U.P.B. Sci. Bull., Series C, Vol. 71, Iss. 3, 2009 ISSN 1454-234x

PARALLEL QUERY OPTIMIZATION: PIPELINED
PARALLELISM SCHEDULING AND GOLDEN NUMBER

Carmen Elena ODUBASTEANU', Calin Aurel MUNTEANU?

Problema planificarii paralelismului de tip pipeline este foarte importanta
pentru optimizarea interogarilor paralele. Pentru a o rezolva se utilizeaza ca
reprezentare un arbore de operatori pipeline (Pipelined Operator Tree- POT), un
arbore ale carui noduri reprezintd operatorii interogarii care pot fi executati in
paralel iar muchiile reprezintd costul de comunicare dintre doi operatori adiacenti;
trebuie sa determinam un plan de executie pentru POT care minimizeaza timpul
total de raspuns, aceasta fiind o problemd de tip NP-complexd. Lucrarea de fata
prezinta algoritmi pentru determinarea planificarii paralele de tip pipeline si
compard performantele acestora din mai multe puncte de vedere prin simularea
comportamentului lor. O parte din algoritmi sunt propusi de autori, doi dintre
algoritmi fiind bazati pe utilizarea Numarului de Aur.

Pipelined parallelism scheduling problem is very important in the area of
parallel query optimization. To model the problem it is used a POT (Pipelined
Operator Tree), which is a tree whose nodes represent query operators that can be
run in parallel and edges represent communication between adjacent operators; we
must find a schedule for the POT that minimizes the total response time, a problem
which has been shown to be NP-hard. This paper presents algorithms for pipelined
parallelism scheduling and compares their performances by simulating their
behaviors. Some of the algorithms are proposed by the authors; two of them are
based on Golden Number.

Keywords: query optimization, parallel databases, pipeline parallelism
scheduling, Golden Number

1. Introduction

Today we are challenged with sophisticated applications on parallel
database systems, such as decision support systems and data mining. Therefore,
the minimization of the query response time is more than ever necessary. The
complexity of this problem is reduced if we used a two-phase approach [1], [2]:
join ordering and query rewriting followed by parallelization and scheduling. In
the second phase, atomic units of the query (operators) are extracted and then

! Assistant, Department of Computer Science, University POLITEHNICA of Bucharest, Romania,
e-mail: carmen_od@yahoo.com

? Assistant, Department of Automatics and Industrial Information, University POLITEHNICA of
Bucharest, Romania, e-mail: mc_aurel@yahoo.com

106 Carmen Elena Odubasteanu, Cilin Aurel Munteanu

scheduled to provide the minimum response time. One of the most important
issues that must be considered is the parallelism-communication trade-off [3], [4].
A query will be represented as a weighted operator tree in which each node
represents an operator and each edge represents the timing constraints between
operators [5], [6]. A timing constraint is either a precedence or parallel constraint.
The parallel constraint introduces a pipelined parallelism and requires that the two
adjacent nodes start and terminate their works approximately at the same time,
behaving as a producer-consumer system.

Algorithms for managing pipelined parallelism are an essential component
of an optimizer because pipelining is sometimes the only way of speeding up a
query not just a useful supplement to partitioned parallelism [3]. For example,
when each reduced relation of a query that join a large number (say 10) of
relations and apply external functions, grouping and aggregation is small,
partitioned parallelism ceases to be a viable option and pipelined parallelism is the
only source of speedup.

Scheduling of a Pipelined Operator Tree (POT - weighted operator tree in
which all edges represent parallel constraints [6]) is different from the classical
scheduling problems because of the communication.

Brute force algorithms are impractical for scheduling pipelines due to the
extremely large search space. A query that joins 10 relations leads to an operator
tree with about 20 nodes. The number of ways of scheduling 20 operators on 20
processors exceeds 5 x 10". Algorithms that simply ignore communication
overhead are unlikely to yield good results. Communication cost is saved if
adjacent nodes are assigned to one processor but this would decrease the degree of
parallelism.

This optimization problem can also be viewed as to find a schedule that
minimizes the maximum load of the processors where load of a processor is the
sum of the weights of the operators assigned to it plus the weight of the edges that
connect nodes on this processor to the nodes on other processors.

