

A NOTE ON PLANE PARTITION DIAMONDS

Mircea Cimpoeas¹ and Alexandra Teodor²

We prove new formulas for $\mathcal{D}_k(n)$, the number of plane partition diamonds of length k of n , and, also, for its polynomial part.

Keywords: Integer partition, Restricted partition function, Plane partition diamond.

MSC2010: 11P81, 11P83.

1. Introduction

In his famous book "Combinatory Analysis" [10, Vol.II, Sect. VIII, pp. 91-170] MacMahon introduced Partition Analysis as a computational method for solving combinatorial problems in connection with systems of linear Diophantine inequalities and equations. He considered partitions of the form (a_1, a_2, a_3, a_4) with

$$a_1 \geq a_2, a_1 \geq a_3, a_2 \geq a_4 \text{ and } a_3 \geq a_4. \quad (1.1)$$

By using Partition Analysis he derived that

$$\sum x_1^{a_1} x_2^{a_2} x_3^{a_3} x_4^{a_4} = \frac{1 - x_1^2 x_2 x_3}{(1 - x_1)(1 - x_1 x_2)(1 - x_1 x_2 x_3)(1 - x_1 x_2 x_3 x_4)}, \quad (1.2)$$

where the sum is taken over all non-negative integers a_i satisfying (1.1). Let

$$\mathcal{D}_1(n) := \#\{(a_1, a_2, a_3, a_4) : n = a_1 + a_2 + a_3 + a_4 \text{ where } a_i \text{ satisfy (1.1)}\}.$$

Taking $x_1 = x_2 = x_3 = x_4 = q$ in (1.2), MacMahon observed that

$$\sum_{n=0}^{\infty} \mathcal{D}_1(n) q^n = \frac{1}{(1-q)(1-q^2)^2(1-q^3)}. \quad (1.3)$$

In [1], Andrews, Paule, and Riese introduce the family of plane partition diamonds, as a generalization of the above example. A *plane partition diamond* of length k is a sequence of length $3k + 1$ of nonnegative integers

¹Professor, Faculty of Applied Sciences, National University of Science and Technology Politehnica Bucharest, Romania and, Researcher, Institute of Mathematics of the Romanian Academy, Bucharest, Romania, e-mail: mircea.cimpoeas@imar.ro

²Assistant Professor, Faculty of Applied Sciences, National University of Science and Technology Politehnica Bucharest, Romania, e-mail: alexandra.teodor@upb.ro

$\mathbf{a} = (a_1, a_2, \dots, a_{3k+1})$ satisfying, for $0 \leq i \leq k-1$,

$$a_{3i+1} \geq a_{3i+2}, a_{3i+1} \geq a_{3i+3}, a_{3i+2} \geq a_{3i+4}, a_{3i+3} \geq a_{3i+4}. \quad (1.4)$$

Let $\mathcal{D}_k(n)$ be the number of plane partitions diamonds of length k of n . We mention that several generalizations of plane partition diamonds were studied in [9] and [2] but are beyond the scope of this note.

The paper is organized as follows. In Section 2, we recall the definition and some basic properties of the restricted partition function $p_{\mathbf{a}}(n)$, where $\mathbf{a} = (a_1, \dots, a_r)$ is a sequence of positive integers. Also, we recall several results which would be used later on.

In Section 3, we study basic properties of the function $\mathcal{D}_k(n)$. For $k \leq 1$ we consider the sequence $\mathbf{a}[k] = (a[k]_1, a[k]_2, \dots, a[k]_{3k+1})$, where

$$a[k]_j = \begin{cases} j, & j \not\equiv 4 \pmod{6} \\ \frac{j}{2}, & j \equiv 4 \pmod{6} \end{cases}.$$

In Proposition 3.1 we show that $\mathcal{D}_k(n)$ can be written as

$$\mathcal{D}_k(n) = \sum_{J \subset \{\alpha_k+1, \alpha_k+2, \dots, k\}} p_{\mathbf{a}[k]}(n - m_J),$$

where $m_J = \sum_{i \in J} (3i - 1)$ and $\alpha_k = \lfloor \frac{k+1}{2} \rfloor$. In Proposition 3.2 we show that

$$\mathcal{D}_k(n) = f_{k,3k}(n)n^{3k} + \dots + f_{k,1}(n)n + f_{k,0}(n) \text{ for } n \geq n_0(k),$$

where $n_0(k)$ is a constant which depends on k , is a quasi-polynomial of degree $3k$. In Corollary 3.3 we obtain new formulas for the periodic functions $f_{k,j}$'s and, consequently, for $\mathcal{D}_k(n)$.

