj}_{\mathcal{C}}[x^\dagger] - \text{proj}_{\mathcal{C}}[y^\dagger]\|^2 \leq \langle \text{proj}_{\mathcal{C}}[x^\dagger] - \text{proj}_{\mathcal{C}}[y^\dagger], x^\dagger - y^\dagger \rangle, \quad \forall x^\dagger, y^\dagger \in \mathcal{H}.$$

Consequently ([34, 35]),

$$\langle x^\dagger - \text{proj}_{\mathcal{C}}[x^\dagger], u^\dagger - \text{proj}_{\mathcal{C}}[x^\dagger] \rangle \leq 0, \quad \forall x^\dagger \in \mathcal{H}, u^\dagger \in \mathcal{C}. \quad (4)$$

Recall that an operator S is said to be demiclosed if $w_n \rightharpoonup \tilde{u}$ weakly and $Sw_n \rightarrow u$ strongly, imply $S(\tilde{u}) = u$. Next, we collect several conclusions for our main results in the next section.

Lemma 2.1 ([24]). Suppose $\{\varpi_n\} \subset [0, \infty)$, $\{\nu_n\} \subset (0, 1)$ and $\{\varrho_n\}$ are three real number sequences satisfying

- (i) $\varpi_{n+1} \leq (1 - \nu_n)\varpi_n + \varrho_n, \forall n \geq 1$;
- (ii) $\sum_{n=1}^{\infty} \nu_n = \infty$;
- (iii) $\limsup_{n \rightarrow \infty} \frac{\varrho_n}{\nu_n} \leq 0$ or $\sum_{n=1}^{\infty} |\varrho_n| < \infty$.

Then $\lim_{n \rightarrow \infty} \varpi_n = 0$.

Lemma 2.2 ([12]). Let $\{w_n\}$ be a sequence of real numbers. Assume there exists at least a subsequence $\{w_{n_k}\}$ of $\{w_n\}$ such that $w_{n_k} \leq w_{n_k+1}$ for all $k \geq 0$. For every $n \geq N_0$, define an integer sequence $\{\tau(n)\}$ as

$$\tau(n) = \max\{i \leq n : w_{n_i} < w_{n_i+1}\}.$$

Then $\tau(n) \rightarrow \infty$ as $n \rightarrow \infty$ and for all $n \geq N_0$, we have $\max\{w_{\tau(n)}, w_n\} \leq w_{\tau(n)+1}$.

3. Main results

Let \mathcal{C} be a nonempty closed convex subset of a real Hilbert space \mathcal{H} . Let the operators $f, g: \mathcal{C} \rightarrow \mathcal{H}$ be L_1 -Lipschitzian and L_2 -Lipschitzian, respectively. Let $\psi: \mathcal{C} \rightarrow \mathcal{C}$ be a weakly continuous and δ -strongly monotone operator such that its range $R(\psi) = \mathcal{C}$. Let $\nu > 0$ and $\mu > 0$ be two constants satisfying $\max\{L_1\nu, L_2\mu\} < \delta$. Let $\mathcal{A}: \mathcal{C} \rightarrow \mathcal{H}$ be a λ -inverse strongly ψ -monotone operator with coefficient $\lambda > 0$. Let $\mathcal{B}: \mathcal{C} \rightarrow \mathcal{H}$ be a β -inverse strongly ψ -monotone operator with coefficient $\beta > 0$. Denote the solution set of (3) by Ω , that is, $\Omega = GVI(\mathcal{A}, \psi, \mathcal{C}) \cap GVI(\mathcal{B}, \psi, \mathcal{C})$. In the sequel, we assume $\Omega \neq \emptyset$. Now, we first consider the following variational inequality ($VI(f, \psi, \mathcal{C})$, in short) of finding \tilde{x} such that

$$\langle \nu f(\tilde{x}) - \psi(\tilde{x}), \psi(x^\dagger) - \psi(\tilde{x}) \rangle \leq 0, \forall x^\dagger \in \Omega. \quad (5)$$

The solution set of (5) is denoted by $VI(\nu f, \psi, \mathcal{C})$.

Remark 3.1. $VI(\nu f, \psi, \mathcal{C})$ has a unique solution provided that $\nu L_1 < \delta$, see [30].

In the sequel, we assume that $\Gamma := VI(\nu f, \psi, \mathcal{C}) \cap VI(\mu g, \psi, \mathcal{C}) \neq \emptyset$. Next, we present our algorithm for solving the problem (3).

Algorithm 3.1. For given initial guess $x_0 \in \mathcal{C}$ arbitrarily, let the sequence $\{x_n\}$ be generated iteratively by

$$\begin{cases} \psi(u_n) = \text{proj}_{\mathcal{C}}[\lambda_n \nu f(x_n) + (1 - \lambda_n)(\psi(x_n) - \varsigma_n \mathcal{A}x_n)], \\ \psi(x_{n+1}) = (1 - \sigma_n) \text{proj}_{\mathcal{C}}[\lambda_n \mu g(x_n) + (1 - \lambda_n)(\psi(u_n) - \gamma_n \mathcal{B}u_n)] \\ \quad + \sigma_n \psi(x_n), \quad n \geq 0, \end{cases} \quad (6)$$

where $\{\lambda_n\}$ and $\{\sigma_n\}$ are two real number sequences in $[0, 1]$ and $\{\varsigma_n\}$ and $\{\gamma_n\}$ are two real number sequences in $(0, \infty)$.

Theorem 3.1. If the following assumptions are satisfied:

- (i) $\lim_{n \rightarrow \infty} \lambda_n = 0$ and $\sum_n \lambda_n = \infty$;
- (ii) $0 < \liminf_{n \rightarrow \infty} \sigma_n \leq \limsup_{n \rightarrow \infty} \sigma_n < 1$;
- (iii) $0 < \liminf_{n \rightarrow \infty} \varsigma_n \leq \limsup_{n \rightarrow \infty} \varsigma_n < 2\lambda$;
- (iv) $0 < \liminf_{n \rightarrow \infty} \gamma_n \leq \limsup_{n \rightarrow \infty} \gamma_n < 2\beta$;

then the sequence $\{x_n\}$ generated by (6) converges strongly to $\tilde{x} \in \Omega$ which solves variational inequalities $VI(f, \psi, \mathcal{C})$ and $VI(g, \psi, \mathcal{C})$, that is, $\tilde{x} \in \Gamma$.

Proof. By Remark 3.1, we know that Γ is a singleton denoted by \tilde{x} . By virtue of (4), we obtain $\psi(\tilde{x}) = \text{proj}_{\mathcal{C}}[\psi(\tilde{x}) - \varsigma_n \mathcal{A}\tilde{x}]$ and $\psi(\tilde{x}) = \text{proj}_{\mathcal{C}}[\psi(\tilde{x}) - \gamma_n \mathcal{B}\tilde{x}]$ for all $n \geq 0$. Since \mathcal{A} is λ -inverse strongly ψ -monotone, by Definition 2.1, we have

$$\begin{aligned} & \|(\psi(x) - \varsigma \mathcal{A}x) - (\psi(\tilde{x}) - \varsigma \mathcal{A}\tilde{x})\|^2 \\ &= \|\psi(x) - \psi(\tilde{x})\|^2 - 2\varsigma \langle \mathcal{A}x - \mathcal{A}\tilde{x}, \psi(x) - \psi(\tilde{x}) \rangle \\ &\quad + \varsigma^2 \|\mathcal{A}x - \mathcal{A}\tilde{x}\|^2 \\ &\leq \|\psi(x) - \psi(\tilde{x})\|^2 - 2\varsigma \lambda \|\mathcal{A}x - \mathcal{A}\tilde{x}\|^2 + \varsigma^2 \|\mathcal{A}x - \mathcal{A}\tilde{x}\|^2 \\ &\leq \|\psi(x) - \psi(\tilde{x})\|^2 + \varsigma(\varsigma - 2\lambda) \|\mathcal{A}x - \mathcal{A}\tilde{x}\|^2. \end{aligned} \quad (7)$$

