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A NOTE ON PLANE PARTITION DIAMONDS

Mircea Cimpoeaş1 and Alexandra Teodor2

We prove new formulas for Dk(n), the number of plane partition
diamonds of length k of n, and, also, for its polynomial part.
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1. Introduction

In his famous book ”Combinatory Analysis” [10, Vol.II, Sect. VIII, pp.
91-170] MacMahon introduced Partition Analysis as a computational method
for solving combinatorial problems in connection with systems of linear Dio-
phantine inequalities and equations. He considered partitions of the form
(a1, a2, a3, a4) with

a1 ≥ a2, a1 ≥ a3, a2 ≥ a4 and a3 ≥ a4. (1.1)

By using Partition Analysis he derived that∑
xa11 x

a2
2 x

a3
3 x

a4
4 =

1− x21x2x3
(1− x1)(1− x1x2)(1− x1x2x3)(1− x1x2x3x4)

, (1.2)

where the sum is taken over all non-negative integers ai satisfying (1.1). Let

D1(n) := #{(a1, a2, a3, a4) : n = a1 + a2 + a3 + a4 where ai satisfy (1.1)}.

Taking x1 = x2 = x3 = x4 = q in (1.2), MacMahon observed that
∞∑
n=0

D1(n)q
n =

1

(1− q)(1− q2)2(1− q3)
. (1.3)

In [1], Andrews, Paule, and Riese introduce the family of plane partition
diamonds, as a generalization of the above example. A plane partition di-
amond of length k is a sequence of length 3k + 1 of nonnegative integers
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a = (a1, a2, . . . , a3k+1) satisfying, for 0 ≤ i ≤ k − 1,
a3i+1 ≥ a3i+2, a3i+1 ≥ a3i+3, a3i+2 ≥ a3i+4, a3i+3 ≥ a3i+4. (1.4)

Let Dk(n) be the number of plane partitions diamonds of length k of n. We
mention that several generalizations of plane partition diamonds were studied
in [9] and [2] but are beyond the scope of this note.

The paper is organized as follows. In Section 2, we recall the definition
and some basic properties of the restricted partition function pa(n), where
a = (a1, . . . , ar) is a sequence of positive integers. Also, we recall several
results which would be used later on.

In Section 3, we study basic properties of the function Dk(n). For k ≤ 1
we consider the sequence a[k] = (a[k]1, a[k]2, . . . , a[k]3k+1), where

a[k]j =

{
j, j 6≡ 4(mod 6)
j
2
, j ≡ 4(mod 6)

.

In Proposition 3.1 we show that Dk(n) can be written as

Dk(n) =
∑

J⊂{αk+1,αk+2,··· ,k}

pa[k](n−mJ),

where mJ =
∑

i∈J(3i− 1) and αk = bk+1
2
c. In Proposition 3.2 we show that

Dk(n) = fk,3k(n)n
3k + · · ·+ fk,1(n)n+ fk,0(n) for n ≥ n0(k),

where n0(k) is a constant which depends on k, is a quasi-polynomial of degree
3k. In Corollary 3.3 we obtain new formulas for the periodic functions fk,j’s
and, consequently, for Dk(n).

In Theorem 4.2 we prove a concise formula of Dk(n). In Theorem 5.1 we
prove formulas for the ’Sylvester waves’ associated to Dk(n). Also, in Theorem
5.2 we prove a concise formula of Pk(n), the polynomial part of Dk(n).

2. Restricted partition function

Let a := (a1, a2, . . . , ar) be a sequence of positive integers, r ≥ 1. The
restricted partition function associated to a is pa : N → N, pa(n) := the number
of integer solutions (x1, . . . , xr) of

∑r
i=1 aixi = n with xi ≥ 0. Note that the

generating function of pa(n) is
∞∑
n=0

pa(n)q
n =

1

(1− qa1) · · · (1− qar)
. (2.1)

Let D be a common multiple of a1, a2, . . . , ar. We recall the following well
known result:

Proposition 2.1. (Bell [4])
pa(n) is a quasi-polynomial of degree r − 1, with the period D, i.e.

pa(n) = da,k−1(n)n
k−1 + · · ·+ da,1(n)n+ da,0(n),
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where da,m(n +D) = da,m(n) for 0 ≤ m ≤ k − 1 and n ≥ 0, and da,k−1(n) is
not identically zero.