In Theorem 4.2 we prove a concise formula of $\mathcal{D}_k(n)$. In Theorem 5.1 we prove formulas for the 'Sylvester waves' associated to $\mathcal{D}_k(n)$. Also, in Theorem 5.2 we prove a concise formula of $\mathcal{P}_k(n)$, the polynomial part of $\mathcal{D}_k(n)$.

2. Restricted partition function

Let $\mathbf{a} := (a_1, a_2, \dots, a_r)$ be a sequence of positive integers, $r \geq 1$. The *restricted partition function* associated to \mathbf{a} is $p_{\mathbf{a}} : \mathbb{N} \rightarrow \mathbb{N}$, $p_{\mathbf{a}}(n) :=$ the number of integer solutions (x_1, \dots, x_r) of $\sum_{i=1}^r a_i x_i = n$ with $x_i \geq 0$. Note that the generating function of $p_{\mathbf{a}}(n)$ is

$$\sum_{n=0}^{\infty} p_{\mathbf{a}}(n)q^n = \frac{1}{(1-q^{a_1}) \cdots (1-q^{a_r})}. \quad (2.1)$$

Let D be a common multiple of a_1, a_2, \dots, a_r . We recall the following well known result:

Proposition 2.1. (Bell [4])

$p_{\mathbf{a}}(n)$ is a quasi-polynomial of degree $r-1$, with the period D , i.e.

$$p_{\mathbf{a}}(n) = d_{\mathbf{a},k-1}(n)n^{k-1} + \dots + d_{\mathbf{a},1}(n)n + d_{\mathbf{a},0}(n),$$

where $d_{\mathbf{a},m}(n+D) = d_{\mathbf{a},m}(n)$ for $0 \leq m \leq k-1$ and $n \geq 0$, and $d_{\mathbf{a},k-1}(n)$ is not identically zero.

Sylvester [12, 13, 14] decomposed the restricted partition in a sum of “waves”:

$$p_{\mathbf{a}}(n) = \sum_{j \geq 1} W_j(n, \mathbf{a}), \quad (2.2)$$

where the sum is taken over all distinct divisors j of the components of \mathbf{a} and showed that for each such j , $W_j(n, \mathbf{a})$ is the coefficient of t^{-1} in

$$\sum_{0 \leq \nu < j, \gcd(\nu, j) = 1} \frac{\rho_j^{-\nu n} e^{\nu t}}{(1 - \rho_j^{\nu a_1} e^{-a_1 t}) \cdots (1 - \rho_j^{\nu a_k} e^{-a_k t})},$$

where $\rho_j = e^{\frac{2\pi i}{j}}$ and $\gcd(0, 0) = 1$ by convention. Note that $W_j(n, \mathbf{a})$ ’s are quasi-polynomials of period j . Also, $W_1(n, \mathbf{a})$ is called the *polynomial part* of $p_{\mathbf{a}}(n)$ and it is denoted by $P_{\mathbf{a}}(n)$; see also [11, Section 4.4].

The *unsigned Stirling numbers* are defined by

$$\binom{n+r-1}{r-1} = \frac{1}{n(r-1)!} n^{(r)} = \frac{1}{(r-1)!} \left(\left[\begin{matrix} r \\ r \end{matrix} \right] n^{r-1} + \cdots + \left[\begin{matrix} r \\ 2 \end{matrix} \right] n + \left[\begin{matrix} r \\ 1 \end{matrix} \right] \right). \quad (2.3)$$

We recall several results which would be used later on:

Theorem 2.2. ([6, Theorem 2.8] and [7])

(1) For $0 \leq m \leq r-1$ and $n \geq 0$ we have

$$\begin{aligned} d_{\mathbf{a},m}(n) &= \frac{1}{(r-1)!} \sum_{\substack{0 \leq j_1 \leq \frac{D}{a_1}-1, \dots, 0 \leq j_r \leq \frac{D}{a_r}-1 \\ a_1 j_1 + \cdots + a_r j_r \equiv n \pmod{D}}} \sum_{k=m}^{r-1} \left[\begin{matrix} r \\ k+1 \end{matrix} \right] (-1)^{k-m} \binom{k}{m} \times \\ &\quad \times D^{-k} (a_1 j_1 + \cdots + a_r j_r)^{k-m}. \end{aligned}$$

