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ITERATIVE ALGORITHMS FOR
GENERALIZED VARIATIONAL INEQUALITIES

Yonghong Yao!, Mihai Postolache?, Jen-Chih Yao®

A generalized variational inequality problem is considered. Amn algorithm for
finding the solutions of the generalized variational inequality is formally constructed.

Strong convergence analysis of the suggested algorithm is given.
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1. Introduction

Let 3 be a real Hilbert space with inner product (-,-) and induced norm | - ||. Let
€ C H be a nonempty closed convex set. Let A: € — I and ¥: € — C be two nonlinear
operators. Recall that the generalized variational inequality (in short, GVI) is to find a
point z! € € such that

(Azt,(y) —v(2h)) > 0, vy € €. (1)
The solution set of (1) is denoted by GV I(A, 1, C).

If ¢ = J, then GVI (1) reduces to the variational inequality of finding ¥ € € such
that

(Az' y —2t) >0, vy € C. (2)

The solution set of (2) is denoted by VI(A, C).

Variational inequalities were introduced by Stampacchia [18] and provide a convenient
mathematical tool for researching a large variety of interesting problems arising in physics,
finance, economics, network analysis, elasticity, optimization, water resources, medical im-
ages and structural analysis ([4, 14, 15, 20, 21, 27, 28, 35, 36, 41]). There are several iterative
methods for solving VI (2). See, e.g., [2, 5, 7, 10, 19, 26, 31, 32, 37, 38]. The simplest one is
the natural extension of the projected gradient algorithm for solving optimization problems
by replacing the operator A with the gradient, so that we obtain a sequence {uy} generated
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the following manner: for given initial value ug,
Uk+1 = Pfoje[uk - V‘Auk}, k>0,

where v is some positive real number and proje, is the metric projection from JH onto C.
Note that the above algorithm can acquire convergence under quite strict hypotheses.
In order to overcome this flaw, Korpelevich suggested in [11] an algorithm of the following

form: for given initial value ug,

v = projelur — vAug),
{uk_H = projefur — vAvg], k > 0.

Consequently, Korpelevich’s algorithm and its variant form have been presented and studied
in the literature, see for instance, [1, 3, 6, 8, 13, 16, 17, 22, 23, 25, 29, 33, 39, 40]. In this
article, we will study the following generalized variational inequalities of finding a point z
such that

e GVIA,Y,©)NGVI(B,y,0). (3)

Motivated by the work of [5, 22, 42], in this paper, we introduce a new iterative

algorithm for solving (3). We prove the strong convergence of the presented algorithm
under some mild conditions.

2. Notation and Lemmas

Let C be a nonempty closed convex subset of a real Hilbert space H. An operator
S: € — € is said to be L-Lipschitz if ||Szt — Syf|| < L||=" — y||, V2T, y' € C, where L > 0

is a constant.

Definition 2.1. An operator A : C — H is said to be
e Monotone if (Au — Av,u —v) >0, Yu,v € C.
e Strongly monotone if (Au—Av,u—v) > 8|lu—v|?, Yu,v € €, where § > 0 is a constant.
e \-inverse strongly monotone if (Au—Av,u—v) > A|Au—Av||?, Vu,v € C, where A > 0
s a constant.
e \-inverse strongly 1-monotone if (Au — Av,¥(u) — (v)) > M| Au — Av|]?, Yu,v € €,
where 1 : € — € is a nonlinear operator and A > 0 is a constant.

An operator R: H — 2% is said to be monotone on ¥ iff (z — y,u — v) > 0 for all
z,y € H, u € Rr, and v € Ry. A monotone operator R on H is said to be maximal iff its
graph is not strictly contained in the graph of any other monotone operator on .