POT scheduling problem was first introduced by Hasan and Motwani for
identical processor systems and was shown to be NP-hard [1], [6]. They proposed
several approximation algorithms. Five of them are presented and compared from
different points of view. These algorithms are: Modified LPT, BalancedCuts,
Hybrid, LocalCuts and BoundedCuts. Also, in this paper are described four recent
algorithms OptimBalancedCuts, OptimHybrid, FiLocalCuts and FiBoundedCuts
designed by us. FiLocalCuts and FiBoundedCuts are based on Golden Number.

The paper is organized as follows: it begins with an overview of the model
and problem definition. Then, nine algorithms for scheduling pipelines parallelism
are presented. Finally, the experimental results are presented and analyzed. Also, a
short presentation of Golden Number is made in this paper.

Parallel query optimization: pipelined parallelism scheduling and golden number 107

2. A model for the problem

The following definitions are based on earlier models presented in [1], [6],
[7]. A POT is represented as a weighted operator tree P= (V, E) with n nodes. The
weight t; of the node i is the time to run the operator in isolation assuming all
communications are local. The weight c;; of the edge from node 1 to node j is the
additional CPU overhead that both i and j will incur for inter-operation
communication if they are scheduled on different processors. A schedule of P on p
processors is a partition of V, the set of n nodes, into p sets Fy, F,,..., F, such that
set Fy is assigned to processor k. The load of processor k, or Ly, is the cost of
executing all nodes in Fy plus the overhead for communicating with nodes on
other processors. That is, Li=>jcpi[ti+ 21 ericii]. L is max<—x<—p Li.

Two operations are used to modify the POT: collapse (i,j) is to replace
adjacent nodes i and j by a single node 1* having weight of t;=ti+t;. Operation cut
(i,j) is to delete edge (i,j) and add its weight to those of node i and j. Collapse and
cut operations should be interpreted as decisions to allocate nodes to the same or
distinct processors respectively.

As shown in [6], we can convert each POT into a POT with no worthless
edges, called monotone tree, by collapsing all its worthless edges using the
GreedyChase algorithm that “chases down” and removes parallelism that is
“worthless” irrespective of the number of processors. A GreedyChase algorithm is
used as a pre-processing step in all described algorithms. Then we schedule the
monotone tree. In a monotone tree we use also the following notations: Ri=tj+2cy
Cij, R=max1<=i<=p R, and W=cv ti.

3. Pipelined scheduling algorithms

Scheduling pipelined operator tree is an intractable problem [8] and the
space of schedules is super exponentially large. Thus any algorithm that finds the
optimal is likely to be too expensive to be usable. The following algorithms are
fast heuristics that produce near-optimal schedules.

Modified LPT Algorithm

Modified LPT algorithm [9] simply preprocesses away worthless
parallelism by running GreedyChase before running LPT [8]. LPT assigns the job
with the largest running time to the least loaded processor, repeating this step until
all jobs are assigned.

The algorithm is still oblivious to the tradeoff between parallelism and
communication. Edges in a monotone path can have high weights and the
algorithm is unaware of the savings that can occur when two nodes connected by
an edge with a large weight are assigned the same processor.

108 Carmen Elena Odubasteanu, Cilin Aurel Munteanu

BalancedCuts algorithm

BalancedCuts algorithm [9], is finding the optimal connected schedule. A
connected schedule requires the nodes assigned to any processor to be a connected
set.

The algorithm for finding the optimal connected schedule for trees in
which all edge weights has two steps repeated until the resulting number of
fragments is no more than p:

1. B will be set to a lower bound on the response time

2. Given a bound B and a number of processors p, the BPSchedule
algorithm [8] will be run to find a connected schedule with a response time of at
most B, if such a schedule exists. Algorithm simply picks a mother node (a node
is a mother node if all adjacent nodes with at most one exception are leaves) and
traverses the children in the order of non-increasing t; - ciy,. Then, children are
collapsed into the mother node as long as the weight of the mother stays below B
and then cut off the rest. The process is repeated until no more mother nodes are
left. If the resulting number of fragments is no more than p, a (B,p)-bounded
schedule was found, otherwise no such schedule is possible.

For an unsuccessful run of BpSchedule we will revise B as being the
minimum of B; (for each fragment F; produced by BpSchedule, let B; be the cost
of the fragment plus the weight of the next node that was not included in the
fragment).