Sylvester [12, 13, 14] decomposed the restricted partition in a sum of
“waves”:

pa(n) =
∑
j≥1

Wj(n, a), (2.2)

where the sum is taken over all distinct divisors j of the components of a and
showed that for each such j, Wj(n, a) is the coefficient of t−1 in∑

0≤ν<j, gcd(ν,j)=1

ρ−νn
j ent

(1− ρνa1j e−a1t) · · · (1− ρνakj e−akt)
,

where ρj = e
2πi
j and gcd(0, 0) = 1 by convention. Note that Wj(n, a)’s are

quasi-polynomials of period j. Also, W1(n, a) is called the polynomial part of
pa(n) and it is denoted by Pa(n); see also [11, Section 4.4].

The unsigned Stirling numbers are defined by(
n+ r − 1

r − 1

)
=

1

n(r − 1)!
n(r) =

1

(r − 1)!

([
r

r

]
nr−1 + · · ·

[
r

2

]
n+

[
r

1

])
. (2.3)

We recall several results which would be used later on:

Theorem 2.2. ([6, Theorem 2.8] and [7])
(1) For 0 ≤ m ≤ r − 1 and n ≥ 0 we have

da,m(n) =
1

(r − 1)!

∑
0≤j1≤ D

a1
−1,...,0≤jr≤ D

ar
−1

a1j1+···+arjr≡n( mod D)

r−1∑
k=m

[
r

k + 1

]
(−1)k−m

(
k

m

)
×

×D−k(a1j1 + · · ·+ arjr)
k−m.

(2) We have

pa(n) =
1

(r − 1)!

r−1∑
m=0

∑
0≤j1≤ D

a1
−1,...,0≤jr≤ D

ar
−1

a1j1+···+arjr≡n( mod D)

r−1∑
k=m

[
r

k + 1

]
(−1)k−m

(
k

m

)
×

×D−k(a1j1 + · · ·+ arjr)
k−mnm.

Theorem 2.3. ([6, Corollary 2.10]) We have

pa(n) =
1

(r − 1)!

∑
0≤j1≤ D

a1
−1,...,0≤jr≤ D

ar
−1

a1j1+···+arjr≡n( mod D)

r−1∏
`=1

(
n− a1j1 − · · · − arjr

D
+ `

)
.
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Proposition 2.4. ([8, Proposition 4.2]) For any positive integer j with j|ai
for some 1 ≤ i ≤ r, we have that

Wj(n, a) =
1

D(r − 1)!

r∑
m=1

j∑
`=1

ρ`j

r−1∑
k=m−1

[
r

k + 1

]
(−1)k−m+1

(
k

m− 1

)
·

·
∑

0≤j1≤ D
a1

−1,...,0≤jr≤ D
ar

−1

a1j1+···+arjr≡`( mod j)

D−k(a1j1 + · · ·+ arjr)
k−m+1nm−1.

Theorem 2.5. ([6, Corollary 3.6])
For the polynomial part Pa(n) of the quasi-polynomial pa(n) we have

Pa(n) =
1

D(r − 1)!

∑
0≤j1≤ D

a1
−1,...,0≤jr≤ D

ar
−1

r−1∏
`=1

(
n− a1j1 − · · · − arjr

D
+ `

)
.

The Bernoulli numbers B`’s are defined by the identity

t

et − 1
=

∞∑
`=0

t`

`!
B`.

B0 = 1, B1 = −1
2
, B2 =

1
6
, B4 = − 1

30
and Bn = 0 is n is odd and n ≥ 1.

Theorem 2.6. ([6, Corollary 3.11] or [3, page 2])
The polynomial part of pa(n) is

Pa(n) :=
1

a1 · · · ar

r−1∑
u=0

(−1)u

(r − 1− u)!

∑
i1+···+ir=u

Bi1 · · ·Bir

i1! · · · ir!
ai11 · · · airr nr−1−u.

3. Preliminaries

The number of plane partitions diamonds of length k of n is

Dk(n) := #{(a1, a2, . . . , a3k+1) : n = a1+a2+· · ·+a3k+1 where ai satisfy (1.4)}.