For Va' € 7, there exists a unique nearest point in €, denoted by proje[mT] such that
|zt — proje[z']]| < ||y — 21|, for all y € C. Now it is known that the operator proje : H — €
is firmly nonexpansive, that is,

Iprojef’] = projely||* < (projela] — projely’], =" —yf), va',y' € 3.
Consequently ([34, 35)),
(x' — proje[z'], u” — proje[z']) <0, Val € 3, u' € C. (4)

Recall that an operator S is said to be demiclosed if w,, — % weakly and Sw, — u
strongly, imply S(@) = u. Next, we collect several conclusions for our main results in the

next section.
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Lemma 2.1 ([24]). Suppose {w,} C [0,00), {vn} C (0,1) and {o,} are three real number
sequences satisfying

(1) Wpt1 < (]— - Vn)wn + 0n,Vn > 1;

(i) o2y v = o003
(iii) hmsupg—n <0 or Y7 |on] <oo.

n— oo Vn

Then lim,,_, @, = 0.
Lemma 2.2 ([12]). Let {w,} be a sequence of real numbers. Assume there exists at least a
subsequence {wy, } of {wn} such that wy, < wy, 41 for all k > 0. For every n > Ny, define

an integer sequence {T(n)} as
T(n) =max{i <n:w,, < Wy,+41}.

Then 7(n) — o0 as n — oo and for all n > Ny, we have max{w(n), Wn} < Wr(n)41-

3. Main results

Let € be a nonempty closed convex subset of a real Hilbert space H. Let the operators
f,9: € — H be Li-Lipschitzian and Lo-Lipschitzian, respectively. Let ¢: € — € be a weakly
continuous and J-strongly monotone operator such that its range R(¢)) = €. Let v > 0 and
> 0 be two constants satisfying max{Liv, Lop} < §. Let A: € — H be a M-inverse
strongly -monotone operator with coefficient A > 0. Let B: € — H be a S-inverse strongly
y-monotone operator with coefficient 5 > 0. Denote the solution set of (3) by €, that is,
Q=GVIA,Y,C)GVI(B,,C). In the sequel, we assume Q # (). Now, we first consider
the following variational inequality (VI(f,, @), in short) of finding & such that

(vf(@) = 9(@), 9" — (@) <0, vaT € . (5)
The solution set of (5) is denoted by VI(vf, v, C).

Remark 3.1. VI(vf,v,€) has a unique solution provided that vL; < ¢, see [30].

In the sequel, we assume that ' := VI(vf,4¢,C)NVI(ug,,C) # (). Next, we present
our algorithm for solving the problem (3).

Algorithm 3.1. For given initial guess o € C arbitrarily, let the sequence {x,,} be generated
iteratively by

Y(un) = proje[Anv f(zn) + (1 = An) (Y (2n) — snAxy)],
w($n+1) = (1 - Un)proje[/\n:ug(xn) + (1 - )‘n)(w(un) - fYn‘Bun)} (6)
+Unw(xn)7 n > 0,

where {\,} and {0, } are two real number sequences in [0,1] and {s,} and {y,} are two real
number sequences in (0, 00).

Theorem 3.1. If the following assumptions are satisfied:
(i) limp oo Ap =0 and ), Ay = 00;

(ii) 0 < liminf, , o < limsup,_,. on < 1;

(iii) 0 < liminf, o0 ¢ < limsup,, oo Sn < 2X;

(iv) 0 < liminf, o v < limsup,, ., v < 206;
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then the sequence {x,} generated by (6) converges strongly to & € Q which solves variational
inequalities VI(f,4,C) and VI(g,v,C), that is, T € T.

Proof. By Remark 3.1, we know that T' is a singleton denoted by . By virtue of (4), we
obtain (&) = proje[¥(Z) — ¢nAZ] and ¥(Z) = proje[v (&) — v, BE] for all n > 0. Since A is
A-inverse strongly ¢-monotone, by Definition 2.1, we have