(2) We have

$$\begin{aligned} p_{\mathbf{a}}(n) &= \frac{1}{(r-1)!} \sum_{m=0}^{r-1} \sum_{\substack{0 \leq j_1 \leq \frac{D}{a_1}-1, \dots, 0 \leq j_r \leq \frac{D}{a_r}-1 \\ a_1 j_1 + \cdots + a_r j_r \equiv n \pmod{D}}} \sum_{k=m}^{r-1} \left[\begin{matrix} r \\ k+1 \end{matrix} \right] (-1)^{k-m} \binom{k}{m} \times \\ &\quad \times D^{-k} (a_1 j_1 + \cdots + a_r j_r)^{k-m} n^m. \end{aligned}$$

Theorem 2.3. ([6, Corollary 2.10]) We have

$$p_{\mathbf{a}}(n) = \frac{1}{(r-1)!} \sum_{\substack{0 \leq j_1 \leq \frac{D}{a_1}-1, \dots, 0 \leq j_r \leq \frac{D}{a_r}-1 \\ a_1 j_1 + \cdots + a_r j_r \equiv n \pmod{D}}} \prod_{\ell=1}^{r-1} \left(\frac{n - a_1 j_1 - \cdots - a_r j_r}{D} + \ell \right).$$

Proposition 2.4. ([8, Proposition 4.2]) For any positive integer j with $j|a_i$ for some $1 \leq i \leq r$, we have that

$$W_j(n, \mathbf{a}) = \frac{1}{D(r-1)!} \sum_{m=1}^r \sum_{\ell=1}^j \rho_j^\ell \sum_{k=m-1}^{r-1} \begin{bmatrix} r \\ k+1 \end{bmatrix} (-1)^{k-m+1} \binom{k}{m-1} \cdot$$

$$\cdot \sum_{\substack{0 \leq j_1 \leq \frac{D}{a_1}-1, \dots, 0 \leq j_r \leq \frac{D}{a_r}-1 \\ a_1 j_1 + \dots + a_r j_r \equiv \ell \pmod{j}}} D^{-k} (a_1 j_1 + \dots + a_r j_r)^{k-m+1} n^{m-1}.$$

Theorem 2.5. ([6, Corollary 3.6])

For the polynomial part $P_{\mathbf{a}}(n)$ of the quasi-polynomial $p_{\mathbf{a}}(n)$ we have

$$P_{\mathbf{a}}(n) = \frac{1}{D(r-1)!} \sum_{0 \leq j_1 \leq \frac{D}{a_1}-1, \dots, 0 \leq j_r \leq \frac{D}{a_r}-1} \prod_{\ell=1}^{r-1} \left(\frac{n - a_1 j_1 - \dots - a_r j_r}{D} + \ell \right).$$

The Bernoulli numbers B_ℓ 's are defined by the identity

$$\frac{t}{e^t - 1} = \sum_{\ell=0}^{\infty} \frac{t^\ell}{\ell!} B_\ell.$$

$B_0 = 1$, $B_1 = -\frac{1}{2}$, $B_2 = \frac{1}{6}$, $B_4 = -\frac{1}{30}$ and $B_n = 0$ is n is odd and $n \geq 1$.

Theorem 2.6. ([6, Corollary 3.11] or [3, page 2])

The polynomial part of $p_{\mathbf{a}}(n)$ is

$$P_{\mathbf{a}}(n) := \frac{1}{a_1 \cdots a_r} \sum_{u=0}^{r-1} \frac{(-1)^u}{(r-1-u)!} \sum_{i_1 + \dots + i_r = u} \frac{B_{i_1} \cdots B_{i_r}}{i_1! \cdots i_r!} a_1^{i_1} \cdots a_r^{i_r} n^{r-1-u}.$$

3. Preliminaries

The number of plane partitions diamonds of length k of n is

$$\mathcal{D}_k(n) := \#\{(a_1, a_2, \dots, a_{3k+1}) : n = a_1 + a_2 + \dots + a_{3k+1} \text{ where } a_i \text{ satisfy (1.4)}\}.$$

Using partition analysis, the authors in [1] find the generalization of (1.3), namely

$$\sum_{n=0}^{\infty} \mathcal{D}_k(n) q^n = \frac{\prod_{i=1}^k (1 + q^{3i-1})}{\prod_{i=1}^{3k+1} (1 - q^i)}. \quad (3.1)$$