Using partition analysis, the authors in [1] find the generalization of (1.3),
namely

∞∑
n=0

Dk(n)q
n =

k∏
i=1

(1 + q3i−1)

3k+1∏
i=1

(1− qi)

. (3.1)
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Note that, if i ≤ k+1
2

then 6i−2 ≤ 3k+1. Since (1+q3i−1)(1−q3i−1) = 1−q6i−2,
from (3.1) it follows that

∞∑
n=0

Dk(n)q
n =

k∏
i=αk+1

(1 + q3i−1)

b k+1
2

c∏
i=1

(1− q3i−1)
∏

1≤i≤3k+1 and
i 6≡4( mod 6)

(1− qi)

, (3.2)

where αk := bk+1
2
c. Note that, in the case k = 1, α1 = 1 and (3.2) reduces to

(1.3).
For k ≤ 1 we consider the sequence a[k] = (a[k]1, a[k]2, . . . , a[k]3k+1),

where

a[k]j =

{
j, j 6≡ 4(mod 6)
j
2
, j ≡ 4(mod 6)

. (3.3)

Proposition 3.1. Using the notations above, we have that:

Dk(n) =
∑

J⊂{αk+1,αk+2,··· ,k}

pa[k](n−mJ),

where mJ =
∑

i∈J(3i− 1) and αk = bk+1
2
c.

Proof. From (3.2) it follows that
∞∑
n=0

Dk(n)q
n =

∑
J⊂{αk,αk+1,··· ,k}

qmJ

b k+1
2

c∏
i=1

(1− q3i−1)
∏

1≤i≤3k+1 and
i 6≡4( mod 6)

(1− qi)

. (3.4)

On the other hand, from (2.1) we deduce that
∞∑
n=0

pa[k](n−mJ)q
n =

qmJ

b k+1
2

c∏
i=1

(1− q3i−1)
∏

1≤i≤3k+1 and
i 6≡4( mod 6)

(1− qi)

. (3.5)

The conclusion follows from (3.4) and (3.5). �

Let D[k] = lcm(Ak), where Ak = {1 ≤ j ≤ 3k + 1 : j 6≡ 4(mod 6)}.
For instance, D[1] = lcm{1, 2, 3} = 6, D[2] = lcm{1, 2, 3, 5, 7} = 210 etc. Note
that

Ak = {a[k]1, a[k]2, . . . , a[k]3k+1} (3.6)
and thus D[k] = lcm{a[k]1, a[k]2, . . . , a[k]3k+1}.

Proposition 3.2. Dk(n) is a quasi-polynomial of degree 3k, with the period
D[k], i.e.

Dk(n) = fk,3k(n)n
3k + · · ·+ fk,1(n)n+ fk,0(n), for all n ≥ n0(k),
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where n0(k) =
(k−αk)(3k+3αk+1)

2
and fk,j(n+D[k]) = fk,j(n) for all n ≥ n0(k).

Moreover, we have that:

fk,j(n) =
∑

J⊂{αk+1,αk+2,··· ,k}

da[k],j(n−mJ).

Proof. Note that

n0(k) = m{αk+1,αk+2,...,k} =
k∑

i=αk+1

(3i− 1) = 3

(
k∑

i=αk+1

i

)
− (k − αk) =

=
(k − αk)(3k + 3αk + 1)

2
. (3.7)

The expression of fk,j(n) follows from Proposition 3.1 and (2.1).
Now, the conclusion follows from (3.7) and the fact that da[k],j(n+D[k]) =

da[k],m(n) for all 0 ≤ j ≤ 3k and n ≥ 0. �

Corollary 3.3. With the above notations, for n ≥ n0(k) we have that

fk,j(n) =
1

(3k)!

∑
J⊂{αk+1,αk+2,··· ,k}

∑
0≤ji≤

D[k]i
a[k]i

−1, 1≤i≤3k+1

a[k]1j1+···+a[k]3k+1j3k+1≡n−mJ ( mod D[k])

3k∑
`=j

[
3k + 1

`+ 1

]
×

×(−1)`−j

(
`

j

)
D[k]−`(a[k]1j1 + · · ·+ a[k]3k+1j3k+1)

`−j.

In particular, it follows that

Dk(n) =
1

(3k)!

3k∑
`=0

∑
J⊂{αk+1,αk+2,··· ,k}

∑
0≤ji≤

D[k]i
a[k]i

−1, 1≤i≤3k+1

a[k]1j1+···+a[k]3k+1j3k+1≡n−mJ ( mod D[k])

3k∑
`=j

[
3k + 1

`+ 1

]
×

×(−1)`−j

(
`

j

)
D[k]−`(a[k]1j1 + · · ·+ a[k]3k+1j3k+1)

`−j(n−mJ)
j .