(4 (2) = cAz) — ((2) — cAZ)||?
= [9(@) = $(@)|* - 26(Az — AZ, () — (7))
+ ¢ Az — Az|? (7)
< (@) = (@)|* - 2| Az — AZ||* + [ Az — AZ|
<l (@) = »@))? + (s = 20 Az — AZ||*.
It follows that
1(@(xn) = phAzn) = (P(F) = AD)[I” < 9 (2n) — (F)]°
+ 6o (sn — 22 |Azy, — AZ|? 8)
< [ (@n) — (@))%
Similarly, we also obtain
(% (un) = 1 Bun) = (Y(Z) = 1 B2)|* < [¢(un) — (@)
+ 90 (90 — 26)[|Buy, — Bz 9)
< v (un) = (@)%
According to the d-strong monotonicity of ¢, we deduce
@) — bl = ol — yll, Vo, y € €. (10)
Set vy, = proje[Anpg(xn) + (1 — M) (W (un) — ¥ Buy)] for all n > 0. From (6), (8) and (10),

we derive

[¥(un) — (@)l = [lproje[Anv f(za) + (1 — An) (Y(2n) — GpAzy)]

= proje[¥(z) — cn AZ]|

<A = A (W) — whzn) — (V(E) — uAT))
T A (Vf(zn) — ¥(@) + G AZ) ||

< Malvf(zn) — v @)+ Aallv f(Z) — $(Z) + G AZ||
+ (1= 2 ((w0) = suan) — (P(F) — 6o AT) ||

< MvLi||zn — 2| + A[[v f(Z) — $(Z) + cnAZ]|
+ (1= A)[[e(zn) — o (@)]|

< MLy /8|9 (zn) — (@) + Aallv f(2) — (&) + G AZ|
+ (1= A)[[e(zn) — (@)

=[1 = (1 = vLi /SN[ (2n) — ()|
+ MV f(2) = 9(F) + cnAZ]|

< [1 =1 =vLi/0)N]l[e(2n) — ()|
+ A([lvf(2) — (@) + 2M[1AZ])
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and
[on = (@)]| = [[proje[Anpg(@n) + (L = An) (¢ (un) — 1 Bun)]|
< [1 - (2 —An — VL1/5 - NL2/6 + VLl)\n/d)An]Hw(xn) - w(‘%)H (12)
+ An([[vf(2) = (@) + 2 AZ| + [|ng(Z) — ¥ (2)]| + 28] BZ()).

By assumption (¢), without loss of generality, we can assume that there exists a constant
7> 0such that 7 <2 — X, —vL1/6 — ulo/6 +vL 1\, /6 for all n > 0. Hence, we get

[on = (@) < An(llvf(Z) = P(@) | + 2AAZ]| + [lug(Z) — P (2)]|
+2B(BE[|) + (1 — 7An) ¥ (2n) — ¥ (2)]]-
In terms of (8) and (11), we obtain
9 (un) = 9@)1P < (1= X)(%(20) = Azn) — (H(E) — uAT))

+ A (vf () = ¥(Z) + nAT) |

< (1= M) ((n) — suhzn) — ($(F) — cnA))?
+ Mnllvf(zn) = () + G AZ|?

< (1= M) [¥(n) = Y@ + 6aln — 23 [May — AZ|]
+ Ml f(@n) — V(&) + AT

(13)

Similarly, from (9) and (12), we also have
lvn = (@)1 < Aallpg(@n) — (@) + 1 BE|* + (1 = A [[¢(un) — (@)
+ 7090 — 26)||Bun — BE|?].
Combining (6) with (15), we obtain
[ (@ns1) = (@) < onlld(zn) = (@) + (1 = on)llvn —P(2)]
< (1 =on)(1 =7A)[[¢(zn) — (2)]
+ onllv(@n) = @) + (1 = on) (v f(2) — (D)
+ 2N[AZ[| + [|ng(Z) — o (2)]| + 28] BE) (16)
=1 = =) Aulll¢(zn) — P(2)]]
+ (1 = on)TAn(lvf(2) — P(@)] + 2] AZ|
+ lng(®) — (@) + 26| Bz|]) /7.
By mathematical induction,
[¢(zn) — (@) < max{|[¢(z0) — »(@)I, ([vf (&) — (@) + 2A[AZ|
+ [lng(Z) — 9 (@)|| + 28(BE[])/7}-

Consequently,
1
lzn = 2| < 5 max{[[¥(zo) = D@, ([ f(2) = »(@)] + 27| AZ]]

+ lng(®) — (@) + 28| Bz])/7}
Thus, {z,}, {¥(z,)}, {un}, {vn}, {Ax,} and {Bu,} are all bounded.
From (5), we get