Note that, if $i \leq \frac{k+1}{2}$ then $6i-2 \leq 3k+1$. Since $(1+q^{3i-1})(1-q^{3i-1}) = 1-q^{6i-2}$, from (3.1) it follows that

$$\sum_{n=0}^{\infty} \mathcal{D}_k(n)q^n = \frac{\prod_{i=\alpha_k+1}^k (1+q^{3i-1})}{\prod_{i=1}^{\lfloor \frac{k+1}{2} \rfloor} (1-q^{3i-1}) \prod_{\substack{1 \leq i \leq 3k+1 \text{ and} \\ i \not\equiv 4 \pmod{6}}} (1-q^i)}, \quad (3.2)$$

where $\alpha_k := \lfloor \frac{k+1}{2} \rfloor$. Note that, in the case $k = 1$, $\alpha_1 = 1$ and (3.2) reduces to (1.3).

For $k \leq 1$ we consider the sequence $\mathbf{a}[k] = (a[k]_1, a[k]_2, \dots, a[k]_{3k+1})$, where

$$a[k]_j = \begin{cases} j, & j \not\equiv 4 \pmod{6} \\ \frac{j}{2}, & j \equiv 4 \pmod{6} \end{cases}. \quad (3.3)$$

Proposition 3.1. *Using the notations above, we have that:*

$$\mathcal{D}_k(n) = \sum_{J \subset \{\alpha_k+1, \alpha_k+2, \dots, k\}} p_{\mathbf{a}[k]}(n - m_J),$$

where $m_J = \sum_{i \in J} (3i - 1)$ and $\alpha_k = \lfloor \frac{k+1}{2} \rfloor$.

Proof. From (3.2) it follows that

$$\sum_{n=0}^{\infty} \mathcal{D}_k(n)q^n = \sum_{J \subset \{\alpha_k, \alpha_{k+1}, \dots, k\}} \frac{q^{m_J}}{\prod_{i=1}^{\lfloor \frac{k+1}{2} \rfloor} (1-q^{3i-1}) \prod_{\substack{1 \leq i \leq 3k+1 \text{ and} \\ i \not\equiv 4 \pmod{6}}} (1-q^i)}. \quad (3.4)$$

On the other hand, from (2.1) we deduce that

$$\sum_{n=0}^{\infty} p_{\mathbf{a}[k]}(n - m_J)q^n = \frac{q^{m_J}}{\prod_{i=1}^{\lfloor \frac{k+1}{2} \rfloor} (1-q^{3i-1}) \prod_{\substack{1 \leq i \leq 3k+1 \text{ and} \\ i \not\equiv 4 \pmod{6}}} (1-q^i)}. \quad (3.5)$$

The conclusion follows from (3.4) and (3.5). \square

Let $D[k] = \text{lcm}(\mathcal{A}_k)$, where $\mathcal{A}_k = \{1 \leq j \leq 3k+1 : j \not\equiv 4 \pmod{6}\}$. For instance, $D[1] = \text{lcm}\{1, 2, 3\} = 6$, $D[2] = \text{lcm}\{1, 2, 3, 5, 7\} = 210$ etc. Note that

$$\mathcal{A}_k = \{a[k]_1, a[k]_2, \dots, a[k]_{3k+1}\} \quad (3.6)$$

and thus $D[k] = \text{lcm}\{a[k]_1, a[k]_2, \dots, a[k]_{3k+1}\}$.

Proposition 3.2. *$\mathcal{D}_k(n)$ is a quasi-polynomial of degree $3k$, with the period $D[k]$, i.e.*

$$\mathcal{D}_k(n) = f_{k,3k}(n)n^{3k} + \dots + f_{k,1}(n)n + f_{k,0}(n), \text{ for all } n \geq n_0(k),$$

where $n_0(k) = \frac{(k-\alpha_k)(3k+3\alpha_k+1)}{2}$ and $f_{k,j}(n+D[k]) = f_{k,j}(n)$ for all $n \geq n_0(k)$. Moreover, we have that:

$$f_{k,j}(n) = \sum_{J \subset \{\alpha_k+1, \alpha_k+2, \dots, k\}} d_{\mathbf{a}[k],j}(n - m_J).$$

Proof. Note that

$$\begin{aligned} n_0(k) &= m_{\{\alpha_k+1, \alpha_k+2, \dots, k\}} = \sum_{i=\alpha_k+1}^k (3i-1) = 3 \left(\sum_{i=\alpha_k+1}^k i \right) - (k-\alpha_k) = \\ &= \frac{(k-\alpha_k)(3k+3\alpha_k+1)}{2}. \end{aligned} \quad (3.7)$$

The expression of $f_{k,j}(n)$ follows from Proposition 3.1 and (2.1).