It follows that

$$\begin{aligned} & \|(\psi(x_n) - \varsigma_n \mathcal{A}x_n) - (\psi(\tilde{x}) - \varsigma_n \mathcal{A}\tilde{x})\|^2 \leq \|\psi(x_n) - \psi(\tilde{x})\|^2 \\ &\quad + \varsigma_n(\varsigma_n - 2\lambda) \|\mathcal{A}x_n - \mathcal{A}\tilde{x}\|^2 \\ &\leq \|\psi(x_n) - \psi(\tilde{x})\|^2. \end{aligned} \quad (8)$$

Similarly, we also obtain

$$\begin{aligned} & \|(\psi(u_n) - \gamma_n \mathcal{B}u_n) - (\psi(\tilde{x}) - \gamma_n \mathcal{B}\tilde{x})\|^2 \leq \|\psi(u_n) - \psi(\tilde{x})\|^2 \\ &\quad + \gamma_n(\gamma_n - 2\beta) \|\mathcal{B}u_n - \mathcal{B}\tilde{x}\|^2 \\ &\leq \|\psi(u_n) - \psi(\tilde{x})\|^2. \end{aligned} \quad (9)$$

According to the δ -strong monotonicity of ψ , we deduce

$$\|\psi(x) - \psi(y)\| \geq \delta \|x - y\|, \quad \forall x, y \in \mathcal{C}. \quad (10)$$

Set $v_n = \text{proj}_{\mathcal{C}}[\lambda_n \mu g(x_n) + (1 - \lambda_n)(\psi(u_n) - \gamma_n \mathcal{B}u_n)]$ for all $n \geq 0$. From (6), (8) and (10), we derive

$$\begin{aligned} & \|\psi(u_n) - \psi(\tilde{x})\| = \|\text{proj}_{\mathcal{C}}[\lambda_n \nu f(x_n) + (1 - \lambda_n)(\psi(x_n) - \varsigma_n \mathcal{A}x_n)] \\ &\quad - \text{proj}_{\mathcal{C}}[\psi(\tilde{x}) - \varsigma_n \mathcal{A}\tilde{x}]\| \\ &\leq \|(1 - \lambda_n)((\psi(x_n) - \varsigma_n \mathcal{A}x_n) - (\psi(\tilde{x}) - \varsigma_n \mathcal{A}\tilde{x})) \\ &\quad + \lambda_n(\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n \mathcal{A}\tilde{x})\| \\ &\leq \lambda_n \|\nu f(x_n) - \nu f(\tilde{x})\| + \lambda_n \|\nu f(\tilde{x}) - \psi(\tilde{x}) + \varsigma_n \mathcal{A}\tilde{x}\| \\ &\quad + (1 - \lambda_n) \|(\psi(x_n) - \varsigma_n \mathcal{A}x_n) - (\psi(\tilde{x}) - \varsigma_n \mathcal{A}\tilde{x})\| \\ &\leq \lambda_n \nu L_1 \|x_n - \tilde{x}\| + \lambda_n \|\nu f(\tilde{x}) - \psi(\tilde{x}) + \varsigma_n \mathcal{A}\tilde{x}\| \\ &\quad + (1 - \lambda_n) \|\psi(x_n) - \psi(\tilde{x})\| \\ &\leq \lambda_n \nu L_1 / \delta \|\psi(x_n) - \psi(\tilde{x})\| + \lambda_n \|\nu f(\tilde{x}) - \psi(\tilde{x}) + \varsigma_n \mathcal{A}\tilde{x}\| \\ &\quad + (1 - \lambda_n) \|\psi(x_n) - \psi(\tilde{x})\| \\ &= [1 - (1 - \nu L_1 / \delta) \lambda_n] \|\psi(x_n) - \psi(\tilde{x})\| \\ &\quad + \lambda_n \|\nu f(\tilde{x}) - \psi(\tilde{x}) + \varsigma_n \mathcal{A}\tilde{x}\| \\ &\leq [1 - (1 - \nu L_1 / \delta) \lambda_n] \|\psi(x_n) - \psi(\tilde{x})\| \\ &\quad + \lambda_n (\|\nu f(\tilde{x}) - \psi(\tilde{x})\| + 2\lambda \|\mathcal{A}\tilde{x}\|) \end{aligned} \quad (11)$$

and

$$\begin{aligned}
\|v_n - \psi(\tilde{x})\| &= \|\text{proj}_{\mathcal{C}}[\lambda_n \mu g(x_n) + (1 - \lambda_n)(\psi(u_n) - \gamma_n \mathcal{B}u_n)]\| \\
&\leq [1 - (2 - \lambda_n - \nu L_1/\delta - \mu L_2/\delta + \nu L_1 \lambda_n/\delta) \lambda_n] \|\psi(x_n) - \psi(\tilde{x})\| \\
&\quad + \lambda_n (\|\nu f(\tilde{x}) - \psi(\tilde{x})\| + 2\lambda \|\mathcal{A}\tilde{x}\| + \|\mu g(\tilde{x}) - \psi(\tilde{x})\| + 2\beta \|\mathcal{B}\tilde{x}\|).
\end{aligned} \tag{12}$$

By assumption (i), without loss of generality, we can assume that there exists a constant $\tau > 0$ such that $\tau < 2 - \lambda_n - \nu L_1/\delta - \mu L_2/\delta + \nu L_1 \lambda_n/\delta$ for all $n \geq 0$. Hence, we get

$$\begin{aligned}
\|v_n - \psi(\tilde{x})\| &\leq \lambda_n (\|\nu f(\tilde{x}) - \psi(\tilde{x})\| + 2\lambda \|\mathcal{A}\tilde{x}\| + \|\mu g(\tilde{x}) - \psi(\tilde{x})\| \\
&\quad + 2\beta \|\mathcal{B}\tilde{x}\|) + (1 - \tau \lambda_n) \|\psi(x_n) - \psi(\tilde{x})\|.
\end{aligned} \tag{13}$$

In terms of (8) and (11), we obtain

$$\begin{aligned}
\|\psi(u_n) - \psi(\tilde{x})\|^2 &\leq \|(1 - \lambda_n)((\psi(x_n) - \varsigma_n \mathcal{A}x_n) - (\psi(\tilde{x}) - \varsigma_n \mathcal{A}\tilde{x}))\|^2 \\
&\quad + \lambda_n (\|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n \mathcal{A}\tilde{x}\|^2 \\
&\leq (1 - \lambda_n) \|(\psi(x_n) - \varsigma_n \mathcal{A}x_n) - (\psi(\tilde{x}) - \varsigma_n \mathcal{A}\tilde{x})\|^2 \\
&\quad + \lambda_n \|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n \mathcal{A}\tilde{x}\|^2 \\
&\leq (1 - \lambda_n) [\|\psi(x_n) - \psi(\tilde{x})\|^2 + \varsigma_n (\varsigma_n - 2\lambda) \|\mathcal{A}x_n - \mathcal{A}\tilde{x}\|^2] \\
&\quad + \lambda_n \|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n \mathcal{A}\tilde{x}\|^2.
\end{aligned} \tag{14}$$

Similarly, from (9) and (12), we also have

$$\begin{aligned}
\|v_n - \psi(\tilde{x})\|^2 &\leq \lambda_n \|\mu g(x_n) - \psi(\tilde{x}) + \gamma_n \mathcal{B}\tilde{x}\|^2 + (1 - \lambda_n) [\|\psi(u_n) - \psi(\tilde{x})\|^2 \\
&\quad + \gamma_n (\gamma_n - 2\beta) \|\mathcal{B}u_n - \mathcal{B}\tilde{x}\|^2].
\end{aligned} \tag{15}$$

