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A NOTE ON PLANE PARTITION DIAMONDS
Mircea Cimpoeas! and Alexandra Teodor?

We prove new formulas for Dy (n), the number of plane partition
diamonds of length k of n, and, also, for its polynomial part.
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1. Introduction

In his famous book "Combinatory Analysis” [10, Vol.II, Sect. VIII, pp.
91-170] MacMahon introduced Partition Analysis as a computational method
for solving combinatorial problems in connection with systems of linear Dio-
phantine inequalities and equations. He considered partitions of the form
(al, ag, s, a4) with

a1 > ao, ay > as, as > ay and az > ay. (1.1)

By using Partition Analysis he derived that

ai a2 ,,a3 .04 __
E et astrsieyt = (1.2)

where the sum is taken over all non-negative integers a; satisfying (1.1). Let

1 — 23913

(1 — ZL’1>(1 — I‘ll’g)(l — Ilﬂlgl‘g)(l — .131%2.1’3374),

Di(n) := #{(a1,as,a3,a4) : n=a; + as + az + a4 where q; satisfy (1.1)}.
Taking z1 = x9 = x3 = 24 = ¢ in (1.2), MacMahon observed that

(1-q)(1=¢*)*1—¢%

In [1], Andrews, Paule, and Riese introduce the family of plane partition
diamonds, as a generalization of the above example. A plane partition di-
amond of length k is a sequence of length 3k + 1 of nonnegative integers

3" D" = 1 . (13
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a=(ay,as,...,a3ks1) satisfying, for 0 <i <k — 1,

a3i41 2 G312, (341 = (343, U3i42 = A3i44, A3i43 = A3i44- (1.4)

Let Dg(n) be the number of plane partitions diamonds of length k of n. We
mention that several generalizations of plane partition diamonds were studied
in [9] and [2] but are beyond the scope of this note.

The paper is organized as follows. In Section 2, we recall the definition
and some basic properties of the restricted partition function p,(n), where
a = (ay,...,a,) is a sequence of positive integers. Also, we recall several
results which would be used later on.

In Section 3, we study basic properties of the function Dy (n). For k <1
we consider the sequence alk] = (a[kl1, alkla, ..., alk]sk+1), where

_)J, J# 4(mod 6)
alk]; = {j j =4(mod 6)

29

In Proposition 3.1 we show that Dy (n) can be written as

®k(”) = Z Palk] (n - mJ),

JC{O&k-‘rl,ak-i-Q,'“ ,k’}
where m; = >, ,(3i — 1) and oy, = £ ]. In Proposition 3.2 we show that

Di(n) = fran(n)n®™ + -+ fri(n)n+ fio(n) for n > ng(k),

where ng(k) is a constant which depends on k, is a quasi-polynomial of degree
3k. In Corollary 3.3 we obtain new formulas for the periodic functions fj ;’s
and, consequently, for Dy(n).

In Theorem 4.2 we prove a concise formula of Dy(n). In Theorem 5.1 we
prove formulas for the *Sylvester waves’ associated to Dg(n). Also, in Theorem
5.2 we prove a concise formula of Py(n), the polynomial part of Dy(n).

2. Restricted partition function

Let a := (ay,as,...,a,) be a sequence of positive integers, » > 1. The
restricted partition function associated to ais py : N — N, p,a(n) := the number
of integer solutions (zy,...,x,) of >.'_, a;x; = n with z; > 0. Note that the
generating function of p,(n) is

- 1
pa(n)q" = . 2.1
; ) (L—q)---(1—q™) (21)
Let D be a common multiple of aq, as,...,a,. We recall the following well

known result:

Proposition 2.1. (Bell [4])
pa(n) is a quasi-polynomial of degree r — 1, with the period D, i.e.

pa(n) = da,k—l(TL)nkil + -+ da,l(n)n + da,0<n)7



A note on plane partition diamonds 133

where dam(n+ D) = dam(n) for 0 <m < k—1andn >0, and daj_1(n) is
not identically zero.

Sylvester [12, 13, 14] decomposed the restricted partition in a sum of
“waves”:

=Y Wiln.a), (22)

Jj=1

where the sum is taken over all distinct divisors j of the components of a and
showed that for each such j, W;(n,a) is the coefficient of t~! in

—un nt

2 &
(L= pifemat) . (1= pittemart)’

0<v<j, ged(v,5)=

where p; = ¢’ and ged(0,0) = 1 by convention. Note that W;(n,a)’s are
quasi-polynomials of period j. Also, Wi(n,a) is called the polynomial part of
pa(n) and it is denoted by Pa(n); see also [11, Section 4.4].