OptimBalancedCuts algorithm

OptimBalancedCuts algorithm is an optimization of the BalancedCuts
algorithm introduced by authors in [10]. A more careful analysis (and
implementation) of the following idea gives us a bound of O(np). Whenever the B
value is updated, the total work done in finding a new candidate solution can be
charged to the nodes which migrate from a component to a previous one. It is easy
to verify that the implementation cost works out to be O(1) for each such node
migration. Since any one node can migrate at most p times, the total work can be
bounded by O(np).

The algorithm picks a mother node, traverses the children in the order of
non-increasing ti - Cim, collapses them into the mother node as long as the weight
of the mother stays below B and then cut off the rest saving for each node the
context (defined by the current mother node, the current son, the tree and the
number of cuts) before the corresponding cutting step. The process is repeated
until no more mother nodes are left or the number of cuts is not p-1.

If the cost of the last fragment is no more than B, a (B,p)-bounded
schedule was found, otherwise no such schedule is possible.

B is revised by minimum of B; and we repeat the process of collapsing
nodes to their mothers beginning from the context corresponding to the node C

Parallel query optimization: pipelined parallelism scheduling and golden number 109

(the one choused for the new B value, which has the minimum value from the last
iteration cutting nodes). So, the algorithm is run directly from the iteration
corresponding to the mother node of C, skipping that way the steps already made
before the cutting of the node C.

Hybrid Algorithm

BalancedCuts performs poorly on stars since the constraint of connected
schedules is at odds with load balancing [9]. While the algorithm is cognizant of
communication costs, it is poor at achieving balanced loads. On the other hand,
LPT is very good at balancing loads but unaware of communication costs. The
Hybrid algorithm [9] resulted by combining these two algorithms: BalancedCuts
to cut the tree into many fragments and then schedule the fragments using LPT.
LPT can be expected to “cleanup” cases such as stars on which connected
schedules are a bad approximation.

OptimHybrid Algorithm

Hybrid algorithm has the best performance ratio in our experiments. Also,
it has the worst execution time. So, we developed OptimHybrid algorithm [11],
based on Hybrid, which has a better complexity. OptimHybrid uses
OptimBalancedCuts algorithm instead of BalancedCuts algorithm to cut the tree
into fragments which are then scheduled using LPT.

Algorithm OptimHybrid:

1. T’ = GreedyChase
.fori=ptondo
. Fy,..., Fi= OptimBalancedCuts(T’, 1)
. schedule = LPT({Fy,... , F; },P)
. end for
. return best of schedules found in steps 2 to 5

() NV, I ER S \S]

Approximation algorithms

For approximation algorithms we wuse a two-stage approach:
fragmentation, and the actual scheduling. For scheduling, it was used LPT
algorithm.

In order to obtain better performances we used the Golden Number,
(known also as Fibonacci number, Divine section, Phi or ®) which has an
approximate value of 1.618. This number is often met all around the world, from
the ancient and modern art and architecture to the organization of nature,
including human beings too. It is said that Phi represents a measure for harmony,
a divine proportion known and used from the antiquity. In the next section a short
presentation of Golden Number is introduced.

110 Carmen Elena Odubasteanu, Cilin Aurel Munteanu

LocalCuts and FiLocalCuts algorithms

LocalCuts [1] repeatedly picks up a leaf and determines whether to cut or
collapse the edge from the leaf to its parent. It selects proper operation based on
the ratio of the leaf weight to the weight of the edge to its parent. If the ratio is
greater than an input parameter o1, it will cut the edge, since this operation does
not considerably increase the weight of the resulting fragments. If the ratio is less
than o, the leaf is collapsed to the parent node. This is because the weight of the
parent node will not increase substantially. In the algorithm, a mother node is
defined as a node that all its children are leaves.

In FiLocalCuts algorithm we used for a Golden Number based values.

Algorithm FiLocalCuts:

1. T’ = GreedyChase
. while there exists a mother node m with child j do
. If t; > acjm then cut(j,m)

. else collapse(j,m)
. end-while
. return schedule

AN N W

BoundedCuts and FiBoundedCuts algorithms

The second algorithm that we modify is BoundedCuts [1]. If R is small
compared to M*, LocalCuts may cut expensive edges needlessly (maximum
weight of fragments produced by LocalCuts is bounded by aR). It uses a uniform
bound B for each mother node. BoundedCuts fragments POT based on three
parameters a, 3 and B that satisfy B > o > 1 and B > R. This algorithm cuts off
light edges in a manner similar to LocalCuts. But it collapses edges based on aB
bound.