Combining (6) with (15), we obtain

$$\begin{aligned}
\|\psi(x_{n+1}) - \psi(\tilde{x})\| &\leq \sigma_n \|\psi(x_n) - \psi(\tilde{x})\| + (1 - \sigma_n) \|v_n - \psi(\tilde{x})\| \\
&\leq (1 - \sigma_n) (1 - \tau \lambda_n) \|\psi(x_n) - \psi(\tilde{x})\| \\
&\quad + \sigma_n \|\psi(x_n) - \psi(\tilde{x})\| + (1 - \sigma_n) \lambda_n (\|\nu f(\tilde{x}) - \psi(\tilde{x})\| \\
&\quad + 2\lambda \|\mathcal{A}\tilde{x}\| + \|\mu g(\tilde{x}) - \psi(\tilde{x})\| + 2\beta \|\mathcal{B}\tilde{x}\|) \\
&= [1 - (1 - \sigma_n) \tau \lambda_n] \|\psi(x_n) - \psi(\tilde{x})\| \\
&\quad + (1 - \sigma_n) \tau \lambda_n (\|\nu f(\tilde{x}) - \psi(\tilde{x})\| + 2\lambda \|\mathcal{A}\tilde{x}\| \\
&\quad + \|\mu g(\tilde{x}) - \psi(\tilde{x})\| + 2\beta \|\mathcal{B}\tilde{x}\|) / \tau.
\end{aligned} \tag{16}$$

By mathematical induction,

$$\begin{aligned}
\|\psi(x_n) - \psi(\tilde{x})\| &\leq \max \{ \|\psi(x_0) - \psi(\tilde{x})\|, (\|\nu f(\tilde{x}) - \psi(\tilde{x})\| + 2\lambda \|\mathcal{A}\tilde{x}\| \\
&\quad + \|\mu g(\tilde{x}) - \psi(\tilde{x})\| + 2\beta \|\mathcal{B}\tilde{x}\|) / \tau \}.
\end{aligned}$$

Consequently,

$$\begin{aligned}
\|x_n - \tilde{x}\| &\leq \frac{1}{\delta} \max \{ \|\psi(x_0) - \psi(\tilde{x})\|, (\|\nu f(\tilde{x}) - \psi(\tilde{x})\| + 2\lambda \|\mathcal{A}\tilde{x}\| \\
&\quad + \|\mu g(\tilde{x}) - \psi(\tilde{x})\| + 2\beta \|\mathcal{B}\tilde{x}\|) / \tau \}.
\end{aligned}$$

Thus, $\{x_n\}$, $\{\psi(x_n)\}$, $\{u_n\}$, $\{v_n\}$, $\{\mathcal{A}x_n\}$ and $\{\mathcal{B}u_n\}$ are all bounded.

From (5), we get

$$\psi(x_{n+1}) - \psi(x_n) = (1 - \sigma_n)(v_n - \psi(x_n)), \quad n \geq 0. \tag{17}$$

By computation, we deduce

$$\begin{aligned} \|\psi(x_{n+1}) - \psi(\tilde{x})\|^2 &= \|\psi(x_n) - \psi(\tilde{x})\|^2 + \|\psi(x_{n+1}) - \psi(x_n)\|^2 \\ &\quad + (1 - \sigma_n)[\|v_n - \psi(\tilde{x})\|^2 - \|\psi(x_n) - \psi(\tilde{x})\|^2] \\ &\quad - \|v_n - \psi(x_n)\|^2. \end{aligned} \quad (18)$$

Consequently,

$$\begin{aligned} \|\psi(x_{n+1}) - \psi(\tilde{x})\|^2 - \|\psi(x_n) - \psi(\tilde{x})\|^2 &= (1 - \sigma_n)[\|v_n - \psi(\tilde{x})\|^2 - \|\psi(x_n) - \psi(\tilde{x})\|^2] \\ &\quad - \|v_n - \psi(x_n)\|^2 + (1 - \sigma_n)^2\|v_n - \psi(x_n)\|^2 \\ &= (1 - \sigma_n)[\|v_n - \psi(\tilde{x})\|^2 - \|\psi(x_n) - \psi(\tilde{x})\|^2] \\ &\quad - \sigma_n(1 - \sigma_n)\|v_n - \psi(x_n)\|^2. \end{aligned} \quad (19)$$

In light of (11), we get

$$\begin{aligned} \|\psi(u_n) - \psi(\tilde{x})\|^2 &\leq [1 - (1 - \nu L_1/\delta)\lambda_n]\|\psi(x_n) - \psi(\tilde{x})\|^2 \\ &\quad + (1 - \nu L_1/\delta)\lambda_n \left(\frac{\|\nu f(\tilde{x}) - \psi(\tilde{x})\| + 2\lambda\|\mathcal{A}\tilde{x}\|}{(1 - \nu L_1/\delta)} \right)^2. \end{aligned} \quad (20)$$

Next, we consider two possible cases. Firstly, we assume there exists some integer $m > 0$ such that $\{\|\psi(x_n) - \psi(\tilde{x})\|\}$ is decreasing for all $n \geq m$. In this case, we know that $\lim_{n \rightarrow \infty} \|\psi(x_n) - \psi(\tilde{x})\|$ exists. From (12) and (19), we have

$$\begin{aligned} \sigma_n(1 - \sigma_n)\|v_n - \psi(x_n)\|^2 &\leq \|\psi(x_n) - \psi(\tilde{x})\|^2 - \|\psi(x_{n+1}) - \psi(\tilde{x})\|^2 \\ &\quad + (1 - \sigma_n)[\|v_n - \psi(\tilde{x})\|^2 - \|\psi(x_n) - \psi(\tilde{x})\|^2] \\ &\leq \|\psi(x_n) - \psi(\tilde{x})\|^2 - \|\psi(x_{n+1}) - \psi(\tilde{x})\|^2 \\ &\quad + \frac{\lambda_n}{\tau^2}(\|\nu f(\tilde{x}) - \psi(\tilde{x})\| + 2\lambda\|\mathcal{A}\tilde{x}\| + \|\mu g(\tilde{x}) - \psi(\tilde{x})\| \\ &\quad + 2\beta\|\mathcal{B}\tilde{x}\|)^2 \\ &\rightarrow 0. \end{aligned}$$

This together with assumptions (i) and (ii) implies that

$$\lim_{n \rightarrow \infty} \|v_n - \psi(x_n)\| = 0. \quad (21)$$

Moreover, from (17), we get

$$\lim_{n \rightarrow \infty} \|\psi(x_{n+1}) - \psi(x_n)\| = 0. \quad (22)$$

By (15), we have

$$\begin{aligned} \|\psi(x_{n+1}) - \psi(\tilde{x})\|^2 &\leq \sigma_n\|\psi(x_n) - \psi(\tilde{x})\|^2 + (1 - \sigma_n)\|v_n - \psi(\tilde{x})\|^2 \\ &\leq \lambda_n(\|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n\mathcal{A}\tilde{x}\|^2 + \|\mu g(x_n) - \psi(\tilde{x})\|^2 \\ &\quad + \gamma_n\|\mathcal{B}\tilde{x}\|^2) + \|\psi(x_n) - \psi(\tilde{x})\|^2 \\ &\quad + (1 - \sigma_n)(1 - \lambda_n)[\varsigma_n(\varsigma_n - 2\lambda)\|\mathcal{A}x_n - \mathcal{A}\tilde{x}\|^2 \\ &\quad + \gamma_n(\gamma_n - 2\beta)\|\mathcal{B}u_n - \mathcal{B}\tilde{x}\|^2]. \end{aligned} \quad (23)$$

