
U.P.B. Sci. Bull., Series C, Vol. 71, Iss. 3, 2009                                                     ISSN 1454-234x 

PARALLEL QUERY OPTIMIZATION: PIPELINED 
PARALLELISM SCHEDULING AND GOLDEN NUMBER 

Carmen Elena ODUBĂŞTEANU1, Călin Aurel MUNTEANU2 

Problema planificării paralelismului de tip pipeline este foarte importantă 
pentru optimizarea interogărilor paralele. Pentru a o rezolva se utilizează ca 
reprezentare un arbore de operatori pipeline (Pipelined Operator Tree- POT), un 
arbore ale cărui noduri reprezintă operatorii interogării care pot fi executaţi în 
paralel iar muchiile reprezintă costul de comunicare dintre doi operatori adiacenţi; 
trebuie să determinăm un plan de execuţie pentru POT care minimizează timpul 
total de răspuns, aceasta fiind o problemă de tip NP-complexă. Lucrarea de faţă 
prezintă algoritmi pentru determinarea planificării paralele de tip pipeline şi 
compară performanţele acestora din mai multe puncte de vedere prin simularea 
comportamentului lor. O parte din algoritmi sunt propuşi de autori, doi dintre 
algoritmi fiind bazaţi pe utilizarea Numărului de Aur. 

Pipelined parallelism scheduling problem is very important in the area of 
parallel query optimization. To model the problem it is used a POT (Pipelined 
Operator Tree), which is a tree whose nodes represent query operators that can be 
run in parallel and edges represent communication between adjacent operators; we 
must find a schedule for the POT that minimizes the total response time, a problem 
which has been shown to be NP-hard. This paper presents algorithms for pipelined 
parallelism scheduling and compares their performances by simulating their 
behaviors. Some of the algorithms are proposed by the authors; two of them are 
based on Golden Number. 

 
Keywords: query optimization, parallel databases, pipeline parallelism 

scheduling, Golden Number 

1. Introduction 

Today we are challenged with sophisticated applications on parallel 
database systems, such as decision support systems and data mining. Therefore, 
the minimization of the query response time is more than ever necessary. The 
complexity of this problem is reduced if we used a two-phase approach [1], [2]: 
join ordering and query rewriting followed by parallelization and scheduling. In 
the second phase, atomic units of the query (operators) are extracted and then 

                                                            
1 Assistant, Department of Computer Science, University POLITEHNICA of Bucharest, Romania, 
e-mail: carmen_od@yahoo.com 
2 Assistant, Department of Automatics and Industrial Information, University POLITEHNICA of 
Bucharest, Romania, e-mail: mc_aurel@yahoo.com 



106                                  Carmen Elena Odubăşteanu, Călin Aurel Munteanu 

scheduled to provide the minimum response time. One of the most important 
issues that must be considered is the parallelism-communication trade-off [3], [4]. 
A query will be represented as a weighted operator tree in which each node 
represents an operator and each edge represents the timing constraints between 
operators [5], [6]. A timing constraint is either a precedence or parallel constraint. 
The parallel constraint introduces a pipelined parallelism and requires that the two 
adjacent nodes start and terminate their works approximately at the same time, 
behaving as a producer-consumer system. 

Algorithms for managing pipelined parallelism are an essential component 
of an optimizer because pipelining is sometimes the only way of speeding up a 
query not just a useful supplement to partitioned parallelism [3]. For example, 
when each reduced relation of a query that join a large number (say 10) of 
relations and apply external functions, grouping and aggregation is small, 
partitioned parallelism ceases to be a viable option and pipelined parallelism is the 
only source of speedup.  

Scheduling of a Pipelined Operator Tree (POT - weighted operator tree in 
which all edges represent parallel constraints [6]) is different from the classical 
scheduling problems because of the communication. 

Brute force algorithms are impractical for scheduling pipelines due to the 
extremely large search space. A query that joins 10 relations leads to an operator 
tree with about 20 nodes. The number of ways of scheduling 20 operators on 20 
processors exceeds 5 x 1013. Algorithms that simply ignore communication 
overhead are unlikely to yield good results. Communication cost is saved if 
adjacent nodes are assigned to one processor but this would decrease the degree of 
parallelism. 