P(@nt1) = P(zn) = (1 = on)(vn = ¥(2n)), n > 0. (17)
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By computation, we deduce

19 (@ns1) = Y@ = ¥ (2n) = @) + 1 (@nr1) = ¥ (za) ]
+ (1= on)lllvn = (@) = [l (zn) — ¥(@)]? (18)
— [l — ¥ (za) 2.
Consequently,
19 (@ 1) = Y@ = [l (zn) — $(@)]?
= (1= on)lllvn = @)II* = I (zn) — ¥ (@)
= o = (@) 1P + (1 = 00)?[lvn — ¥ ()| (19)
= (1= on)lllve = $@)II* = I (za) — ¥ (@)]7]
= on(1 = on)llvn = ¥(zna)]|*.

In light of (11), we get

9 (un) = »(@)* < [1 = (1 = vL1/8)An] 9 (wn) — (@)

lvf(@) —¥(@)] + 2AIIJ‘WUII)2 (20)
(1—vL./3) :

+(1- uLl/é))\n<

Next, we consider two possible cases. Firstly, we assume there exists some integer m >
0 such that {||¢(z,) — ¥ (Z)||} is decreasing for all n > m. In this case, we know that
limy, 00 ||9(25) — ¥(Z)|| exists. From (12) and (19), we have

an(1 =) vn = (@) |I” < l[o(@n) = @)I° — [¢(@n41) — (@)
+ (1= on)[llvn = 0(@)|° — [¥(zn) — ¥(@)]]
< [[¥(zn) = »(@)|° = ¢ (znt1) — »(@)|
+ %(I\Vf(f?) — (@) + 2A[AZ| + llpg(Z) — o (2)]
+ 26| Bz)?
— 0.
This together with assumptions (i) and (ii) implies that
Jim{|vp, = (@n)|| = 0. (21)
Moreover, from (17), we get
Jim [ (2n41) = ()] = 0. (22)
By (15), we have
[(@ns1) = (@)1 < onll(@n) = Y@ + (1 = o) llva — (@)
< Ml f (@) = »(&) + AZ|? + [lng(aq) — ¥ (F)
+ 1 BE?) + [[¢(xn) — (@) (23)
+ (1= 00)(1 = An)[n(sn — 2N Az, — AZ|?
+ (= 28) || Buy, — BE|].
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Hence,

(1= 0n)(1 = An)[6n(2X = ) Az — AZ[? + 70 (28 = 70 [|Bup — B||?]

< [ (@n) = @17 = [$(@n1) = @I + Aalllvf(2n) — (@) + uAZ|?
+llpg(an) = () + 7Bz

< (W(zn) =@ + [[P(@n41) = L@)IDIY(@nr1) = P(@n)||
+ Anllvf (2n) = (&) + AT + ug(zn) — (@) + 1 BT|?)

— 0 (by (7) and (22)).

This together with assumptions (i) — (iv) implies that
lim, o0 |Azy, — AZ|| =0 and lim, o [|Bu, — BE|| = 0. (24)

Set yn, = P(xn) — snAx, — (V(Z) — ¢, AZ) for all n > 0.
Applying (4), we get
19 (wn) — w(f)HQ < Qn(vf(@n) = ¥(T) + 6 AT) + (1 = X))y, P (un)

—¥(2))

= %{HM(VJ"(%) — (&) + 6nAT) + (1 = An)yn?
+ 19 (un) = @)1 = A (v f(20) — $(F) + 60 AT)
+ (1= An)yn — ¥(un) + (3)[*}

< %{Anlll/f(l’n) — O(F) + uAZ|* + [[¢(un) — (@)
+ (L= )W) = @) = IMa(wf(20) — (F) (25)
+ AT = yn) + Y(Tn) — Y(un) — su(Azy — A£)||2}