Hence,

$$\begin{aligned}
& (1 - \sigma_n)(1 - \lambda_n)[\varsigma_n(2\lambda - \varsigma_n)\|\mathcal{A}x_n - \mathcal{A}\tilde{x}\|^2 + \gamma_n(2\beta - \gamma_n)\|\mathcal{B}u_n - \mathcal{B}\tilde{x}\|^2] \\
& \leq \|\psi(x_n) - \psi(\tilde{x})\|^2 - \|\psi(x_{n+1}) - \psi(\tilde{x})\|^2 + \lambda_n(\|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n\mathcal{A}\tilde{x}\|^2 \\
& \quad + \|\mu g(x_n) - \psi(\tilde{x}) + \gamma_n\mathcal{B}\tilde{x}\|^2) \\
& \leq (\|\psi(x_n) - \psi(\tilde{x})\| + \|\psi(x_{n+1}) - \psi(\tilde{x})\|)\|\psi(x_{n+1}) - \psi(x_n)\| \\
& \quad + \lambda_n(\|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n\mathcal{A}\tilde{x}\|^2 + \|\mu g(x_n) - \psi(\tilde{x}) + \gamma_n\mathcal{B}\tilde{x}\|^2) \\
& \rightarrow 0 \text{ (by (i) and (22))}.
\end{aligned}$$

This together with assumptions (i) – (iv) implies that

$$\lim_{n \rightarrow \infty} \|\mathcal{A}x_n - \mathcal{A}\tilde{x}\| = 0 \text{ and } \lim_{n \rightarrow \infty} \|\mathcal{B}u_n - \mathcal{B}\tilde{x}\| = 0. \quad (24)$$

Set $y_n = \psi(x_n) - \varsigma_n\mathcal{A}x_n - (\psi(\tilde{x}) - \varsigma_n\mathcal{A}\tilde{x})$ for all $n \geq 0$.

Applying (4), we get

$$\begin{aligned}
\|\psi(u_n) - \psi(\tilde{x})\|^2 & \leq \langle \lambda_n(\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n\mathcal{A}\tilde{x}) + (1 - \lambda_n)y_n, \psi(u_n) \\
& \quad - \psi(\tilde{x}) \rangle \\
& = \frac{1}{2}\{\|\lambda_n(\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n\mathcal{A}\tilde{x}) + (1 - \lambda_n)y_n\|^2 \\
& \quad + \|\psi(u_n) - \psi(\tilde{x})\|^2 - \|\lambda_n(\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n\mathcal{A}\tilde{x}) \\
& \quad + (1 - \lambda_n)y_n - \psi(u_n) + \psi(\tilde{x})\|^2\} \\
& \leq \frac{1}{2}\{\lambda_n\|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n\mathcal{A}\tilde{x}\|^2 + \|\psi(u_n) - \psi(\tilde{x})\|^2 \\
& \quad + (1 - \lambda_n)\|\psi(x_n) - \psi(\tilde{x})\|^2 - \|\lambda_n(\nu f(x_n) - \psi(\tilde{x}) \\
& \quad + \varsigma_n\mathcal{A}\tilde{x} - y_n) + \psi(x_n) - \psi(u_n) - \varsigma_n(\mathcal{A}x_n - \mathcal{A}\tilde{x})\|^2\} \\
& = \frac{1}{2}\{\lambda_n\|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n\mathcal{A}\tilde{x}\|^2\|\psi(u_n) - \psi(\tilde{x})\|^2 + \\
& \quad + (1 - \lambda_n)\|\psi(x_n) - \psi(\tilde{x})\|^2 - \|\psi(x_n) - \psi(u_n)\|^2 \\
& \quad - \lambda_n^2\|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n\mathcal{A}\tilde{x} - y_n\|^2 \\
& \quad - \varsigma_n^2\|\mathcal{A}x_n - \mathcal{A}\tilde{x}\|^2 + 2\varsigma_n\lambda_n\langle \mathcal{A}x_n - \mathcal{A}\tilde{x}, \nu f(x_n) - \psi(\tilde{x}) \\
& \quad + \varsigma_n\mathcal{A}\tilde{x} - y_n \rangle + 2\varsigma_n\langle \psi(x_n) - \psi(u_n), \mathcal{A}x_n - \mathcal{A}\tilde{x} \rangle \\
& \quad - 2\lambda_n\langle \psi(x_n) - \psi(u_n), \nu f(x_n) - \psi(\tilde{x}) + \varsigma_n\mathcal{A}\tilde{x} - y_n \rangle\}.
\end{aligned} \quad (25)$$

It follows that

$$\begin{aligned}
\|\psi(u_n) - \psi(\tilde{x})\|^2 & \leq \lambda_n\|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n\mathcal{A}\tilde{x}\|^2 - \|\psi(x_n) - \psi(u_n)\|^2 \\
& \quad + 2\lambda_n\|\psi(x_n) - \psi(u_n)\|\|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n\mathcal{A}\tilde{x} - y_n\| \\
& \quad + 2\varsigma_n\lambda_n\|\mathcal{A}x_n - \mathcal{A}\tilde{x}\|\|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n\mathcal{A}\tilde{x} - y_n\| \\
& \quad + 2\varsigma_n\|\psi(x_n) - \psi(u_n)\|\|\mathcal{A}x_n - \mathcal{A}\tilde{x}\| \\
& \quad + (1 - \lambda_n)\|\psi(x_n) - \psi(\tilde{x})\|^2.
\end{aligned} \quad (26)$$

In light of (15) and (26), we have

$$\begin{aligned} \|\psi(x_{n+1}) - \psi(\tilde{x})\|^2 &\leq \sigma_n \|\psi(x_n) - \psi(\tilde{x})\|^2 + (1 - \sigma_n) \|v_n - \psi(\tilde{x})\|^2 \\ &\leq \sigma_n \|\psi(x_n) - \psi(\tilde{x})\|^2 + (1 - \sigma_n) [\|\psi(u_n) - \psi(\tilde{x})\|^2 \\ &\quad + \lambda_n \|\mu g(x_n) - \psi(\tilde{x}) + \gamma_n \mathcal{B} \tilde{x}\|^2]. \end{aligned}$$

It follows that

$$\begin{aligned} \|\psi(x_{n+1}) - \psi(\tilde{x})\|^2 &\leq (1 - \sigma_n) \lambda_n \|\mu g(x_n) - \psi(\tilde{x}) + \gamma_n \mathcal{B} \tilde{x}\|^2 \\ &\quad + (1 - \sigma_n) \lambda_n \|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n \mathcal{A} \tilde{x}\|^2 \\ &\quad + (1 - \lambda_n) (1 - \sigma_n) \|\psi(x_n) - \psi(\tilde{x})\|^2 \\ &\quad + \sigma_n \|\psi(x_n) - \psi(\tilde{x})\|^2 - (1 - \sigma_n) \|\psi(x_n) - \psi(u_n)\|^2 \\ &\quad + 2\varsigma_n (1 - \sigma_n) \lambda_n \|\mathcal{A} x_n - \mathcal{A} \tilde{x}\| \|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n \mathcal{A} \tilde{x} - y_n\| \\ &\quad + 2\varsigma_n (1 - \sigma_n) \|\psi(x_n) - \psi(u_n)\| \|\mathcal{A} x_n - \mathcal{A} \tilde{x}\| \\ &\quad + 2(1 - \sigma_n) \lambda_n \|\psi(x_n) - \psi(u_n)\| \|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n \mathcal{A} \tilde{x} - y_n\| \\ &\leq \lambda_n (\|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n \mathcal{A} \tilde{x}\|^2 + \|\mu g(x_n) - \psi(\tilde{x}) + \gamma_n \mathcal{B} \tilde{x}\|^2) \\ &\quad + 2\varsigma_n \lambda_n \|\mathcal{A} x_n - \mathcal{A} \tilde{x}\| \|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n \mathcal{A} \tilde{x} - y_n\| \\ &\quad + 2\varsigma_n \|\psi(x_n) - \psi(u_n)\| \|\mathcal{A} x_n - \mathcal{A} \tilde{x}\| - (1 - \sigma_n) \|\psi(x_n) - \psi(u_n)\|^2 \\ &\quad + 2\lambda_n \|\psi(x_n) - \psi(u_n)\| \|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n \mathcal{A} \tilde{x} - y_n\| \\ &\quad + \|\psi(x_n) - \psi(\tilde{x})\|^2. \end{aligned}$$