This optimization problem can also be viewed as to find a schedule that 
minimizes the maximum load of the processors where load of a processor is the 
sum of the weights of the operators assigned to it plus the weight of the edges that 
connect nodes on this processor to the nodes on other processors. 

POT scheduling problem was first introduced by Hasan and Motwani for 
identical processor systems and was shown to be NP-hard [1], [6]. They proposed 
several approximation algorithms. Five of them are presented and compared from 
different points of view. These algorithms are: Modified LPT, BalancedCuts, 
Hybrid, LocalCuts and BoundedCuts. Also, in this paper are described four recent 
algorithms OptimBalancedCuts, OptimHybrid, FiLocalCuts and FiBoundedCuts 
designed by us. FiLocalCuts and FiBoundedCuts are based on Golden Number. 

The paper is organized as follows: it begins with an overview of the model 
and problem definition. Then, nine algorithms for scheduling pipelines parallelism 
are presented. Finally, the experimental results are presented and analyzed. Also, a 
short presentation of Golden Number is made in this paper. 



Parallel query optimization: pipelined parallelism scheduling and golden number        107 

2. A model for the problem 

The following definitions are based on earlier models presented in [1], [6], 
[7]. A POT is represented as a weighted operator tree P= (V, E) with n nodes. The 
weight ti of the node i is the time to run the operator in isolation assuming all 
communications are local. The weight cij of the edge from node i to node j is the 
additional CPU overhead that both i and j will incur for inter-operation 
communication if they are scheduled on different processors. A schedule of P on p 
processors is a partition of V, the set of n nodes, into p sets F1, F2,…, Fp such that 
set Fk is assigned to processor k. The load of processor k, or Lk, is the cost of 
executing all nodes in Fk plus the overhead for communicating with nodes on 
other processors. That is, Lk=∑j∈Fk[tj+∑l ∉Fkcjl]. L is max1<=k<=p Lk. 

Two operations are used to modify the POT: collapse (i,j) is to replace 
adjacent nodes i and j by a single node i` having weight of ti`=ti+tj. Operation cut 
(i,j) is to delete edge (i,j) and add its weight to those of node i and j. Collapse and 
cut operations should be interpreted as decisions to allocate nodes to the same or 
distinct processors respectively.  

As shown in [6], we can convert each POT into a POT with no worthless 
edges, called monotone tree, by collapsing all its worthless edges using the 
GreedyChase algorithm that “chases down” and removes parallelism that is 
“worthless” irrespective of the number of processors. A GreedyChase algorithm is 
used as a pre-processing step in all described algorithms. Then we schedule the 
monotone tree. In a monotone tree we use also the following notations: Ri=ti+∑j∈V 

cij, R=max1<=i<=p Ri and W=∑i∈V  ti. 

3. Pipelined scheduling algorithms  

Scheduling pipelined operator tree is an intractable problem [8] and the 
space of schedules is super exponentially large. Thus any algorithm that finds the 
optimal is likely to be too expensive to be usable. The following algorithms are 
fast heuristics that produce near-optimal schedules. 

Modified LPT Algorithm 

Modified LPT algorithm [9] simply preprocesses away worthless 
parallelism by running GreedyChase before running LPT [8]. LPT assigns the job 
with the largest running time to the least loaded processor, repeating this step until 
all jobs are assigned.  

The algorithm is still oblivious to the tradeoff between parallelism and 
communication. Edges in a monotone path can have high weights and the 
algorithm is unaware of the savings that can occur when two nodes connected by 
an edge with a large weight are assigned the same processor.  



108                                  Carmen Elena Odubăşteanu, Călin Aurel Munteanu 

BalancedCuts algorithm 

BalancedCuts algorithm [9], is finding the optimal connected schedule. A 
connected schedule requires the nodes assigned to any processor to be a connected 
set. 