Proof. The conclusion follows from Proposition 3.2 and Theorem 2.2. �

4. New formulas for the number of plane partition diamonds of
length k of n.

We recall that αk = bk+1
2
c. We define

βk :=

{
5αk − 2, k is odd
5αk + 1, k is even

and Bk = {1, 2, . . . , βk}.

For instance, B1 = {1, 2, 3}, B2 = {1, 2, 3, 4, 5, 6} etc.
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Lemma 4.1. With the above notations, the map

ϕk : Bk → Ak, ϕk(j) = j +

⌈
j − 3

5

⌉
,

is bijective. Moreover, the inverse of ϕk is the map

ϕ−1
k : Ak → Bk, ϕ

−1
k (j) = j −

⌈
j − 3

6

⌉
.

Proof. Let j ∈ Bk and write j = 5i+ r for 1 ≤ r ≤ 5 and i ≥ 0. We have that:

ϕk(5i+ 1) = 6i+ 1, ϕk(5i+ 2) = 6i+ 2, ϕk(5i+ 3) = 6i+ 3,

ϕk(5i+ 4) = 6i+ 5, ϕk(5i+ 5) = 6i+ 6.

If k = 2p, then αk = p and

ϕk(5αk + 1) = ϕk(5p+ 1) = 6p+ 1 = 3k + 1 = maxAk.

If k = 2p+ 1, then αk = p+ 1 and

ϕk(5αk − 2) = ϕk(5p+ 3) = 6p+ 3 = 3k = maxAk.

Also ϕk(1) = 1 and ϕk is increasing, hence injective.
From the above considerations, it follows that ϕk is bijective.
Let ψk : Bk → Ak, ψk(j) = j −

⌈
j−3
6

⌉
. Let j ∈ Ak. Then we can write

j = 6i+ r, where 1 ≤ r ≤ 6 and r 6= 4. We have that

ψk(6i+ 1) = 5i+ 1, ψk(6i+ 2) = 5i+ 2, ψk(6i+ 3) = 5i+ 3,

ψk(6i+ 5) = 5i+ 4, ψk(6i+ 6) = 5i+ 5.

Since ψk(1) = 1 and ψk(maxAk) = maxBk, from the above identities, it
follows that ψk is surjective and increasing. Hence, ψk is bijective.

The function ψk ◦ϕk : Ak → Ak is bijective and increasing, hence ψk ◦ϕk

is the identity function of Ak. Similarly, ϕk ◦ψk is the identity function of Bk.
Thus, ψk = ϕ−1

k , as required. �

We consider the subset

B′
k = {j ∈ Bk : j ≡ 2, 5(mod 5) and j ≤ ϕ−1

k (3αk − 1)}.

We also let
εk : Bk → {1, 2}, εk(j) = χB′

k
(j) + 1,

where χB′
k

is the characteristic function of the subset B′
k of Bk. We also let

sk(t1, t2, . . . , tβk
) :=

∏
j∈B′

k

(
1 + max

{
tj, 2

(
D[k]

ϕk(j)
− 1

)
− tj

})
.
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Theorem 4.2. We have that:

Dk(n) =
1

(3k)!

∑
J⊂{αk,αk+1,··· ,k} and
(t1,t2,...,tβk )∈Ak(mJ )

sk(t1, t2, . . . , tβk
)

3k∏
`=1


n−

βk∑
j=1

tjϕk(j)−mJ

D[k]
+ `

 ,

where Ak(m) = {(t1, t2, . . . , tβk
) : 0 ≤ tj ≤ εk(j)

(
D[k]
ϕk(j)

− 1
)

for all 1 ≤ j ≤
βk and

∑βk

j=1 tjϕk(j) ≡ n−m(mod D[k])}.

Proof. First, note that for n < mJ we have that:
3k∏
`=1

(
n− a[k]1j1 − · · · − a[k]3k+1j3k+1 −mJ

D[k]
+ `

)
= 0.

Therefore, from Proposition 3.1 and Theorem 2.3 it follows that:

Dk(n) =
1

(3k)!

∑
J⊂{αk,αk+1,··· ,k}

∑
0≤j1≤ D[k]

a[k]1
−1,...,0≤j3k+1≤ D[k]

a[k]3k+1
−1

a[k]1j1+···+a[k]3k+1j3k+1≡n−mJ ( mod D[k])

3k∏
`=1

(
n− a[k]1j1 − · · · − a[k]3k+1j3k+1 −mJ

D[k]
+ `

)
.