Then,

$$\begin{aligned} (1 - \sigma_n) \|\psi(x_n) - \psi(u_n)\|^2 &\leq (\|\psi(x_n) - \psi(\tilde{x})\| + \|\psi(x_{n+1}) - \psi(\tilde{x})\|) \\ &\quad \times \|\psi(x_{n+1}) - \psi(x_n)\| + \lambda_n (\|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n \mathcal{A} \tilde{x}\|^2 \\ &\quad + \|\mu g(x_n) - \psi(\tilde{x}) + \gamma_n \mathcal{B} \tilde{x}\|^2) \\ &\quad + 2\varsigma_n \lambda_n \|\mathcal{A} x_n - \mathcal{A} \tilde{x}\| \|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n \mathcal{A} \tilde{x} - y_n\| \\ &\quad + 2\varsigma_n \|\psi(x_n) - \psi(u_n)\| \|\mathcal{A} x_n - \mathcal{A} \tilde{x}\| \\ &\quad + 2\lambda_n \|\psi(x_n) - \psi(u_n)\| \|\nu f(x_n) - \psi(\tilde{x}) + \varsigma_n \mathcal{A} \tilde{x} - y_n\|. \end{aligned}$$

The above inequality together with (i), (iii), (22) and (24) implies that

$$\lim_{n \rightarrow \infty} \|\psi(x_n) - \psi(u_n)\| = 0. \quad (27)$$

Next, we prove $\liminf_{n \rightarrow \infty} \langle \nu f(\tilde{x}) - \psi(\tilde{x}), \psi(\tilde{x}) - \psi(u_n) \rangle \geq 0$. Let $\{\psi(u_{n_i})\}$ be a subsequence of $\{\psi(u_n)\}$ such that

$$\begin{aligned} &\liminf_{n \rightarrow \infty} \langle \nu f(\tilde{x}) - \psi(\tilde{x}), \psi(\tilde{x}) - \psi(u_n) \rangle \\ &= \lim_{i \rightarrow \infty} \langle \nu f(\tilde{x}) - \psi(\tilde{x}), \psi(\tilde{x}) - \psi(u_{n_i}) \rangle. \end{aligned} \quad (28)$$

Since $\{\psi(u_{n_i})\}$ is bounded, there exists a subsequence $\{\psi(u_{n_{i_j}})\}$ of $\{\psi(u_{n_i})\}$ which converges weakly to some point $\psi(z) \in \mathcal{C}$. Without loss of generality, we may assume that $\psi(u_{n_i}) \rightharpoonup$

$\psi(z)$. Next, we need to prove $z \in GVI(\mathcal{A}, \psi, \mathcal{C})$. Set

$$Rv = \begin{cases} \mathcal{A}v + N_{\mathcal{C}}(v), & v \in \mathcal{C}, \\ \emptyset, & v \notin \mathcal{C}. \end{cases}$$

By [42], we know that R is maximal ψ -monotone. Let $(v, w) \in G(R)$. Since $w - \mathcal{A}v \in N_{\mathcal{C}}(v)$ and $x_n \in \mathcal{C}$, we have $\langle \psi(v) - \psi(x_n), w - \mathcal{A}v \rangle \geq 0$. Noting that $\psi(u_n) = \text{proj}_{\mathcal{C}}[\lambda_n \nu f(x_n) + (1 - \lambda_n)(\psi(x_n) - \varsigma_n \mathcal{A}x_n)]$, we get

$$\langle \psi(v) - \psi(u_n), \psi(u_n) - [\lambda_n \nu f(x_n) + (1 - \lambda_n)(\psi(x_n) - \varsigma_n \mathcal{A}x_n)] \rangle \geq 0.$$

It follows that

$$\langle \psi(v) - \psi(u_n), \frac{\psi(u_n) - \psi(x_n)}{\varsigma_n} + \mathcal{A}x_n - \frac{\lambda_n}{\varsigma_n}(\nu f(x_n) - \psi(x_n) + \varsigma_n \mathcal{A}x_n) \rangle \geq 0.$$

Thus,

$$\begin{aligned} \langle \psi(v) - \psi(x_{n_i}), w \rangle &\geq \langle \psi(v) - \psi(x_{n_i}), \mathcal{A}v \rangle \\ &\geq \langle \psi(v) - \psi(x_{n_i}), \mathcal{A}v \rangle - \langle \psi(v) - \psi(u_{n_i}), \mathcal{A}x_{n_i} \rangle \\ &\quad + \frac{\lambda_{n_i}}{\varsigma_{n_i}} \langle \psi(v) - \psi(u_{n_i}), \nu f(x_{n_i}) - \psi(x_{n_i}) + \varsigma_{n_i} \mathcal{A}x_{n_i} \rangle \\ &\quad - \langle \psi(v) - \psi(u_{n_i}), \frac{\psi(u_{n_i}) - \psi(x_{n_i})}{\varsigma_{n_i}} \rangle \\ &= \langle \psi(v) - \psi(x_{n_i}), \mathcal{A}v - \mathcal{A}x_{n_i} \rangle + \langle \psi(v) - \psi(x_{n_i}), \mathcal{A}x_{n_i} \rangle \\ &\quad + \frac{\lambda_{n_i}}{\varsigma_{n_i}} \langle \psi(v) - \psi(u_{n_i}), \nu f(x_{n_i}) - \psi(x_{n_i}) + \varsigma_{n_i} \mathcal{A}x_{n_i} \rangle \\ &\quad - \langle \psi(v) - \psi(u_{n_i}), \frac{\psi(u_{n_i}) - \psi(x_{n_i})}{\varsigma_{n_i}} \rangle \\ &\quad - \langle \psi(v) - \psi(u_{n_i}), \mathcal{A}x_{n_i} \rangle \\ &\geq \frac{\lambda_{n_i}}{\varsigma_{n_i}} \langle \psi(v) - \psi(u_{n_i}), \nu f(x_{n_i}) - \psi(x_{n_i}) + \varsigma_{n_i} \mathcal{A}x_{n_i} \rangle \\ &\quad - \langle \psi(v) - \psi(u_{n_i}), \frac{\psi(u_{n_i}) - \psi(x_{n_i})}{\varsigma_{n_i}} \rangle \\ &\quad - \langle \psi(x_{n_i}) - \psi(u_{n_i}), \mathcal{A}x_{n_i} \rangle. \end{aligned} \tag{29}$$

Since $\|\psi(x_{n_i}) - \psi(u_{n_i})\| \rightarrow 0$ and $\psi(x_{n_i}) \rightharpoonup \psi(z)$, we deduce that $\langle \psi(v) - \psi(z), w \rangle \geq 0$ by taking $i \rightarrow \infty$ in (29). Thus, $z \in R^{-1}0$ by the maximal ψ -monotonicity of R . Hence, $z \in GVI(\mathcal{A}, \psi, \mathcal{C})$.

Note that $\|v_{n_i} - \psi(u_{n_i})\| \rightarrow 0$. By the similar argument, we can deduce that $z \in GVI(\mathcal{B}, \psi, \mathcal{C})$. Therefore, $z \in \Omega$.