The algorithm for finding the optimal connected schedule for trees in 
which all edge weights has two steps repeated until the resulting number of 
fragments is no more than p: 

1. B will be set to a lower bound on the response time  
2. Given a bound B and a number of processors p, the BPSchedule 

algorithm [8] will be run to find a connected schedule with a response time of at 
most B, if such a schedule exists. Algorithm simply picks a mother node (a node 
is a mother node if all adjacent nodes with at most one exception are leaves) and 
traverses the children in the order of non-increasing ti - cim. Then, children are 
collapsed into the mother node as long as the weight of the mother stays below B 
and then cut off the rest. The process is repeated until no more mother nodes are 
left. If the resulting number of fragments is no more than p, a (B,p)-bounded 
schedule was found, otherwise no such schedule is possible. 

For an unsuccessful run of BpSchedule we will revise B as being the 
minimum of Bi (for each fragment Fi produced by BpSchedule, let Bi be the cost 
of the fragment plus the weight of the next node that was not included in the 
fragment). 

OptimBalancedCuts algorithm  

OptimBalancedCuts algorithm is an optimization of the BalancedCuts 
algorithm introduced by authors in [10]. A more careful analysis (and 
implementation) of the following idea gives us a bound of O(np). Whenever the B 
value is updated, the total work done in finding a new candidate solution can be 
charged to the nodes which migrate from a component to a previous one. It is easy 
to verify that the implementation cost works out to be O(1) for each such node 
migration. Since any one node can migrate at most p times, the total work can be 
bounded by O(np). 

The algorithm picks a mother node, traverses the children in the order of 
non-increasing ti - cim, collapses them into the mother node as long as the weight 
of the mother stays below B and then cut off the rest saving for each node the 
context (defined by the current mother node, the current son, the tree and the 
number of cuts) before the corresponding cutting step. The process is repeated 
until no more mother nodes are left or the number of cuts is not p-1.  

If the cost of the last fragment is no more than B, a (B,p)-bounded 
schedule was found, otherwise no such schedule is possible.  

B is revised by minimum of Bi and we repeat the process of collapsing 
nodes to their mothers beginning from the context corresponding to the node C 



Parallel query optimization: pipelined parallelism scheduling and golden number        109 

(the one choused for the new B value, which has the minimum value from the last 
iteration cutting nodes). So, the algorithm is run directly from the iteration 
corresponding to the mother node of C, skipping that way the steps already made 
before the cutting of the node C. 

Hybrid Algorithm 

BalancedCuts performs poorly on stars since the constraint of connected 
schedules is at odds with load balancing [9]. While the algorithm is cognizant of 
communication costs, it is poor at achieving balanced loads. On the other hand, 
LPT is very good at balancing loads but unaware of communication costs. The 
Hybrid algorithm [9] resulted by combining these two algorithms: BalancedCuts 
to cut the tree into many fragments and then schedule the fragments using LPT. 
LPT can be expected to “cleanup” cases such as stars on which connected 
schedules are a bad approximation. 

OptimHybrid Algorithm 

Hybrid algorithm has the best performance ratio in our experiments. Also, 
it has the worst execution time. So, we developed OptimHybrid algorithm [11], 
based on Hybrid, which has a better complexity. OptimHybrid uses 
OptimBalancedCuts algorithm instead of BalancedCuts algorithm to cut the tree 
into fragments which are then scheduled using LPT.  

Algorithm OptimHybrid: 
1. T’ = GreedyChase 
2. for i = p to n do 
3. F1,... , Fi = OptimBalancedCuts(T’, i) 
4. schedule = LPT({F1,... , Fi },P) 
5. end for 
6. return best of schedules found in steps 2 to 5 

Approximation algorithms 
For approximation algorithms we use a two-stage approach: 

fragmentation, and the actual scheduling. For scheduling, it was used LPT 
algorithm.  

In order to obtain better performances we used the Golden Number, 
(known also as Fibonacci number, Divine section, Phi or Φ) which has an 
approximate value of 1.618. This number is often met all around the world, from 
the ancient and modern art and architecture to the organization of nature, 
including human beings too. It is said that Phi represents a measure for harmony, 
a divine proportion known and used from the antiquity. In the next section a short 
presentation of Golden Number is introduced. 