Now, the conclusion follows from (3.7) and the fact that $d_{\mathbf{a}[k],j}(n+D[k]) = d_{\mathbf{a}[k],m}(n)$ for all $0 \leq j \leq 3k$ and $n \geq 0$. \square

Corollary 3.3. *With the above notations, for $n \geq n_0(k)$ we have that*

$$\begin{aligned} f_{k,j}(n) &= \frac{1}{(3k)!} \sum_{J \subset \{\alpha_k+1, \alpha_k+2, \dots, k\}} \sum_{\substack{0 \leq j_i \leq \frac{D[k]_i}{a[k]_i}-1, 1 \leq i \leq 3k+1 \\ a[k]_1 j_1 + \dots + a[k]_{3k+1} j_{3k+1} \equiv n - m_J \pmod{D[k]}}} \sum_{\ell=j}^{3k} \binom{3k+1}{\ell+1} \times \\ &\quad \times (-1)^{\ell-j} \binom{\ell}{j} D[k]^{-\ell} (a[k]_1 j_1 + \dots + a[k]_{3k+1} j_{3k+1})^{\ell-j}. \end{aligned}$$

In particular, it follows that

$$\begin{aligned} \mathcal{D}_k(n) &= \frac{1}{(3k)!} \sum_{\ell=0}^{3k} \sum_{J \subset \{\alpha_k+1, \alpha_k+2, \dots, k\}} \sum_{\substack{0 \leq j_i \leq \frac{D[k]_i}{a[k]_i}-1, 1 \leq i \leq 3k+1 \\ a[k]_1 j_1 + \dots + a[k]_{3k+1} j_{3k+1} \equiv n - m_J \pmod{D[k]}}} \sum_{\ell=j}^{3k} \binom{3k+1}{\ell+1} \times \\ &\quad \times (-1)^{\ell-j} \binom{\ell}{j} D[k]^{-\ell} (a[k]_1 j_1 + \dots + a[k]_{3k+1} j_{3k+1})^{\ell-j} (n - m_J)^j. \end{aligned}$$

Proof. The conclusion follows from Proposition 3.2 and Theorem 2.2. \square

4. New formulas for the number of plane partition diamonds of length k of n .

We recall that $\alpha_k = \lfloor \frac{k+1}{2} \rfloor$. We define

$$\beta_k := \begin{cases} 5\alpha_k - 2, & k \text{ is odd} \\ 5\alpha_k + 1, & k \text{ is even} \end{cases} \text{ and } \mathcal{B}_k = \{1, 2, \dots, \beta_k\}.$$

For instance, $\mathcal{B}_1 = \{1, 2, 3\}$, $\mathcal{B}_2 = \{1, 2, 3, 4, 5, 6\}$ etc.

Lemma 4.1. *With the above notations, the map*

$$\varphi_k : \mathcal{B}_k \rightarrow \mathcal{A}_k, \varphi_k(j) = j + \left\lceil \frac{j-3}{5} \right\rceil,$$

is bijective. Moreover, the inverse of φ_k is the map

$$\varphi_k^{-1} : \mathcal{A}_k \rightarrow \mathcal{B}_k, \varphi_k^{-1}(j) = j - \left\lceil \frac{j-3}{6} \right\rceil.$$

Proof. Let $j \in \mathcal{B}_k$ and write $j = 5i + r$ for $1 \leq r \leq 5$ and $i \geq 0$. We have that:

$$\begin{aligned} \varphi_k(5i+1) &= 6i+1, \varphi_k(5i+2) = 6i+2, \varphi_k(5i+3) = 6i+3, \\ \varphi_k(5i+4) &= 6i+5, \varphi_k(5i+5) = 6i+6. \end{aligned}$$

If $k = 2p$, then $\alpha_k = p$ and

$$\varphi_k(5\alpha_k + 1) = \varphi_k(5p + 1) = 6p + 1 = 3k + 1 = \max \mathcal{A}_k.$$

If $k = 2p + 1$, then $\alpha_k = p + 1$ and

$$\varphi_k(5\alpha_k - 2) = \varphi_k(5p + 3) = 6p + 3 = 3k = \max \mathcal{A}_k.$$

Also $\varphi_k(1) = 1$ and φ_k is increasing, hence injective.