= %{Anlll/f(wn) — O(F) + AT [[¢(un) — (@) [P+
+ (1= M) () = 9@)1? = [9(@n) = (un)|?
- )‘ELHVf(-rn) —P(Z) + AT — yn||2
— || Az, — AZ|| + 26\ (Axy — AT, v f(2,) — P(Z)
+ AT — yn) + 26, (P (2n) — Y(un), Axy, — AZ)
- 2)‘n<w<xn> - w(un), Vf<xn) - w(@ + AT — yn>}

It follows that
[9(un) = 0(@)|1? < Anllvf(@n) = 9(F) + uAZ|? = ¢ (2n) — ¢ (un)]|®

+ 2Xn [l (zn) — Y(un) [V f(20) = D(E) + nAT — ynl|
+ 26 A [[ Az — AZ|[ [V f(20) — Y(F) + n AT — yu| (26)
+ 26|19 (2n) — Y(un) | Az, — AZ||
+ (1= )9 (zn) — (@)1
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In light of (15) and (26), we have

9 (@ns1) = (@)I° < onlli(zn) — ¥

It follows that

BI* + (1= o) vn — (@)
< onllvp(@n) = @) + (1 = on) [[¢(un) — (@)
+Anllpg(@n) = (@) + 1 BE|?).

[ (@ns1) = @)I1° < (1= on)nllug(an) = (@) + 1Bz

Then,

+ (1= on)Aallvf(2n) — () + G AZ||?

+ (1= M) (1 = o)l () — ()]

+onll(@n) =@ = (1= ou)llY(@n) — (un)|?

+ 26 (1 = o) An|[ Az — AZ[|[|[vf (2n) = () + AT — yal

+ 26 (1 = o) [¢(2n) — Y (un) || Az, — AZ]|

+2(1 = on)An[[P(@n) = P(un) [ (2n) = (Z) + nAT = ya|

< M(vf(@n) = ©(@) + AZ| + [lpg(en) — (&) + 7. B2|?)

+ 2 A [ Azn — AZ|||[vf(20) = () + nAT = yal|

+ 26allv(2n) = Y (un) | [z — AZ|| = (1 = o) [$(@n) = ¥ (un)|?
+ 2An[Y(@n) — O (un)l[[[vf(2n) = $(T) + AT =yl

+ 1 (za) — (@)%

(1= o)l (@n) = ¥(un)ll* < (I (@n) = Y@ + [$(@nt1) = D(@)])

[ (@n41) = Y@l + A (v f(zn) = D(F) + AT
+lng(wn) = (@) + 7 BE|?)

+ 2 A | Azn — ALV f(20) = Y(E) + nAT = yal|

+ 26[[¢(zn) — p(un)|[[Azn — AZ|

+ 209 () = Y (un) [l f (2n) = $(2) + AT — ynl|

The above inequality together with (4), (i), (22) and (24) implies that

lim_{|9(z,) — ¢(un)|| = 0.

n—roo

(27)

Next, we prove liminf,, oo (v f(Z) —1(Z), ¥ (Z) — ¢ (uy)) > 0. Let {¢)(un,)} be a subsequence
of {¢(uy,)} such that

liminf(v f(Z) — (Z), ¥(Z) — ¢¥(un))

n—oo

= lim (Vf() — (@), () — blun,)

(28)

Since {¢(un,)} is bounded, there exists a subsequence {w(umj )} of {#(uy,)} which converges

weakly to some point ¥(z) € €. Without loss of generality, we may assume that ¢ (u,,) —
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¥(z). Next, we need to prove z € GVI(A,1,C). Set

{Av—i—Ne(v)7 v e C,
Rv =
0, v & C.
By [42], we know that R is maximal 1)-monotone. Let (v,w) € G(R). Since w—Av € Ne(v)
and z, € C, we have (¢¥(v) — ¢¥(x,), w — Av) > 0. Noting that ¢ (u,) = proje[Anvf(zn)
(1= A) (W (zn) — suAzn)], we get
(V) = ¥(un), ¥(un) = A f(@n) + (1 = An) (¥ (@n) — snAzn)]) = 0.
It follows that

) =0 = 2 0 ) = ) + ) 20,

i ,.A’U> - <¢(U) - w(um)ﬂAxn)

<
—
=
|
<
8
3

+ ﬁ@(v) — P(un, )y Vf (Tn,) — Y(Tn;) + Sny ATn,)
- (0l0) = (), L) =0
= (¥(v) = ¢(n,), Av = Azp) + (P(v) = (2n,), Azn,)
.
+ a(Wﬂ) — (tn, ), Vf (Tn,) — Y(Tn,) + n, An,) 9)

§ni

— () — lun,), M
— ((,) — (up, ), Azy,).