 



110                                  Carmen Elena Odubăşteanu, Călin Aurel Munteanu 

LocalCuts and FiLocalCuts algorithms 

LocalCuts [1] repeatedly picks up a leaf and determines whether to cut or 
collapse the edge from the leaf to its parent. It selects proper operation based on 
the ratio of the leaf weight to the weight of the edge to its parent. If the ratio is 
greater than an input parameter α>1, it will cut the edge, since this operation does 
not considerably increase the weight of the resulting fragments. If the ratio is less 
than α, the leaf is collapsed to the parent node. This is because the weight of the 
parent node will not increase substantially. In the algorithm, a mother node is 
defined as a node that all its children are leaves.  

In FiLocalCuts algorithm we used for α Golden Number based values. 
Algorithm FiLocalCuts: 
1. T’ = GreedyChase 
2. while there exists a mother node m with child j do 
3. If tj > αcjm then cut(j,m) 
4. else collapse(j,m) 
5. end-while 
6. return schedule 

BoundedCuts and FiBoundedCuts algorithms 

The second algorithm that we modify is BoundedCuts [1]. If R is small 
compared to M*, LocalCuts may cut expensive edges needlessly (maximum 
weight of fragments produced by LocalCuts is bounded by αR). It uses a uniform 
bound B for each mother node. BoundedCuts fragments POT based on three 
parameters α, β and B that satisfy β ≥ α > 1 and B ≥ R. This algorithm cuts off 
light edges in a manner similar to LocalCuts. But it collapses edges based on αB 
bound.  

We extended BoundedCuts algorithm choosing in FiBoundedCuts values 
based on Golden Number for α and β.  

Algorithm FiBoundedCuts: 
1. while there exist a mother node m do 
2. partition children of m into sets N1 and N2 such that child j ∈N1 iff tj / 

cmj ≥ β 
3. cut(m,j) for all j ∈N1 ; (β rule) 
4. if Rm + ∑j∈ N2( tj-cmj ) ≤ α B then collapse(m,j) for all j∈N2 ;  
5. else cut(m,j) for all j ∈N2 ; (α rule) 
6. end-while 
7. return schedule 

 



Parallel query optimization: pipelined parallelism scheduling and golden number        111 

4. Experimental Results 

Based on experimental data, the presented algorithms will be compared in 
this section from different points of view. 

Over 5000 trees were generated for experiments, from which, after 
applying the algorithm for conversion into monotone trees, only those who have 
10 nodes were kept, meaning 1000 trees. The generated trees have a value domain 
ranging from 1 to 20 both for each node weight and for edge’s weight. All 
presented algorithms were simulated for every monotone tree and for a number of 
processors p ranging from 1 to maximum 10. The approximation algorithms were 
tested for different values of their parameters, including Golden Number based 
values. 

For performance analysis of each algorithm, performance ratio was 
defined as the ratio between experimental value and optimal value. The optimal 
value was considered the maximum values from R=maxi∈VRi and (W+CE)/p 
where CE is the sum of the weights of the cheapest p-1 edges [9].  

Performance ratio  
The results for average performance ratio are presented in a graphical 

(comparison) form in Fig. 1. 
The most efficient algorithms are Hybrid and OptimHybrid (same 

performance ratio). Also, Modified LPT, FiBoundedCuts and FiLocalCuts present 
good performances, closed to Hybrid. 

In Fig. 2 we have a graphical comparison for LocalCuts and FiLocalCuts 
algorithms tested with different values for parameter α. 

Notice that: 
• Best values (the smallest ones) for performance ratio are obtained for 

Ф/2, for p≥4.  
• For α=Ф, medium performance ratio is relatively very good for any 

number of processors (performance ratio is in domain [1, 1.18]; for Ф/2 domain is 
[1, 1.22]).  