We extended BoundedCuts algorithm choosing in FiBoundedCuts values
based on Golden Number for o and f3.

Algorithm FiBoundedCuts:

1. while there exist a mother node m do

2. partition children of m into sets N; and N> such that child j eNj iff t;/
Cmj b B
. cut(m,j) for all j eNy; (B rule)

.Af R + 2je N2 ti-Cmj) < o B then collapse(m,j) for all jeN»;
. else cut(m,j) for all j N, ; (a rule)

. end-while

. return schedule

NN N W

Parallel query optimization: pipelined parallelism scheduling and golden number 111

4. Experimental Results

Based on experimental data, the presented algorithms will be compared in
this section from different points of view.

Over 5000 trees were generated for experiments, from which, after
applying the algorithm for conversion into monotone trees, only those who have
10 nodes were kept, meaning 1000 trees. The generated trees have a value domain
ranging from 1 to 20 both for each node weight and for edge’s weight. All
presented algorithms were simulated for every monotone tree and for a number of
processors p ranging from 1 to maximum 10. The approximation algorithms were
tested for different values of their parameters, including Golden Number based
values.

For performance analysis of each algorithm, performance ratio was
defined as the ratio between experimental value and optimal value. The optimal
value was considered the maximum values from R=maxc.yR; and (W+Cg)/p
where Cg is the sum of the weights of the cheapest p-1 edges [9].

Performance ratio

The results for average performance ratio are presented in a graphical
(comparison) form in Fig. 1.

The most efficient algorithms are Hybrid and OptimHybrid (same
performance ratio). Also, Modified LPT, FiBoundedCuts and FiLocalCuts present
good performances, closed to Hybrid.

In Fig. 2 we have a graphical comparison for LocalCuts and FiLocalCuts
algorithms tested with different values for parameter a.

Notice that:

e Best values (the smallest ones) for performance ratio are obtained for
@/2, for p>4.

e For o=®, medium performance ratio is relatively very good for any
number of processors (performance ratio is in domain [1, 1.18]; for ®/2 domain is
[1, 1.22]).

e Same minimum interval [1, 1.18] is obtained for a in [1.6, 2] but, more
closed parameter value is by @ better performance ratio are obtained for p >3.

e For p=2 we have good performances for bigger values of parameter o
(for example, for 0=3.56 performance ratio is 1.1; for @ is 1.17).

112

Carmen Elena Odubasteanu, Cilin Aurel Munteanu

Performance ratio

1,45

1 2 3 4 5 6 7 8 9 10
Number of processors

= Hybrid — Balanced Modified LPT — LocalCuts = FiLocalCuts =—=BoundedCuts = FiBoundedCuts \

Performance ratio

1,2

=

[N

ol
|

P
-
|

1,05

Fig. 1. Performance Ratio for Modified. LPT, BalancedCuts, Hybrid, LocalCuts,
FiLocalCuts, BoundedCuts, FiBoundedCuts

I

1 2 3 4 5
Number of processors
=& FiLocalCuts —=—LocalCuts - 3.56 ——LocalCuts - Phi/2
LocalCuts - Phi"2 ——LocalCuts - 1.7 LocalCuts - 1.8
LocalCuts - 1.85 ——LocalCuts - 2 LocalCuts - 3

Fig. 2. Performance Ratio for different values of parameter o for LocalCuts, FiLocalCuts

Parallel query optimization: pipelined parallelism scheduling and golden number 113

1,45

14 Py
3
11,2 fal NS
1,25
12 /?//

| = S
11 /,% \-\\\
105 AL

Performance ratio

1 2 3 4 5 6 7 8 9 10
Number of processors
—e— BoundedCuts —=— FiBoundedCuts = =BoundedCuts (Phi / Phi"2)
—~— BoundedCuts (Phi/ 2*Phi) —— BoundedCuts (2*Phi/ 3*Phi) —— BoundedCuts (2/4)

Fig. 3. Performance Ratio for different values of parameters a, § for BoundedCuts, FiBoundedCuts

Values for performance ratio for BoundedCuts and FiBoundedCuts for
different values of parameters o, respectively B are presented in Fig. 3.
Notice that:

e Best values (the smallest ones) for performance ratio are obtained for
o=® and =D, for p> 4.

e For p =3 best values are obtained for o= and p=2O.

e For p=2 very good values are obtained for a=® and =3.

e For bigger values of B we have better performance ratio for a small
number of processors and for smaller values of B for a bigger number of processors
(p=4.