Since ||¢(zn,) — Y(un,;)|| = 0 and ¥ (zpn,) — ¥(z), we deduce that (P(v) — ¢¥(z),w) > 0
by taking i — oo in (29). Thus, z € R710 by the maximal ¢-monotonicity of R. Hence,
z € GVI(A,1,C).

Note that ||v,, — ¥ (un,)|| — 0. By the similar argument, we can deduce that z €
GVI(B,1,C). Therefore, z € Q.

From (28), we obtain

lim inf (v (7) = $(F), $(F) — ¥un)) = lim (v (7) = $(@), $(F) — ()

)

(30)
= (vf(@) —¥(2),¥(F) — P(2)) > 0.
Consequently,
liminf(ug(#) — (%), Y(Z) — va) > lim (ug(F) — (2), Y(Z) — va,)

= (ng(Z) —¥(2),¥(2) —¢¥(2)) 2 0.



12 Yonghong Yao, Mihai Postolache, Jen-Chih Yao

Applying (4), we obtain

19 (un) = (@)]* = [[projeNarf (2n) + (1 = Aa)(¥(zn) — caAn)]
= projo[¥(z) — (1 = An)uAZ] |
< QM f(@n) = () + (1= An)yn, P(un) — 9 (2))
S (0= A)l[Y(n) = snAzn — (V(2) = uAD) |1 (un) — ()|
+ A (Wf(Z) = P(2), P (un) — ¥ (2))
+ A (f(@n) = (), ¥ (un) — ¥ (2))
< AnLavlen = 2[[[[¢(un) = (@)

+ AV f(Z) = (T), Y (un) — (7))
+ (1= ) [[¢(@n) = 0@)[[[[¢(un) = (@)
S A (WL /8) |19 (@n) — (D) |9 (un) — ()]

FAI(E) (@), V) — ()

O AIn) — 6@ () — 03]
= 1 (1 LA () — (@) o)~ (E)]
Al (3) — 9(3), () — V()

e U mesmelk

A (3) — 9(3), () — V()

b5 (m) — (@)

It follows that

[ (un) = $(@)* < [1 = (1 = Law/8)Aa][9h () — (&)
+ 22 (WS (Z) = P(2), P (un) — 9 (2)).

Set zp = Y(up) — WmBuy) — (T) — v BZ) for all n > 0. By (4), we obtain

lvn = ¥ (@)]1* = [proje[Anug(zn) + (1 = Xa) (¥ (un) = ynBun)]

— projo[v() — (1 = An) 1B

< Anlpg(@n) = 9() + (1= An)zn, vn — ¢ (2))

< (1 =) [[9(un) = mBun) = ($(2) = mBI)||[|on — ()]
+ Anplg(an) = (), vn — ¥ (2))
+ An(pg(Z) — (Z), vn — ¥(2))

< (1 =) [[9(un) = (@) |[[[on — (D)
+ An (g (2) — (), vn — ¥ (2))
+ AnLopllzn — Z|[[[on — (D)



Generalized variational inequalities 13

This together with (10) implies that

[vn = $(@)* < An(pL2/8) ¢ (2n) = ¥(@)|lvn — H(@)]]
+ (1 = Al (un) = (@) lvn — P (2)]|

< 2l B2 0 iy (n) — V(@)

+ §an = Y@)II° + Mlng(Z) — »(&), v — ().

It follows that
[on = $(@)1* < Xa(pL2 /8|9 (2n) = H(@)]7 + (1 = M) [[$(un) — ()]
+ 22 (g (T) — (), vn — Y(2))
<=1 —pLe/d+ (1 =X)L = Liv/8) Al ¥ (xn) — 9 (2)||?
+2(1 = M)A (W f (%) = P(2), P (un) — 9 (7))
+ 22 (g (2) = (), vn — ().