• Same minimum interval [1, 1.18] is obtained for α in [1.6, 2] but, more 
closed parameter value is by Ф better performance ratio are obtained for p ≥3.   

• For p=2 we have good performances for bigger values of parameter α 
(for example, for α=3.56 performance ratio is 1.1; for Ф is 1.17).   



112                                  Carmen Elena Odubăşteanu, Călin Aurel Munteanu 

1

1,11

1,16
1,13

1,08

1,04
1,01 1 1 11

1,25

1,35

1,31

1,22

1,11

1,04
1,01 1 11

1,17
1,20

1,16

1,09

1,05

1,01 1 1 11

1,10

1,18

1,26
1,29 1,29 1,28 1,28 1,28

11

1,17 1,18
1,16

1,12
1,1

1,07 1,06 1,06

11

1,09

1,23

1,37

1,42

1,38

1,3

1,23

1,17

11

1,17 1,18
1,16

1,11

1,07

1,02
1 1 11

1,05

1,1

1,15

1,2

1,25

1,3

1,35

1,4

1,45

1 2 3 4 5 6 7 8 9 10

Number of processors

P
er

fo
rm

an
ce

 ra
tio

Hybrid Balanced Modified LPT LocalCuts FiLocalCuts BoundedCuts FiBoundedCuts

 
Fig. 1. Performance Ratio for Modified. LPT, BalancedCuts, Hybrid, LocalCuts, 

FiLocalCuts, BoundedCuts, FiBoundedCuts 

1

1,17 1,18
1,16

1,12
1,1

1,07 1,06 1,06

11

1,05

1,1

1,15

1,2

1,25

1,3

1,35

1 2 3 4 5 6 7 8 9 10

Number of processors

P
er

fo
rm

an
ce

 ra
tio

FiLocalCuts LocalCuts - 3.56 LocalCuts - Phi / 2
LocalCuts - Phi^2 LocalCuts - 1.7 LocalCuts - 1.8
LocalCuts - 1.85 LocalCuts - 2 LocalCuts - 3

 
Fig. 2. Performance Ratio for different values of parameter α for LocalCuts, FiLocalCuts 



Parallel query optimization: pipelined parallelism scheduling and golden number        113 

1

1,05

1,1

1,15

1,2

1,25

1,3

1,35

1,4

1,45

1 2 3 4 5 6 7 8 9 10

Number of processors

P
er

fo
rm

an
ce

 ra
tio

BoundedCuts FiBoundedCuts BoundedCuts (Phi / Phi^2)
BoundedCuts (Phi / 2*Phi ) BoundedCuts (2*Phi/ 3*Phi) BoundedCuts (2/4)

Fig. 3. Performance Ratio for different values of parameters α, β for BoundedCuts, FiBoundedCuts 
 

Values for performance ratio for BoundedCuts and FiBoundedCuts for 
different values of parameters α, respectively β are presented in Fig. 3. 

Notice that: 
• Best values (the smallest ones) for performance ratio are obtained for 

α=Ф and β=Ф, for p≥ 4.  
• For p = 3 best values are obtained for α=Ф and β=2Ф. 
• For p=2 very good values are obtained for α=Ф and β=3Ф.  
• For bigger values of β we have better performance ratio for a small 

number of processors and for smaller values of β for a bigger number of processors 
(p ≥ 4). 

Also, the performance ratio for original algorithms LocalCuts, 
BoundedCuts and newly FiLocalCuts and FiBoundedCuts are presented in Fig. 4. 

In conclusion, FiLocalCuts and FiBoundedCuts present better performance 
ratio than LocalCuts, respectively BoundedCuts, the algorithms which are derived 
from and the use of Golden Number based values for parameters α and β was a 
good idea. 