From the above considerations, it follows that φ_k is bijective.

Let $\psi_k : \mathcal{B}_k \rightarrow \mathcal{A}_k$, $\psi_k(j) = j - \lceil \frac{j-3}{6} \rceil$. Let $j \in \mathcal{A}_k$. Then we can write $j = 6i + r$, where $1 \leq r \leq 6$ and $r \neq 4$. We have that

$$\begin{aligned} \psi_k(6i+1) &= 5i+1, \psi_k(6i+2) = 5i+2, \psi_k(6i+3) = 5i+3, \\ \psi_k(6i+5) &= 5i+4, \psi_k(6i+6) = 5i+5. \end{aligned}$$

Since $\psi_k(1) = 1$ and $\psi_k(\max \mathcal{A}_k) = \max \mathcal{B}_k$, from the above identities, it follows that ψ_k is surjective and increasing. Hence, ψ_k is bijective.

The function $\psi_k \circ \varphi_k : \mathcal{A}_k \rightarrow \mathcal{A}_k$ is bijective and increasing, hence $\psi_k \circ \varphi_k$ is the identity function of \mathcal{A}_k . Similarly, $\varphi_k \circ \psi_k$ is the identity function of \mathcal{B}_k . Thus, $\psi_k = \varphi_k^{-1}$, as required. \square

We consider the subset

$$\mathcal{B}'_k = \{j \in \mathcal{B}_k : j \equiv 2, 5 \pmod{5} \text{ and } j \leq \varphi_k^{-1}(3\alpha_k - 1)\}.$$

We also let

$$\varepsilon_k : \mathcal{B}_k \rightarrow \{1, 2\}, \varepsilon_k(j) = \chi_{\mathcal{B}'_k}(j) + 1,$$

where $\chi_{\mathcal{B}'_k}$ is the characteristic function of the subset \mathcal{B}'_k of \mathcal{B}_k . We also let

$$s_k(t_1, t_2, \dots, t_{\beta_k}) := \prod_{j \in \mathcal{B}'_k} \left(1 + \max \left\{ t_j, 2 \left(\frac{D[k]}{\varphi_k(j)} - 1 \right) - t_j \right\} \right).$$

Theorem 4.2. *We have that:*

$$\mathcal{D}_k(n) = \frac{1}{(3k)!} \sum_{\substack{J \subset \{\alpha_k, \alpha_{k+1}, \dots, k\} \text{ and} \\ (t_1, t_2, \dots, t_{\beta_k}) \in \mathbf{A}_k(m_J)}} s_k(t_1, t_2, \dots, t_{\beta_k}) \prod_{\ell=1}^{3k} \left(\frac{n - \sum_{j=1}^{\beta_k} t_j \varphi_k(j) - m_J}{D[k]} + \ell \right),$$

where $\mathbf{A}_k(m) = \{(t_1, t_2, \dots, t_{\beta_k}) : 0 \leq t_j \leq \varepsilon_k(j) \left(\frac{D[k]}{\varphi_k(j)} - 1 \right) \text{ for all } 1 \leq j \leq \beta_k \text{ and } \sum_{j=1}^{\beta_k} t_j \varphi_k(j) \equiv n - m \pmod{D[k]}\}.$

Proof. First, note that for $n < m_J$ we have that:

$$\prod_{\ell=1}^{3k} \left(\frac{n - a[k]_1 j_1 - \dots - a[k]_{3k+1} j_{3k+1} - m_J}{D[k]} + \ell \right) = 0.$$

Therefore, from Proposition 3.1 and Theorem 2.3 it follows that:

$$\begin{aligned} \mathcal{D}_k(n) &= \frac{1}{(3k)!} \sum_{J \subset \{\alpha_k, \alpha_{k+1}, \dots, k\}} \sum_{\substack{0 \leq j_1 \leq \frac{D[k]}{a[k]_1} - 1, \dots, 0 \leq j_{3k+1} \leq \frac{D[k]}{a[k]_{3k+1}} - 1 \\ a[k]_1 j_1 + \dots + a[k]_{3k+1} j_{3k+1} \equiv n - m_J \pmod{D[k]}}} \\ &\quad \prod_{\ell=1}^{3k} \left(\frac{n - a[k]_1 j_1 - \dots - a[k]_{3k+1} j_{3k+1} - m_J}{D[k]} + \ell \right). \end{aligned}$$