From (28), we obtain

$$\begin{aligned} \liminf_{n \rightarrow \infty} \langle \nu f(\tilde{x}) - \psi(\tilde{x}), \psi(\tilde{x}) - \psi(u_n) \rangle &= \lim_{i \rightarrow \infty} \langle \nu f(\tilde{x}) - \psi(\tilde{x}), \psi(\tilde{x}) - \psi(u_{n_i}) \rangle \\ &= \langle \nu f(\tilde{x}) - \psi(\tilde{x}), \psi(\tilde{x}) - \psi(z) \rangle \geq 0. \end{aligned} \tag{30}$$

Consequently,

$$\begin{aligned} \liminf_{n \rightarrow \infty} \langle \mu g(\tilde{x}) - \psi(\tilde{x}), \psi(\tilde{x}) - v_n \rangle &\geq \lim_{i \rightarrow \infty} \langle \mu g(\tilde{x}) - \psi(\tilde{x}), \psi(\tilde{x}) - v_{n_i} \rangle \\ &= \langle \mu g(\tilde{x}) - \psi(\tilde{x}), \psi(\tilde{x}) - \psi(z) \rangle \geq 0. \end{aligned} \tag{31}$$

Applying (4), we obtain

$$\begin{aligned}
\|\psi(u_n) - \psi(\tilde{x})\|^2 &= \|\text{proj}_{\mathcal{C}}[\lambda_n \nu f(x_n) + (1 - \lambda_n)(\psi(x_n) - \varsigma_n \mathcal{A}x_n)] \\
&\quad - \text{proj}_{\mathcal{C}}[\psi(\tilde{x}) - (1 - \lambda_n)\varsigma_n \mathcal{A}\tilde{x}]\|^2 \\
&\leq \langle \lambda_n(\nu f(x_n) - \psi(\tilde{x})) + (1 - \lambda_n)y_n, \psi(u_n) - \psi(\tilde{x}) \rangle \\
&\leq (1 - \lambda_n)\|\psi(x_n) - \varsigma_n \mathcal{A}x_n - (\psi(\tilde{x}) - \varsigma_n \mathcal{A}\tilde{x})\| \|\psi(u_n) - \psi(\tilde{x})\| \\
&\quad + \lambda_n \langle \nu f(\tilde{x}) - \psi(\tilde{x}), \psi(u_n) - \psi(\tilde{x}) \rangle \\
&\quad + \lambda_n \nu \langle f(x_n) - f(\tilde{x}), \psi(u_n) - \psi(\tilde{x}) \rangle \\
&\leq \lambda_n L_1 \nu \|x_n - \tilde{x}\| \|\psi(u_n) - \psi(\tilde{x})\| \\
&\quad + \lambda_n \langle \nu f(\tilde{x}) - \psi(\tilde{x}), \psi(u_n) - \psi(\tilde{x}) \rangle \\
&\quad + (1 - \lambda_n)\|\psi(x_n) - \psi(\tilde{x})\| \|\psi(u_n) - \psi(\tilde{x})\| \\
&\leq \lambda_n (\nu L_1 / \delta) \|\psi(x_n) - \psi(\tilde{x})\| \|\psi(u_n) - \psi(\tilde{x})\| \\
&\quad + \lambda_n \langle \nu f(\tilde{x}) - \psi(\tilde{x}), \psi(u_n) - \psi(\tilde{x}) \rangle \\
&\quad + (1 - \lambda_n)\|\psi(x_n) - \psi(\tilde{x})\| \|\psi(u_n) - \psi(\tilde{x})\| \\
&= [1 - (1 - L_1 \nu / \delta) \lambda_n] \|\psi(x_n) - \psi(\tilde{x})\| \|\psi(u_n) - \psi(\tilde{x})\| \\
&\quad + \lambda_n \langle \nu f(\tilde{x}) - \psi(\tilde{x}), \psi(u_n) - \psi(\tilde{x}) \rangle \\
&\leq \frac{1 - (1 - L_1 \nu / \delta) \lambda_n}{2} \|\psi(x_n) - \psi(\tilde{x})\|^2 \\
&\quad + \lambda_n \langle \nu f(\tilde{x}) - \psi(\tilde{x}), \psi(u_n) - \psi(\tilde{x}) \rangle \\
&\quad + \frac{1}{2} \|\psi(u_n) - \psi(\tilde{x})\|^2.
\end{aligned}$$

It follows that

$$\begin{aligned}
\|\psi(u_n) - \psi(\tilde{x})\|^2 &\leq [1 - (1 - L_1 \nu / \delta) \lambda_n] \|\psi(x_n) - \psi(\tilde{x})\|^2 \\
&\quad + 2 \lambda_n \langle \nu f(\tilde{x}) - \psi(\tilde{x}), \psi(u_n) - \psi(\tilde{x}) \rangle.
\end{aligned}$$

Set $z_n = \psi(u_n) - \gamma_n \mathcal{B}u_n - (\tilde{x}) - \gamma_n \mathcal{B}\tilde{x}$ for all $n \geq 0$. By (4), we obtain

$$\begin{aligned}
\|v_n - \psi(\tilde{x})\|^2 &= \|\text{proj}_{\mathcal{C}}[\lambda_n \mu g(x_n) + (1 - \lambda_n)(\psi(u_n) - \gamma_n \mathcal{B}u_n)] \\
&\quad - \text{proj}_{\mathcal{C}}[\psi(\tilde{x}) - (1 - \lambda_n)\gamma_n \mathcal{B}\tilde{x}]\|^2 \\
&\leq \langle \lambda_n(\mu g(x_n) - \psi(\tilde{x})) + (1 - \lambda_n)z_n, v_n - \psi(\tilde{x}) \rangle \\
&\leq (1 - \lambda_n)\|\psi(u_n) - \gamma_n \mathcal{B}u_n - (\psi(\tilde{x}) - \gamma_n \mathcal{B}\tilde{x})\| \|\psi(u_n) - \psi(\tilde{x})\| \\
&\quad + \lambda_n \mu \langle g(x_n) - g(\tilde{x}), v_n - \psi(\tilde{x}) \rangle \\
&\quad + \lambda_n \langle \mu g(\tilde{x}) - \psi(\tilde{x}), v_n - \psi(\tilde{x}) \rangle \\
&\leq (1 - \lambda_n)\|\psi(u_n) - \psi(\tilde{x})\| \|\psi(u_n) - \psi(\tilde{x})\| \\
&\quad + \lambda_n \langle \mu g(\tilde{x}) - \psi(\tilde{x}), v_n - \psi(\tilde{x}) \rangle \\
&\quad + \lambda_n L_2 \mu \|x_n - \tilde{x}\| \|\psi(u_n) - \psi(\tilde{x})\|.
\end{aligned}$$

This together with (10) implies that

$$\begin{aligned}
\|v_n - \psi(\tilde{x})\|^2 &\leq \lambda_n(\mu L_2/\delta)\|\psi(x_n) - \psi(\tilde{x})\|\|v_n - \psi(\tilde{x})\| \\
&\quad + \lambda_n\langle \mu g(\tilde{x}) - \psi(\tilde{x}), v_n - \psi(\tilde{x}) \rangle \\
&\quad + (1 - \lambda_n)\|\psi(u_n) - \psi(\tilde{x})\|\|v_n - \psi(\tilde{x})\| \\
&\leq \frac{\lambda_n(\mu L_2/\delta)}{2}\|\psi(x_n) - \psi(\tilde{x})\|^2 + \frac{1 - \lambda_n}{2}\|\psi(u_n) - \psi(\tilde{x})\|^2 \\
&\quad + \frac{1}{2}\|v_n - \psi(\tilde{x})\|^2 + \lambda_n\langle \mu g(\tilde{x}) - \psi(\tilde{x}), v_n - \psi(\tilde{x}) \rangle.
\end{aligned}$$