 



114                                  Carmen Elena Odubăşteanu, Călin Aurel Munteanu 

1

1,10

1,18

1,26
1,29 1,29 1,28 1,28 1,28

11

1,09

1,23

1,37

1,42

1,38

1,3

1,23

1,17

11

1,17 1,18
1,16

1,12
1,1

1,07 1,06 1,06

11

1,17 1,18
1,16

1,11

1,07

1,02
1 1 11

1,05

1,1

1,15

1,2

1,25

1,3

1,35

1,4

1,45

1 2 3 4 5 6 7 8 9 10

Number of processors

P
er

fo
rm

an
ce

 ra
tio

LocalCuts BoundedCuts FiLocalCuts FiBoundedCuts  
Fig. 4. Performance Ratio for LocalCuts, FiLocalCuts, BoundedCuts, FiBoundedCuts 

Minimum, respectively maximum values and domain range for 
performance ratio  

For all the 1000 tested trees, the minimum performance ratio value was 1 
for all the presented algorithms. The maximum performance ratio values (and the 
number of processors for which are obtained) are in table 1. Also, the interval 
length for performance ratio is detailed. 

Hybrid and OptimHybrid present the minimum for both maximum 
performance ratio (1.53) and domain length (0.53).  Same values are obtained by 
FiBoundedCuts which dramatically improved BoundedCuts performances (worst 
values both for performance ratio (2.42) and domain length (1.42)). 

A closed value (0.59) for domain length is also obtained by FiLocalCuts 
which presents a significant improvement from this point of view relative to 
LocalCuts (1.15).  

Table 1 
Performance Ratio (max, max-min) 

Algorithm P Max Max-Min 
ModLPT  p = 3 1.74 0.74 
BalancedCuts, OptimBalanced p = 3 1.84 0.84 
Hybrid, OptimHybrid p = 3 1.53 0.53 
LocalCuts  p = 4, 5, 6, 9, 10 2.15 1.15 
BoundedCuts  p = 4, 5 2.42 1.42 
FiLocalCuts  p = 7, 8 1.59 0.59 
FiBoundedCuts  p = 4 1.53 0.53 



Parallel query optimization: pipelined parallelism scheduling and golden number        115 

Average time for generating the solution 

From this point of view, the following values (presented in the next figure 
and table) were obtained: 

1,6 1,68 1,8 2,9 4,1

30,4

44,4

0

5

10

15

20

25

30

35

40

45

50

Algorithm

Ti
m

e

LocalCuts ModifiedLPT OptimBalancedCuts BoundedCuts
BalancedCuts OptimHybrid Hybrid  

Fig. 5. Execution Time 

The best time is obtained by LocalCuts and FiLocalCuts. 
Notice that OptimBalancedCuts has an execution time (1.8) much better 

than BalancedCuts (4.1), the algorithm which is derived from. So, the execution 
time for OptimHybrid was also decreased with approximately 32% reporting to 
the Hybrid execution time. 

Table 2 
Execution Time 

Algorithm Execution time  Algorithm Execution time 
LocalCuts, FiLocalCuts 1.6  BalancedCuts 4.1 
Modified LPT  1.68  OptimHybrid 30.4 
OptimBalancedCuts 1.8 Hybrid 44.4 
Boundedcuts, FiBoundedCuts 2.9    

Algorithm complexity 

From this point of view, the values presented in table 3 were obtained. 
Table 3 

Algorithms Complexity 
Algorithm Complexity  Algorithm Complexity 

Modified LPT, UniformModLPT O(nlog(n))  BalancedCuts O(n2p) 
LocalCuts, FiLocalCuts O(nplog(n))  OptimHybrid, UniformHybrid O(n2p) 

BoundedCuts, FiBoundedCuts O(nplog(n))  Hybrid O(n3p) 
OptimBalancedCuts O(np)    



116                                  Carmen Elena Odubăşteanu, Călin Aurel Munteanu 

Notice that OptimBalancedCuts complexity (O(np)) was decreased  
reporting to the BalancedCuts complexity (O(n2p)). Also, OptimHybrid and 
UniformHybrid complexity (O(n2p)) was decreased reporting to the Hybrid 
complexity (O(n3p)), due to the decreasing of OptimBalancedCuts complexity. 