Therefore,

[(@nt1) = Y@ < anllto(@n) = P(@)]° + (1 = on)lon — (@)
<M1= =0,)1—pLa/d+(1=A,)
)A

x (1= Liv/8)) Al (@n) — (@) (32)
+2(1 = o)1 = M)A (v f(Z) = 9 (2), P (un) — ()
+2(1 — o)A (g (2) — ¢(Z), vn — ¢ (2))-

By (30), (31), (32) and Lemma 2.1, we conclude that i (x,) — ¥(Z) and z,, — 7.

Secondly, assume there exists an integer ng such that || (2, ) — ¥ (2)|| < [[¥(Zne4+1) —
()| Set wn, = {||¥(zn) — ¥(2)]|}. Hence, we get wp, < wpy41. For n > ng, let {7,} be
a sequence defined by 7(n) = max{l € N|ng <1 < n,w; < wj41}. We can check easily that
7(n) is a non-decreasing sequence satisfying lim, o, 7(n) = 00 and w,(,) < wy(y)41 for all
n > ng.

By the similar argument as that of (30), (31) and (32), we can prove that

lim inf (v (&) — $(2), $(utr ) —$(E)) >0 and ”
lim inf (ug (%) — (2), 9() — vr()) > 0,

and
W21 S = (1= 0rm) (1= pL2/8 4 (1= Ari)) (1 = Lav/8)) Ar(m)|w ()
+2(1 = 07(n)) (1 = Ar(n)) Ar(n) (W (2) = ¥(Z), ¥ (ur(n)) — ¥(2)) (34)
+2(1 = 07 () ) Ar(n) (19 () — V(F), V7 (n) — ¥(T)).
Note that w;(n) < wr(n)+1. We deduce from (34) that
Wiy < (1= M) en (W f(E) = (3), ¥ (ur(ny) — ¥ (E))
+ on(pg(Z) — (2), vr(n) — Y(T)),
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2(1 — )\T(n))

1= 0r(n)(1 = pLa/6 + (1 = Arn)) (1 = L1v/6)
derive lim sup,,_, ., wr(n) < 0, and so

where o, = . In terms of (33) and (35), we

lim Wr(n) = 0. (36)

n—oo

From (33) and (34), we also obtain limsup,, ., Wr(n)+1 < limsup,, . wr(n). This together
with (36) implies that lim, ;o wr(n)41 = 0. According to Lemma 2.2 to get 0 < w,, <
max{wr(n), Wr(n)+1}- Therefore, w, — 0. That is, 2, — #. This completes the proof. O

Algorithm 3.2. For given initial guess xo € C arbitrarily, let the sequence {x,,} be generated
iteratively by

up = proje[AnVf(zn) + (1 = An)(Tn — suAzy)],n > 0,

(37)
Tpy1 = OnZn + (1 — Un)proj@[/\n,ug(a:n) + (1= M) (un — 'Yn‘Bun)L

where A, B : € — H are A-inverse strongly monotone and B-inverse strongly monotone,
respectively, {A\,} and {on} are two real number sequences in [0,1] and {¢,} and {v,} are

two real number sequences in (0,00).

Corollary 3.1. If the following assumptions are satisfied:
(i) limp—oo Ap =0 and >, Ay = 00;
(ii) 0 < liminf,, o oy < limsup,,_, . on < 1;
(iii) 0 < liminf, o0 ¢ < limsup,, oo Sn < 2X;
(iv) 0 < liminf, o v < limsup,,_,, v < 206;
then the sequence {x,} generated by (37) converges strongly to & € VI(f,€)NVI(g,C).

4. Conclusions

In this paper, we investigated a generalized variational inequality problem. We suggest
a projected type algorithm for finding the common solutions of two variational inequalities.
We prove the strong convergence of the algorithm under the mild conditions. Noting that
in our suggested iterative sequence, the involved operators A and B require some form of
strong monotonicity. A natural question arises, i.e., how to weaken these assumptions?
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