It follows that

$$\begin{aligned}
\|v_n - \psi(\tilde{x})\|^2 &\leq \lambda_n(\mu L_2/\delta)\|\psi(x_n) - \psi(\tilde{x})\|^2 + (1 - \lambda_n)\|\psi(u_n) - \psi(\tilde{x})\|^2 \\
&\quad + 2\lambda_n\langle \mu g(\tilde{x}) - \psi(\tilde{x}), v_n - \psi(\tilde{x}) \rangle \\
&\leq [1 - (1 - \mu L_2/\delta + (1 - \lambda_n)(1 - L_1\nu/\delta))\lambda_n]\|\psi(x_n) - \psi(\tilde{x})\|^2 \\
&\quad + 2(1 - \lambda_n)\lambda_n\langle \nu f(\tilde{x}) - \psi(\tilde{x}), \psi(u_n) - \psi(\tilde{x}) \rangle \\
&\quad + 2\lambda_n\langle \mu g(\tilde{x}) - \psi(\tilde{x}), v_n - \psi(\tilde{x}) \rangle.
\end{aligned}$$

Therefore,

$$\begin{aligned}
\|\psi(x_{n+1}) - \psi(\tilde{x})\|^2 &\leq \sigma_n\|\psi(x_n) - \psi(\tilde{x})\|^2 + (1 - \sigma_n)\|v_n - \psi(\tilde{x})\|^2 \\
&\leq [1 - (1 - \sigma_n)(1 - \mu L_2/\delta + (1 - \lambda_n) \\
&\quad \times (1 - L_1\nu/\delta))\lambda_n]\|\psi(x_n) - \psi(\tilde{x})\|^2 \\
&\quad + 2(1 - \sigma_n)(1 - \lambda_n)\lambda_n\langle \nu f(\tilde{x}) - \psi(\tilde{x}), \psi(u_n) - \psi(\tilde{x}) \rangle \\
&\quad + 2(1 - \sigma_n)\lambda_n\langle \mu g(\tilde{x}) - \psi(\tilde{x}), v_n - \psi(\tilde{x}) \rangle.
\end{aligned} \tag{32}$$

By (30), (31), (32) and Lemma 2.1, we conclude that $\psi(x_n) \rightarrow \psi(\tilde{x})$ and $x_n \rightarrow \tilde{x}$.

Secondly, assume there exists an integer n_0 such that $\|\psi(x_{n_0}) - \psi(\tilde{x})\| \leq \|\psi(x_{n_0+1}) - \psi(\tilde{x})\|$. Set $\omega_n = \{\|\psi(x_n) - \psi(\tilde{x})\|\}$. Hence, we get $\omega_{n_0} \leq \omega_{n_0+1}$. For $n \geq n_0$, let $\{\tau_n\}$ be a sequence defined by $\tau(n) = \max\{l \in \mathbb{N} | n_0 \leq l \leq n, \omega_l \leq \omega_{l+1}\}$. We can check easily that $\tau(n)$ is a non-decreasing sequence satisfying $\lim_{n \rightarrow \infty} \tau(n) = \infty$ and $\omega_{\tau(n)} \leq \omega_{\tau(n)+1}$ for all $n \geq n_0$.

By the similar argument as that of (30), (31) and (32), we can prove that

$$\begin{aligned}
\liminf_{n \rightarrow \infty} \langle \nu f(\tilde{x}) - \psi(\tilde{x}), \psi(u_{\tau(n)}) - \psi(\tilde{x}) \rangle &\geq 0 \quad \text{and} \\
\liminf_{n \rightarrow \infty} \langle \mu g(\tilde{x}) - \psi(\tilde{x}), \psi(\tilde{x}) - v_{\tau(n)} \rangle &\geq 0,
\end{aligned} \tag{33}$$

and

$$\begin{aligned}
\omega_{\tau(n)+1}^2 &\leq [1 - (1 - \sigma_{\tau(n)})(1 - \mu L_2/\delta + (1 - \lambda_{\tau(n)})(1 - L_1\nu/\delta))\lambda_{\tau(n)}]\omega_{\tau(n)}^2 \\
&\quad + 2(1 - \sigma_{\tau(n)})(1 - \lambda_{\tau(n)})\lambda_{\tau(n)}\langle \nu f(\tilde{x}) - \psi(\tilde{x}), \psi(u_{\tau(n)}) - \psi(\tilde{x}) \rangle \\
&\quad + 2(1 - \sigma_{\tau(n)})\lambda_{\tau(n)}\langle \mu g(\tilde{x}) - \psi(\tilde{x}), v_{\tau(n)} - \psi(\tilde{x}) \rangle.
\end{aligned} \tag{34}$$

Note that $\omega_{\tau(n)} \leq \omega_{\tau(n)+1}$. We deduce from (34) that

$$\begin{aligned}
\omega_{\tau(n)}^2 &\leq (1 - \lambda_{\tau(n)})\varrho_n\langle \nu f(\tilde{x}) - \psi(\tilde{x}), \psi(u_{\tau(n)}) - \psi(\tilde{x}) \rangle \\
&\quad + \varrho_n\langle \mu g(\tilde{x}) - \psi(\tilde{x}), v_{\tau(n)} - \psi(\tilde{x}) \rangle,
\end{aligned} \tag{35}$$

where $\varrho_n = \frac{2(1 - \lambda_{\tau(n)})}{1 - \sigma_{\tau(n)}(1 - \mu L_2/\delta + (1 - \lambda_{\tau(n)})(1 - L_1\nu/\delta))}$. In terms of (33) and (35), we derive $\limsup_{n \rightarrow \infty} \omega_{\tau(n)} \leq 0$, and so

$$\lim_{n \rightarrow \infty} \omega_{\tau(n)} = 0. \quad (36)$$

From (33) and (34), we also obtain $\limsup_{n \rightarrow \infty} \omega_{\tau(n)+1} \leq \limsup_{n \rightarrow \infty} \omega_{\tau(n)}$. This together with (36) implies that $\lim_{n \rightarrow \infty} \omega_{\tau(n)+1} = 0$. According to Lemma 2.2 to get $0 \leq \omega_n \leq \max\{\omega_{\tau(n)}, \omega_{\tau(n)+1}\}$. Therefore, $\omega_n \rightarrow 0$. That is, $x_n \rightarrow \tilde{x}$. This completes the proof. \square

Algorithm 3.2. For given initial guess $x_0 \in \mathcal{C}$ arbitrarily, let the sequence $\{x_n\}$ be generated iteratively by

$$\begin{cases} u_n = \text{proj}_{\mathcal{C}}[\lambda_n \nu f(x_n) + (1 - \lambda_n)(x_n - \varsigma_n \mathcal{A}x_n)], n \geq 0, \\ x_{n+1} = \sigma_n x_n + (1 - \sigma_n) \text{proj}_{\mathcal{C}}[\lambda_n \mu g(x_n) + (1 - \lambda_n)(u_n - \gamma_n \mathcal{B}u_n)], \end{cases} \quad (37)$$

where $\mathcal{A}, \mathcal{B} : \mathcal{C} \rightarrow \mathcal{H}$ are λ -inverse strongly monotone and β -inverse strongly monotone, respectively, $\{\lambda_n\}$ and $\{\sigma_n\}$ are two real number sequences in $[0, 1]$ and $\{\varsigma_n\}$ and $\{\gamma_n\}$ are two real number sequences in $(0, \infty)$.

Corollary 3.1. If the following assumptions are satisfied:

- (i) $\lim_{n \rightarrow \infty} \lambda_n = 0$ and $\sum_n \lambda_n = \infty$;
- (ii) $0 < \liminf_{n \rightarrow \infty} \sigma_n \leq \limsup_{n \rightarrow \infty} \sigma_n < 1$;
- (iii) $0 < \liminf_{n \rightarrow \infty} \varsigma_n \leq \limsup_{n \rightarrow \infty} \varsigma_n < 2\lambda$;
- (iv) $0 < \liminf_{n \rightarrow \infty} \gamma_n \leq \limsup_{n \rightarrow \infty} \gamma_n < 2\beta$;

then the sequence $\{x_n\}$ generated by (37) converges strongly to $\tilde{x} \in VI(f, \mathcal{C}) \cap VI(g, \mathcal{C})$.