The conclusion follows from Lemma 4.1. \square

Example 4.3. (*MacMahon's example*) We consider

$$\mathcal{D}_1(n) = \#\{(a_1, a_2, a_3, a_4) : a_1 + a_2 + a_3 + a_4 = n, a_1 \geq a_2, a_1 \geq a_3, a_2 \geq a_4 \text{ and } a_3 \geq a_4\}.$$

Comparing (1.3) with (2.1), it follows that $\mathcal{D}_1(n) = p_{(1,2,2,3)}(n)$ for all $n \geq 0$. Since $\alpha_1 = 1$ and $D[1] = 6$, from Theorem 4.2, it follows that:

$$\mathcal{D}_1(n) = \frac{1}{6} \sum_{\substack{0 \leq t_1 \leq 5, 0 \leq t_2 \leq 4, 0 \leq t_3 \leq 1 \\ t_1 + 2t_2 + 3t_3 \equiv n \pmod{6}}} (\min\{t_2, 4-t_2\} + 1) \prod_{\ell=1}^6 \left(\frac{n - t_1 - 2t_2 - 3t_3}{6} + \ell \right).$$

5. The polynomial part and Sylvester waves of $\mathcal{D}_k(n)$

From (2.2) and Proposition 3.1, we can write

$$\mathcal{D}_k(n) = \sum_{j=1}^{\infty} W_j(k, n), \text{ where } W_j(k, n) = \sum_{J \subset \{\alpha_k+1, \alpha_k+2, \dots, k\}} W_j(n - m_J, \mathbf{a}[k]), \quad (5.1)$$

$m_J = \sum_{i \in J} (3i - 1)$ and $\alpha_k = \lfloor \frac{k+1}{2} \rfloor$. In particular, the *polynomial part* of $\mathcal{D}_k(n)$ is the function

$$\mathcal{P}_r(n) := \sum_{J \subset \{\alpha_k+1, \alpha_k+2, \dots, k\}} P_{\mathbf{a}[k]}(n - m_J), \quad (5.2)$$

where $P_{\mathbf{a}[k]}(n - m_J) = W_1(n - m_J, \mathbf{a}[k])$.

Theorem 5.1. *With the above notations we have that*

$$\begin{aligned} W_j(k, n) = & \frac{1}{D[k](3k)!} \sum_{J \subset \{\alpha_k+1, \alpha_k+2, \dots, k\}} \sum_{m=1}^{3k+1} \sum_{\ell=1}^j \rho_j^\ell \sum_{t=m-1}^{3k} \begin{bmatrix} 3k+1 \\ t+1 \end{bmatrix} (-1)^{t-m+1} \binom{t}{m-1} \times \\ & \times \sum_{\substack{0 \leq j_1 \leq \frac{D[k]_1}{a[k]_1} - 1, \dots, 0 \leq j_{3k+1} \leq \frac{D[k]_{3k+1}}{a[k]_{3k+1}} - 1 \\ a[k]_1 j_1 + \dots + a[k]_{3k+1} j_{3k+1} \equiv \ell \pmod{j}}} D^{-t} (a[k]_1 j_1 + \dots + a[k]_{3k+1} j_{3k+1})^{t-m+1} (n - m_J)^{m-1}. \end{aligned}$$

Proof. The conclusion follows from Proposition 3.1, Proposition 2.4 and (5.1). \square

Theorem 5.2. *With the above notations, we have that $\mathcal{P}_k(n)$ equals to*

$$\frac{1}{D[k](3k)!} \sum_{\substack{J \subset \{\alpha_k, \alpha_{k+1}, \dots, k\} \text{ and} \\ (t_1, t_2, \dots, t_{\beta_k}) \in \mathbf{B}_k(m_J)}} s_k(t_1, t_2, \dots, t_{\beta_k}) \prod_{\ell=1}^{3k} \left(\frac{n - \sum_{j=1}^{\beta_k} t_j \varphi_k(j) - m_J}{D[k]} + \ell \right),$$

where

$$\mathbf{B}_k(m) = \{(t_1, t_2, \dots, t_{\beta_k}) : 0 \leq t_j \leq \varepsilon_k(j) \left(\frac{D[k]}{\varphi_k(j)} - 1 \right) \text{ for all } 1 \leq j \leq \beta_k\}.$$

Proof. The proof is similar to the proof of Theorem 4.2, using Proposition 3.1, Theorem 2.5 and (5.2). \square