Also, the performance ratio for original algorithms LocalCuts,
BoundedCuts and newly FilL.ocalCuts and FiBoundedCuts are presented in Fig. 4.

In conclusion, FiLocalCuts and FiBoundedCuts present better performance
ratio than LocalCuts, respectively BoundedCuts, the algorithms which are derived
from and the use of Golden Number based values for parameters o and 3 was a
good idea.

114 Carmen Elena Odubasteanu, Cilin Aurel Munteanu

1,45

1.4

12

Performance ratio

1,15

11

1,05

Number of processors

‘—0— LocalCuts == BoundedCuts =& FiLocalCuts == FiBoundedCuts ‘

Fig. 4. Performance Ratio for LocalCuts, FiLocalCuts, BoundedCuts, FiBoundedCuts

Minimum, respectively maximum values and domain range for
performance ratio

For all the 1000 tested trees, the minimum performance ratio value was 1
for all the presented algorithms. The maximum performance ratio values (and the
number of processors for which are obtained) are in table 1. Also, the interval
length for performance ratio is detailed.

Hybrid and OptimHybrid present the minimum for both maximum
performance ratio (1.53) and domain length (0.53). Same values are obtained by
FiBoundedCuts which dramatically improved BoundedCuts performances (worst
values both for performance ratio (2.42) and domain length (1.42)).

A closed value (0.59) for domain length is also obtained by FiLocalCuts
which presents a significant improvement from this point of view relative to

LocalCuts (1.15).
Table 1
Performance Ratio (max, max-min)

Algorithm P Max Max-Min
ModLPT p=3 1.74 0.74
BalancedCuts, OptimBalanced p=3 1.84 0.84
Hybrid, OptimHybrid p=3 1.53 0.53
LocalCuts p=4,56,9,10 2.15 1.15
BoundedCuts p=45 2.42 1.42
FiLocalCuts p=7,8 1.59 0.59
FiBoundedCuts p=4 1.53 0.53

Parallel query optimization: pipelined parallelism scheduling and golden number 115

Average time for generating the solution

From this point of view, the following values (presented in the next figure
and table) were obtained:

50 ~

44,4

45 4
40 4
35 A
30 A

[}
E 25 1
=
20 ~
15
10 A
5 4
O J
Algorithm
@ LocalCuts ® ModifiedLPT O OptimBalancedCuts @ BoundedCuts
O BalancedCuts B OptimHybrid @ Hybrid

Fig. 5. Execution Time

The best time is obtained by LocalCuts and FiLocalCuts.

Notice that OptimBalancedCuts has an execution time (1.8) much better
than BalancedCuts (4.1), the algorithm which is derived from. So, the execution
time for OptimHybrid was also decreased with approximately 32% reporting to
the Hybrid execution time.

Table 2
Execution Time
Algorithm Execution time Algorithm Execution time
LocalCuts, FiLocalCuts 1.6 BalancedCuts 4.1
Modified LPT 1.68 OptimHybrid 30.4
OptimBalancedCuts 1.8 Hybrid 44.4
Boundedcuts, FiBoundedCuts 2.9

Algorithm complexity

From this point of view, the values presented in table 3 were obtained.

Table 3
Algorithms Complexity
Algorithm Complexity Algorithm Complexity
Modified LPT, UniformModLPT| O(nlog(n)) BalancedCuts O(n’p)
LocalCuts, FiLocalCuts O(nplog(n)) OptimHybrid, UniformHybrid O(n’p)
BoundedCuts, FiBoundedCuts O(nplog(n)) Hybrid O(n’p)
OptimBalancedCuts O(np)

116 Carmen Elena Odubasteanu, Cilin Aurel Munteanu

Notice that OptimBalancedCuts complexity (O(np)) was decreased
reporting to the BalancedCuts complexity (O(n’p)). Also, OptimHybrid and
UniformHybrid complexity (O(n’p)) was decreased reporting to the Hybrid
complexity (O(n’p)), due to the decreasing of OptimBalancedCuts complexity.