The unsigned Stirling numbers are defined by

= N

We recall several results which would be used later on:

Theorem 2.2. (|6, Theorem 2.8] and [7])
(1) For0<m <r—1andn >0 we have

dam(n) = & _1 ] 2 i [k + 1} m(:”b) g

<D . _D —
0§J1§a—17...70337,5;_1k m
a1j1++arjr-=n( mod D)

X D_k(aljl + -+ arjr)k_

(2) We have

o) = > oo ()

m=00<j1< B —1,..,0<j, < 2 —1h=m
a1ji+-- +a,~]r_n( mod D)

x D™ (ayji + -+ + apgie) 0

Theorem 2.3. ([6, Corollary 2.10]) We have

pa(n) = v _1 0 > 0 <n_ al‘h T e +£) .

OSjlﬁgfl,...,Onggﬁ,l /=1
a1 j1+-+arjr=n( mod D)
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Proposition 2.4. ([8, Proposition 4.2]) For any positive integer j with j|a;
for some 1 <1 <r, we have that

W(n.8) = ey >3 ; L@ . 1] (o (mk_ 1)'

m=1 ¢=1 k 1

Z D *(ayjy + - + apg) L

. _ D . _D
OSJISH_lr"vOS]T'ST,’._l
a1ji+-+arjr=£( mod j)

Theorem 2.5. ([6, Corollary 3.6])
For the polynomial part Pa(n) of the quasi-polynomial pa(n) we have

r—1

I (G

B():]_,Bl:—%,BQZ ,B4:—%andBn:()isnisoddananI.

D=

Theorem 2.6. ([6, Corollary 3.11] or [3, page 2]|)
The polynomial part of pa(n) is

Pa(n) = 1 Z (_1)u Z —B.il - ‘Bir azf .. aij"nr_l_u.

21!"'ZT!

3. Preliminaries

The number of plane partitions diamonds of length k& of n is
Di(n) := #{(a1, a9, ...,a3k+1) : N = aj+as+---+aspr1 where a; satisfy (1.4)}.

Using partition analysis, the authors in [1] find the generalization of (1.3),
namely

o ﬁ(l +q3z‘—1)
P (31)

[T (1—-q)

i=1
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Note that, if i < *4 then 6i—2 < 3k+1. Since (1+¢*1)(1—¢*~!) = 1—¢%2,
from (3.1) it follows that
k

oo [T A+¢")
n 1=ap+1
> Dy(n)g" = oy L , (3.2)
n=0 2 . .
[T (1 —g%1) I (1-4)
=1 1<i<3k+1 and
iZ4( mod 6)

where oy := [ 2|, Note that, in the case k =1, a; = 1 and (3.2) reduces to
(1.3).

For k < 1 we consider the sequence alk] = (alk]1,alk]s, ..., alk]sk+1),
where

], {j, j % 4(mod 6) (33)

1 j=4(mod 6)
Proposition 3.1. Using the notations above, we have that:
Dy(n) = Z Pak)(n —my),
JC{ap+1,ak+2, ,k}
where my =%, ,(3i — 1) and oy, = 5]
Proof. From (3.2) it follows that

my

S o= Y 1 . (34)

K=
R § (N C s IR § (N C )
=1 1<i<3k+1 and

iZ4( mod 6)
On the other hand, from (2.1) we deduce that
(o9} . qu
Zpa[kz]<n —my)q" = = . (3.5)
n=0 2 . )
[T A-¢*Y I (1-¢)
i=1 1<i<3k+1 and
i#4( mod 6)
The conclusion follows from (3.4) and (3.5). O

Let D[k] = lem(Ay), where Ay = {1 < j <3k+1 : j # 4(mod 6)}.
For instance, D[1] =lem{1,2,3} =6, D[2] = lem{1,2,3,5,7} = 210 etc. Note
that
Ak = {a[k:]l, a[/{?]g, e ,a[k]3k+1} (36)
and thus D[k] = lem{alk]1, alk]a, . .., a[k]sks1}-

Proposition 3.2. Dy (n) is a quasi-polynomial of degree 3k, with the period
D[k], i.e.