Theorem 5.3. *With the above notations, we have that:*

$$\begin{aligned} \mathcal{P}_k(n) := & \frac{1}{a[k]_1 \cdots a[k]_{3k+1}} \sum_{J \subset \{\alpha_k+1, \alpha_k+2, \dots, k\}} \sum_{u=0}^{3k} \frac{(-1)^u}{(3k-u)!} \times \\ & \times \sum_{i_1 + \dots + i_{3k+1} = u} \frac{B_{i_1} \cdots B_{i_{3k+1}}}{i_1! \cdots i_{3k+1}!} a[k]_1^{i_1} \cdots a[k]_{3k+1}^{i_{3k+1}} (n - m_J)^{3k-u}. \end{aligned}$$

Proof. The conclusion follows from Proposition 3.1, Theorem 2.6 and (5.2). \square

Example 5.4. (*MacMahon's example revised*)

We consider $\mathcal{D}_1(n)$; see Example 4.3. From Theorem 5.2, the polynomial part of $\mathcal{D}_1(n)$ is

$$\mathcal{P}_1(n) = \frac{1}{36} \sum_{0 \leq t_1 \leq 5, 0 \leq t_2 \leq 4, 0 \leq t_3 \leq 1} (\min\{t_2, 4-t_2\}+1) \prod_{\ell=1}^6 \left(\frac{n - t_1 - 2t_2 - 3t_3}{6} + \ell \right).$$

6. Conclusions

Let $n, k \geq 1$ be two integers. We proved new formulas for $\mathcal{D}_k(n)$, the number of plane partition diamonds of length k of n , and, also, for $\mathcal{P}_k(n)$, its polynomial part.

Our methods are can be used to study several generalizations of plane partition diamonds, like the plane broken diamonds; see [2], plane partition polygons and plane partition trees; see [9].

Acknowledgement

The first author (Mircea Cimpoeaş) was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2021- 1633, within PNCDI III.

R E F E R E N C E S

- [1] *G. Andrews, P. Paule, A. Riese*, MacMahon's Partition Analysis, VIII: Plane Partition Diamonds, *Adv. Appl. Math.* **27** (2001), 231–242.
- [2] *G. Andrews, P. Paule*, MacMahon's Partition Analysis, XI: Broken diamonds and modular forms, *Acta Arith.* **126(3)** (2007), 281–294.
- [3] *M. Beck, I. M. Gessel, T. Komatsu*, The polynomial part of a restricted partition function related to the Frobenius problem, *Electron. J. Comb.* **8(1)** (2001), N 7 (5 pages).
- [4] *E. T. Bell*, Interpolated denumerants and Lambert series, *Am. J. Math.* **65** (1943), 382–386.
- [5] *E. A. Bender, D. E. Knuth*, Enumeration of Plane Partitions, *J. Comb. Theory, Ser. A* **13(1)** (1972), 40–54.
- [6] *M. Cimpoeaş, F. Nicolae*, On the restricted partition function, *Ramanujan J.* **47(3)** (2018), 565–588.
- [7] *M. Cimpoeaş, F. Nicolae*, Corrigendum to "On the restricted partition function", *Ramanujan J.* **49(3)** (2019), 699–700.
- [8] *M. Cimpoeaş*, Remarks on the restricted partition function, *Math. Reports* **23(73)(4)** (2021), 425–436.
- [9] *S. Corteel, C. D. Savage*, Plane partition diamonds and generalizations, *Integers* **3** (2003), A9, 8 pp.
- [10] *P. A. MacMahon*, Combinatory Analysis, 2 vols., Cambridge Univ. Press, Cambridge, UK, 1915–1916; Reprint, Chelsea, New York, 1960.
- [11] *R. P. Stanley*, Enumerative Combinatorics, Vol. 1, Wadsworth and Brooks/Cole, Monterey, California, 1986.
- [12] *J. J. Sylvester*, On a discovery on the partition of numbers, *Quart. J. Pure Appl. Math.* **1** (1857), 81–85.
- [13] *J. J. Sylvester*, On a discovery on the partition of numbers – continued, *Quart. J. Pure Appl. Math.* **1** (1857), 141–152.
- [14] *J. J. Sylvester*, On subinvariants, i.e. semi-invariants to binary quantics of an unlimited order with an excursus on rational fractions and partitions, *Am. J. Math.* **5(1)** (1882), 79–136.