The conclusion follows from Lemma 4.1. �

Example 4.3. (MacMahon’s example) We consider

D1(n) = #{(a1, a2, a3, a4) : a1 + a2 + a3 + a4 = n, a1 ≥ a2, a1 ≥ a3, a2 ≥ a4

and a3 ≥ a4}.

Comparing (1.3) with (2.1), it follows that D1(n) = p(1,2,2,3)(n) for all n ≥ 0.
Since α1 = 1 and D[1] = 6, from Theorem 4.2, it follows that:

D1(n) =
1

6

∑
0≤t1≤5, 0≤t2≤4, 0≤t3≤1
t1+2t2+3t3≡n( mod 6)

(min{t2, 4−t2}+1)
6∏

`=1

(
n− t1 − 2t2 − 3t3

6
+ `

)
.

5. The polynomial part and Sylvester waves of Dk(n)

From (2.2) and Proposition 3.1, we can write

Dk(n) =
∞∑
j=1

Wj(k, n), where Wj(k, n) =
∑

J⊂{αk+1,αk+2,··· ,k}

Wj(n−mJ , a[k]),

(5.1)
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mJ =
∑

i∈J(3i − 1) and αk = bk+1
2
c. In particular, the polynomial part of

Dk(n) is the function

Pr(n) :=
∑

J⊂{αk+1,αk+2,··· ,k}

Pa[k](n−mJ), (5.2)

where Pa[k](n−mJ) = W1(n−mJ , a[k]).
Theorem 5.1. With the above notations we have that

Wj(k, n) =
1

D[k](3k)!

∑
J⊂{αk+1,αk+2,··· ,k}

3k+1∑
m=1

j∑
`=1

ρ`j

3k∑
t=m−1

[
3k + 1

t+ 1

]
(−1)t−m+1

(
t

m− 1

)
×

×
∑

0≤j1≤D[k]1
a[k]1

−1,...,0≤j3k+1≤
D[k]3k+1
a[k]3k+1

−1

a[k]1j1+···+a[k]3k+1j3k+1≡`( mod j)

D−t(a[k]1j1+· · ·+a[k]3k+1j3k+1)
t−m+1(n−mJ)

m−1.

Proof. The conclusion follows from Proposition 3.1, Proposition 2.4 and (5.1).
�

Theorem 5.2. With the above notations, we have that Pk(n) equals to

1

D[k](3k)!

∑
J⊂{αk,αk+1,··· ,k} and
(t1,t2,...,tβk )∈Bk(mJ )

sk(t1, t2, . . . , tβk
)

3k∏
`=1


n−

βk∑
j=1

tjϕk(j)−mJ

D[k]
+ `

 ,

where

Bk(m) = {(t1, t2, . . . , tβk
) : 0 ≤ tj ≤ εk(j)

(
D[k]

ϕk(j)
− 1

)
for all 1 ≤ j ≤ βk}.

Proof. The proof is similar to the proof of Theorem 4.2, using Proposition 3.1,
Theorem 2.5 and (5.2). �

Theorem 5.3. With the above notations, we have that:

Pk(n) :=
1

a[k]1 · · · a[k]3k+1

∑
J⊂{αk+1,αk+2,··· ,k}

3k∑
u=0

(−1)u

(3k − u)!
×

×
∑

i1+···+i3k+1=u

Bi1 · · ·Bi3k+1

i1! · · · i3k+1!
a[k]i11 · · · a[k]i3k+1

3k+1(n−mJ)
3k−u.

Proof. The conclusion follows from Proposition 3.1, Theorem 2.6 and (5.2).
�

Example 5.4. (MacMahon’s example revised)
We consider D1(n); see Example 4.3. From Theorem 5.2, the polynomial

part of D1(n) is

P1(n) =
1

36

∑
0≤t1≤5, 0≤t2≤4, 0≤t3≤1

(min{t2, 4−t2}+1)
6∏

`=1

(
n− t1 − 2t2 − 3t3

6
+ `

)
.
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6. Conclusions

Let n, k ≥ 1 be two integers. We proved new formulas for Dk(n), the
number of plane partition diamonds of length k of n, and, also, for Pk(n), its
polynomial part.

Our methods are can be used to study several generalizations of plane
partition diamonds, like the plane broken diamonds; see [2], plane partition
polygons and plane partition trees; see [9].
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