4. Conclusions

In this paper, we investigated a generalized variational inequality problem. We suggest a projected type algorithm for finding the common solutions of two variational inequalities. We prove the strong convergence of the algorithm under the mild conditions. Noting that in our suggested iterative sequence, the involved operators A and B require some form of strong monotonicity. A natural question arises, i.e., how to weaken these assumptions?

REFERENCES

- [1] A.S. Antipin, V. Jachimovic, M. Jachimovic, Dynamics and variational inequalities, *Comput. Math. Math. Phys.* 57(2017), 784–801.
- [2] J.Y. Bello Cruz, A.N. Iusem, A strongly convergent direct method for monotone variational inequalities in Hilbert space, *Numer. Funct. Anal. Optim.* 30(2009), 23–36.
- [3] Y. Chen, G. Lan, Y. Ouyang, Accelerated schemes for a class of variational inequalities, *Math. Program.* 165(2017), 113–149.
- [4] S.Y. Cho, X. Qin, J.C. Yao, Y. Yao, Viscosity approximation splitting methods for monotone and nonexpansive operators in Hilbert spaces, *J. Nonlinear Convex Anal.* 19(2018), 251–264.
- [5] Y. Censor, A. Gibali, S. Reich, Extensions of Korpelevichs extragradient method for the variational inequality problem in Euclidean space, *Optim.* 61(2012), 1119–1132.
- [6] Q.L. Dong, D. Jiang, A. Gibali, A modified subgradient extragradient method for solving the variational inequality problem, *Numerical Algorithms* 79(2018), 927–940.
- [7] R. Glowinski, *Numerical methods for nonlinear variational problems*, Springer, New York, 1984.

- [8] S. He, T. Wu, A modified subgradient extragradient method for solving monotone variational inequalities, *J. Inequal. Appl.* 2017(2017), Article ID. 89.
- [9] H. Iiduka, W. Takahashi, M. Toyoda, Approximation of solutions of variational inequalities for monotone mappings, *Panamerican Math. J.* 14(2004), 49–61.
- [10] A.N. Iusem, L. R. Lucambio Peerez, An extragradient-type algorithm for non-smooth variational inequalities, *Optim.* 48(2000), 309–332.
- [11] G.M. Korpelevich, An extragradient method for finding saddle points and for other problems, *Ekonomika i Matematicheskie Metody* 12(1976), 747–756.
- [12] P.E. Mainge, Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces, *J. Math. Anal. Appl.* 325(2007), 469–479.
- [13] P.E. Maingé, Strong convergence of projected reflected gradient methods for variational inequalities, *Fixed Point Theory* 19(2018), 659–680.
- [14] F. Qi, D. Lim, and B.-N. Guo, Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations, *Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM* (2018), in press.
- [15] F. Qi, D.-W. Niu, and B.-N. Guo, Some identities for a sequence of unnamed polynomials connected with the Bell polynomials, *Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM* 112(2018), in press.
- [16] Y. Shehu, O.S. Iyiola, Strong convergence result for monotone variational inequalities, *Numerical Algorithms* 76(2017), 259–282.
- [17] L. Shen, Over relaxed hybrid proximal extragradient algorithm and its application to several operator splitting methods, *J. Math. Anal. Appl.* 448(2017), 727–749.
- [18] G. Stampacchi, Formes bilinéaires coercitives sur les ensembles convexes. *C. R. Acad. Sciences* 258(1964), 4413–4416.
- [19] B.F. Svaiter, A class of Fejér convergent algorithms, approximate resolvents and the hybrid proximal-extragradient method, *J. Optim. Theory Appl.* 162(2014), 133–153.
- [20] B.S. Thakur, M. Postolache, Existence and approximation of solutions for generalized extended nonlinear variational inequalities, *J. Inequal. Appl.* 2013(2013), Art. No. 590.
- [21] B.S. Thakur, D. Thakur, M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings *Appl. Math. Comput.* 275(2016), 147–155.
- [22] D.V. Thong, D.V. Hieu, Modified Tseng's extragradient algorithms for variational inequality problems, *J. Fixed Point Theory Appl.* 20(2018), Article No. UNSP 152.
- [23] P.T. Vuong, On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities, *J. Optim. Theory Appl.* 176(2018), 399–409.
- [24] H.K. Xu, Iterative algorithms for nonlinear operators, *J. London Math. Soc.* 2(2002), 1–17.
- [25] J. Yang, H.W. Liu, A modified projected gradient method for monotone variational inequalities, *J. Optim. Theory Appl.* 179(2018), 197–211.
- [26] Y. Yao, R.P. Agarwal, M. Postolache, Y.C. Liou, Algorithms with strong convergence for the split common solution of the feasibility problem and fixed point problem, *Fixed Point Theory Appl.* 2014(2014), Art. No. 183, 14 pages.
- [27] Y. Yao, R. Chen, H.K. Xu, Schemes for finding minimum-norm solutions of variational inequalities, *Nonlinear Anal.* 72(2010), 3447–3456.
- [28] Y. Yao, L. Leng, M. Postolache, X. Zheng, Mann-type iteration method for solving the split common fixed point problem, *J. Nonlinear Convex Anal.* 18(2017), 875–882.
- [29] Y. Yao, Y.C. Liou, S.M. Kang, Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method, *Comput. Math. Appl.* 59(2010), 3472–3480.
- [30] Y. Yao, Y.C. Liou, J.C. Yao, Iterative algorithms for the split variational inequality and fixed point problems under nonlinear transformations, *J. Nonlinear Sci. Appl.* 10(2017), 843–854.
- [31] Y. Yao, M. Postolache, Y.C. Liou, Strong convergence of a self-adaptive method for the split feasibility problem, *Fixed Point Theory Appl.* 2013(2013), Art. No. 201, 12 pages.
- [32] Y. Yao, M. Postolache, Y.C. Liou, Z.S. Yao, Construction algorithms for a class of monotone variational inequalities, *Optim. Lett.* 10(2016), 1519–1528.

- [33] Y. Yao, M. Postolache, J.C. Yao, An iterative algorithm for solving the generalized variational inequalities and fixed points problems, *Mathematics* 7(2019), Art. No. 61, doi:10.3390/math7010061.
- [34] Y. Yao, M. Postolache, Z. Zhu, Gradient methods with selection technique for the multiple-sets split feasibility problem, *Optim.* DOI: 10.1080/02331934.2019.1602772.
- [35] Y. Yao, X. Qin, J.C. Yao, Projection methods for firmly type nonexpansive operators, *J. Nonlinear Convex Anal.* 19(2018), 407–415.
- [36] Y. Yao, N. Shahzad, Strong convergence of a proximal point algorithm with general errors, *Optim. Lett.* 6(2012), 621–628.
- [37] Y. Yao, J.C. Yao, Y.C. Liou, M. Postolache, Iterative algorithms for split common fixed points of demicontractive operators without priori knowledge of operator norms, *Carpathian J. Math.* 34(2018), 459–466.
- [38] Y. Yao, Y.C. Liou, M. Postolache, Self-adaptive algorithms for the split problem of the demicontractive operators, *Optimization* 67(2018), No. 9, 1309–1319.
- [39] M. Ye, An improved projection method for solving generalized variational inequality problems, *Optim.* 67(2018), 1523–1533.
- [40] M.L. Ye, Y.R. He, A double projection method for solving variational inequalities without monotonicity, *Comput. Optim. Appl.* 60(2015), 141–150.
- [41] H. Zegeye, N. Shahzad, Y. Yao, Minimum-norm solution of variational inequality and fixed point problem in Banach spaces, *Optim.* 64(2015), 453–471.
- [42] L.J. Zhang, J.M. Chen, Z.B. Hou, Viscosity approximation methods for nonexpansive mappings and generalized variational inequalities, *Acta Math. Sinica (Chinese Series)* 53(2010), 691–698.