Di(n) = fk,3k<n)n3k + -+ fran)n+ fro(n), for alln > ny(k),
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where no(k) = (k_ak)(3§+3a’“+l) and fr;(n+ DIk]) = fir;(n) for all n > ny(k).
Moreover, we have that:

frj(n) = > dafr) i (0 — my).

Jc{og+1,a542, k}

Proof. Note that

k k
nO(k) = Myap+1,00+2,...k} = Z (3i — 1) =3 ( Z Z) — (k: — Oék) =

i=ap+1 i=ap+1

(k- ak)(sk; Bax+1) 57)

The expression of fj j(n) follows from Proposition 3.1 and (2.1).
Now, the conclusion follows from (3.7) and the fact that dap ;(n+D[E]) =
dafk),m(n) for all 0 < j < 3k and n > 0. O

Corollary 3.3. With the above notations, for n > ng(k) we have that

3k

1 3k+1
)= > > ST
Jc{ag+1,042, k} 0<ji< S[[:]}_i 1, 1<i<3k+1 l=j
alkl1j1+--+alklskt1d3k+1=n—my( mod DI[k])
it —¢ . - —j
x(=1) j Dk]" (alk]ij1 + - + a[k]sei1dars1)"
In particular, it follows that
3k 3k
1 3k+1
Dk(n):(%)!z 2. 2 Z[HJX
=0 JC{op+1,00+2, k} 0<ji<PWi 1 q<i<3k41 t=j

alk];
alk]1j1+--+alk]zx+1J3k+1=n—mj( mod DI[k])

< (~1)td (f) DI alkJ1j1 + -+ + alklsessess)’ (n — m).

Proof. The conclusion follows from Proposition 3.2 and Theorem 2.2. O

4. New formulas for the number of plane partition diamonds of
length & of n.

We recall that aj, = [21|. We define

Sayp — 2, kis odd
ﬁki:{ ’

dB,=1{1,2,... .
Sarp + 1, k is even and By, = {1,2,..., B}

For instance, By = {1,2,3}, By ={1,2,3,4,5,6} etc.
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Lemma 4.1. With the above notations, the map

) ) ) — 3

is bijective. Moreover, the inverse of ¢y is the map

_ . o [5-3
Sok;l:‘Ak%Bkyﬂokl(J):]_{T-"

Proof. Let 7 € By and write j =5t +r for 1 <r <5 and ¢ > 0. We have that:
or(bi+1) =60+ 1, pp(5i +2) = 6i + 2, @r(5i + 3) = 6i + 3,
or(bi+4) =60+ 5, or(bi+5) = 61 + 6.

If £ = 2p, then oy, = p and

or(bag +1) =pr(bp+1) =6p+1 =3k + 1 =max Ay.
If k=2p+1, then ap =p+ 1 and
or(bay, — 2) = @i (5p + 3) = 6p + 3 = 3k = max Ay.

Also ¢r(1) = 1 and ¢y, is increasing, hence injective.
From the above considerations, it follows that ¢y, is bijective.
Let ¢y : By — A, Up(j) =7 — ’—J%?’-‘ Let 7 € Ai. Then we can write
j =60+ 7, where 1 <r <6 and r # 4. We have that
Ur(6i+ 1) =50 + 1, (60 4+ 2) = 5i + 2, (61 + 3) = bi + 3,
Y60+ 5) = 5i + 4, (6i + 6) = 5i + 5.
Since ¥(1) = 1 and ¢p(maxAx) = max By, from the above identities, it
follows that 1)y, is surjective and increasing. Hence, 1), is bijective.
The function ¥ o ¢y, : Ap — Ay is bijective and increasing, hence ¥y o

is the identity function of A,. Similarly, oy o ¢ is the identity function of By.
Thus, ¥, = gp,;l, as required. O]

We consider the subset
B =1{j € B : j=2,5(mod 5) and j < ;' (3o, — 1)}
We also let
er : Br = {1,2}, er(j) = x2,(j) + 1,

where xg, is the characteristic function of the subset Bj, of Bj. We also let

st ta, o tg) =[] (1+max {tj,2 (Z[(];]) — 1) —tj}) .

jeB),
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Theorem 4.2. We have that:

1 3k Z tj‘Pk
Dk(n): (Tk)' Z Sk(tl,tz,...,tgk)n D
" Jc{ag,anq1, k) and =1

(tl,tg ..... tgk)EAk(mJ)

where Ag(m) = {(t1,t2,...,t5,) : 0<t; <er(j) (fk—[(kj]) ) for all1 <
Br and Zﬁ" tivr(j) =n —m(mod DIk])}.