5. Conclusions 

Nine algorithms regarding inter-operator parallelism (processors allocation 
phase for pipeline operator trees) are presented and analyzed in this paper. From 
[9], Modified LPT, BalancedCuts and Hybrid; from [1], LocalCuts and 
BoundedCuts, then OptimBalancedCuts and OptimHybrid designed by authors in 
[10], [11] and two new extended algorithms FiLocalCuts and FiBoundedCuts.  

From the simulations results, the best performance ratio is obtained by 
OptimHybrid very closed by FiLocalCuts, Modified LPT and FiBoundedCuts 
performances. 

 

Annexes A – Golden Number  

The Golden Number [12], or Golden Ratio, or Golden Mean or Fibonacci 
Number is one of these mysterious irrational numbers, like e or (Pi). It is often 
called Φ or Phi. Φ is said to be the divine proportion, the ratio of beauty. Indeed, it 
has been found in some nature constructions, later re-used in architecture and 
paintings. 

The value of Φ 

The positive result of the equation "X²=X+1" gives Φ value: 
Φ = (1+ 5)/2 = 1,61803398874989484820... 
φ = (1- 5)/2 = -0,61803398874989484820... 

Φ is also the limit of the ratio of Fibonacci series numbers:  
Lim [n ] ( U[n+1] / U[n] ) = Φ,  

Where U (Fibonacci series) is defined as follow: 
U[n+2]=U[n+1]+U[n], U[0] = 0, U[n]=1. 
U[n] values are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, etc. 

Mathematical properties of Φ 

In both arithmetic and geometry, Φ has many properties that we cannot 
develop here. The basic knowledge to keep in mind with the Golden Number is: 

Φ²= Φ +1. 
Φ and φ are very close as far as their decimal part is identical and they 

have the following properties:  



Parallel query optimization: pipelined parallelism scheduling and golden number        117 

Φ*φ  = -1,  
Φ + φ = 1, etc. 
Geometrically, Φ is defined as in Fig. 6. 
Euclid (~300BC) called this geometrical drawing "to divide a line in mean 

& extreme ratio". 
 

 
Fig. 6. Golden Section 

 
It is important to know that Φ is particularly present in the geometry of 

Pentagon (2D), Pentagram (2D) and Dodecahedron (3D) (Fig. 7): 

                
 

Fig. 7. Pentagon, Pentagram, Dodecahedron 
 
The use of Golden Number, Phi for FiLocalCuts and FiBoundedCuts 

improves LocalCuts, respectively BoundedCuts performances for both maximum 
performance ratio and its domain length. Thus, this first use of Golden Number in 
pipelined parallelism scheduling problem was a successful one and it proves that 
Golden Number implications in pipelined parallelism are alike to the implications 
which appears in other domains (an “harmonious distribution” for performance 
ratio values was obtained). 

The Golden Number everywhere 

Here are some famous examples of use of Φ in the nature: 
• The Nautilus shell (Nautilus pompilius) grows larger on each spiral by 

Φ (Fig. 8) 
• The sunflower has 55 clockwise spirals overlaid on either 34 or 89 

counterclockwise spirals, a Φ proportion 
• For a coneflower (Fig. 9) you can see that the orange "petals" seem to 

form spirals curving both to the left and to the right. At the edge of the picture, if 
you count those spiraling to the rights as you go outwards, there are 55 spirals. A 
little further towards the centre and you can count 34 spirals. You will see that the 



118                                  Carmen Elena Odubăşteanu, Călin Aurel Munteanu 

pair numbers (counting spirals in curing left and curving right) are neighbours in 
the Fibonacci series. 

• The drone genealogy follow the Fibonacci series (so is linked to Φ), etc. 
 

Fig 8. Nautilus shell Fig 9. Coneflower - a member of the daisy 
family with the scientific name Echinacea purpura 

 
Φ has also been used by artists (painters, sculptors...) who were trying to 

rationalize aesthetic and understand what make us think whether a shape is nice / 
harmonious / pleasant or not. It has been used at Keops in Egypt, at the Parthénon 
in Athens, at Epidaure (Greece), etc. See Fig. 10, Fig. 11 and Fig. 12. 