Proof. First, note that for n < m; we have that:

lg_kl (n — alkjs = — alklskn sk =My f) =0.
(=1

DIk]
Therefore, from Proposition 3.1 and Theorem 2.3 it follows that:

1
Di(n) = B > >

JCtamanri ko< < 1 0k < g~

a[k}1j1+--~+a[1k]3k+1j3k+15n—mj( mod D[k])
3k . .
H n— a[k]ljl — a[k]3k+1]3k+1 —my 4/
DI[K] '

The conclusion follows from Lemma 4.1.

Example 4.3. (MacMahon’s example) We consider

7 <

Di(n) = #{(a1,a2,a3,a4) : a1+ az+az+as =n, a; > as, a1 > ag, as > a4

and az > a4}

Comparing (1.3) with (2.1), it follows that Dq(n) = p(1,2.2,3)(n) for all n > 0.

Since a; = 1 and D[1] = 6, from Theorem 4.2, it follows that:

1

Di(n) = ¢ > (min{ts, 4—t:}+1) [ |

0<t1 <5, 0<ta<4, 0<t3<1 /=1
t1+2t2+3t3£n( mod 6)

n—t1—2t2—3t3
6

5. The polynomial part and Sylvester waves of Dy (n)

From (2.2) and Proposition 3.1, we can write

+£).

Di(n) => Wk, n), where W;(k,n) = > W,(n —my,alk]),

Jj=1 Jc{ap+1,ap+2, k}
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my = >,.;(3t — 1) and oy = [®]|. In particular, the polynomial part of
Di(n) is the function

Pp(n) := Z Pa(n —my), (5.2)
JC{akJrl,oszrQ,---,k}
where Pap(n —my) = Wi(n —my,alk]).
Theorem 5.1. With the above notations we have that
3kl j 3k
B 1 3k+1 Ji-mt1 t
Wilk:n) = HEm! 2. 2,20 2. [t+1] m—1)"
J{ag+1l,a5+2, ,k} m=14=1 t=m—1

X > D" (alk]yjr+ - +alk]sir1dsesr) " (n—my)"

DIk]y Dlkl3k41
0<]1<a[] -1,.., O<J3k+1—a[k]3k+1 -1

alk]1j1+-+alk]3k+1J3k+1=£( mod j)

Proof. The conclusion follows from Proposition 3.1, Proposition 2.4 and (5.1).
O

Theorem 5.2. With the above notations, we have that Pr(n) equals to

Bk
sk [ n— 20 tige(d) —my

1 =
ch{ Z . dsk(t17t2a--~’tﬁk)g DlF] +0],
Qf, Q41,7 5]y an
(t1,t2,st, )EBK(m)
where
~ { Dlk .
Bi(m) = {(t1.t2,...,tg,) : 0 <t < ex(y) (so [(j]) — 1> forall1 < j < B}
k

Proof. The proof is similar to the proof of Theorem 4.2, using Proposition 3.1,
Theorem 2.5 and (5.2). O

Theorem 5.3. With the above notations, we have that:

1
Pn) = alkly - - - Z Z 3k —u)

alk
[Klsk+1 JC{antlap+2, k} u= 0

By Biy ;
YD SISl (- )
. - gt 13k
11+ Figp+1=U
Proof. The conclusion follows from Proposition 3.1, Theorem 2.6 and (5.2).
O

Example 5.4. (MacMahon’s ezample revised)
We consider D;(n); see Example 4.3. From Theorem 5.2, the polynomial
part of Dy(n) is

6
1 ) n—t — 2ty — 3t
fPl(n) = % E (m1n{t2,4—t2}—|—1) H ( ! 6 2 3 + E) .
/=1

0<t1<5, 0<t2<4, 0<t3<1
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6. Conclusions

Let n,k > 1 be two integers. We proved new formulas for Dy (n), the
number of plane partition diamonds of length k of n, and, also, for Py(n), its
polynomial part.

Our methods are can be used to study several generalizations of plane
partition diamonds, like the plane broken diamonds; see [2], plane partition
polygons and plane partition trees; see [9].
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