 

 
Fig. 10. Leonardo Da Vinci's Corpo Humano, a good illustration of artists in the 

quest of rationalizing beauty 

How to use quickly the Golden Number? 

When you take the first ratio coming from Fibonacci series, for instance 
5/3=1.66..., 8/5=1.6 and 13/8=1.625, you have an approximation of Φ for not 
precise works (for instance painting). Squaring of 3, 5 or 8 are easy to draw when 
preparing material for painting, and the previous ratio can help you quickly use 
"divine proportions". 

Another solution to quickly use Golden Number is to use a Golden 
Compass, as provided by Robert Losson for example. 

  



Parallel query optimization: pipelined parallelism scheduling and golden number        119 

Fig. 11. Old Egyptian tunic Fig. 12 Aztec culture 
 
Where we also met Golden Number: 

• architecture  
o The Parthenon and Greek Architecture 
o Modern Architecture  

 The Eden Project's new Education Building 
 California Polytechnic Engineering Plaza 
 The United Nations Building in New York 

• art  
o Leonardo's Art  
o Modern Art  

 Graham Sutherland's Tapestry in Coventry Cathedral 
o in fashioning Furniture 

• films 
• human body 
• poetry  

o Stress, Metre and Sanskrit Poetry  
o Virgil's Aeneid 

• music  
o Golden sections in Violin construction 
o Did Mozart use the Golden mean?  
o Phi in Beethoven's Fifth Symphony? 
o Bartók, Debussy, Schubert, Bach and Satie  

• miscellaneous, amusing and odd places  
o TV stations in Halifax, Canada 
o Turku Power Station, Finland 

 

 

 



120                                  Carmen Elena Odubăşteanu, Călin Aurel Munteanu 

R E F E R E N C E S 

[1] C. Chekuri, W. Hasan, R. Motwani, Scheduling Problems in Parallel Query Optimization, In 
Proceedings of Fourteenth ACM SIGACT-SIGMODSIGART Symposium on Principle of 
Database Systems, pp: 255-265, San Joes, California,May 1995 

[2] D. Florescu, W. Hasan, P. Valdurize, Open Issues in Parallel Query Optimization, Sigmod 
Record, 25(3), pp: 28-33, September 1996 

[3] D.J. Dewitt, J. Gray, Parallel Database Systems: The Future of High Performance Database 
Systems, Communication of ACM, 35(6), pp:85-98, June 1992 

[4] S. Englert, R. Glasstone, W. Hasan, Parallelism and Its Price: A Case Study of NonStop 
SQL/MP, Sigmod Record, Dec. 1995 

[5] W. Hong, Parallel Query Processing Using Shared Memory Multiprocessors and Disk Arrays, 
PhD.Thesis, University of California, Berkeley, Department of Computer Science, August 
1992 

[6] W. Hasan, R. Motwani, Optimization Algorithms for Exploiting the Parallelism, 
Communication Tradeoff in Pipelined Parallelism, The 20th International Conference on 
VLDB, pp: 36-47, Santigo, Chile, September 1994  

[7] A. Termehchy, M. Ghodsi, Pipelined operator tree scheduling in heterogeneous environments, 
Journal of Parallel and Distributed Computing, Vol. 63, Number 6, June 2003, pp. 630-
637(8) 

[8] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and 
Approximation in Deterministic Sequencing and Scheduling: A Survey. Annals of Discrete 
Mathematics, 5:287-326, 1979 

[9] W. Hasan, Optimization of SQL Queries for Parallel Machines, PhD. Thesis, Stanford 
University, Dec. 1996 

[10] C. Odubăşteanu, C. Munteanu, Pipelined operator tree scheduling for heterogeneous and 
homogeneous environments, ETAI 2007, Ohrid, Macedonia, 2007 

[11] C. Odubăşteanu, C. Munteanu, Optimization Algorithms for Scheduling Problem in Pipelined 
Parallelism, Proceedings of the 8th international conference on technical informatics, 
CONTI, Timişoara, Romania, 2008 

[12] www.guillaumemorel.com/en-gold.htm. 