5. Conclusions

Nine algorithms regarding inter-operator parallelism (processors allocation
phase for pipeline operator trees) are presented and analyzed in this paper. From
[9], Modified LPT, BalancedCuts and Hybrid; from [1], LocalCuts and
BoundedCuts, then OptimBalancedCuts and OptimHybrid designed by authors in
[10], [11] and two new extended algorithms FiLocalCuts and FiBoundedCuts.

From the simulations results, the best performance ratio is obtained by
OptimHybrid very closed by FiLocalCuts, Modified LPT and FiBoundedCuts
performances.

Annexes A — Golden Number

The Golden Number [12], or Golden Ratio, or Golden Mean or Fibonacci
Number is one of these mysterious irrational numbers, like e or m(Pi). It is often
called @ or Phi. @ is said to be the divine proportion, the ratio of beauty. Indeed, it
has been found in some nature constructions, later re-used in architecture and
paintings.

The value of ®

The positive result of the equation "X?>=X+1" gives ® value:
® = (1++5)/2 = 1,61803398874989484820...
¢ = (1-+5)/2 = -0,61803398874989484820...

@ is also the limit of the ratio of Fibonacci series numbers:

Lim [n=+m] (Un+1]/U[n]) =0,

Where U (Fibonacci series) is defined as follow:
U[n+2]=U[n+1]+U][n], U[0] = 0, U[n]=1.
Ul[n] values are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, etc.

Mathematical properties of ®

In both arithmetic and geometry, ® has many properties that we cannot
develop here. The basic knowledge to keep in mind with the Golden Number is:

D= +1.

@ and ¢ are very close as far as their decimal part is identical and they
have the following properties:

Parallel query optimization: pipelined parallelism scheduling and golden number 117

O*¢ =-1,

O+ =1, etc.

Geometrically, © is defined as in Fig. 6.

Euclid (~300BC) called this geometrical drawing "to divide a line in mean
& extreme ratio".

A G B
GB _AG_ g
AGC AB

Fig. 6. Golden Section

It is important to know that @ is particularly present in the geometry of
Pentagon (2D), Pentagram (2D) and Dodecahedron (3D) (Fig. 7):

Fig. 7. Pentagon, Pentagram, Dodecahedron

The use of Golden Number, Phi for FilocalCuts and FiBoundedCuts
improves LocalCuts, respectively BoundedCuts performances for both maximum
performance ratio and its domain length. Thus, this first use of Golden Number in
pipelined parallelism scheduling problem was a successful one and it proves that
Golden Number implications in pipelined parallelism are alike to the implications
which appears in other domains (an “harmonious distribution” for performance
ratio values was obtained).

The Golden Number everywhere

Here are some famous examples of use of ® in the nature:

e The Nautilus shell (Nautilus pompilius) grows larger on each spiral by
® (Fig. 8)

e The sunflower has 55 clockwise spirals overlaid on either 34 or 89
counterclockwise spirals, a ® proportion

e For a coneflower (Fig. 9) you can see that the orange "petals" seem to
form spirals curving both to the left and to the right. At the edge of the picture, if
you count those spiraling to the rights as you go outwards, there are 55 spirals. A
little further towards the centre and you can count 34 spirals. You will see that the

118 Carmen Elena Odubasteanu, Cilin Aurel Munteanu

pair numbers (counting spirals in curing left and curving right) are neighbours in
the Fibonacci series.
e The drone genealogy follow the Fibonacci series (so is linked to @), etc.

Fig 9. Coneflower - a member of the daisy
family with the scientific name Echinacea purpura

Fig 8. Nautilus shell

@ has also been used by artists (painters, sculptors...) who were trying to
rationalize aesthetic and understand what make us think whether a shape is nice /
harmonious / pleasant or not. It has been used at Keops in Egypt, at the Parthénon
in Athens, at Epidaure (Greece), etc. See Fig. 10, Fig. 11 and Fig. 12.

Fig. 10. Leonardo Da Vinci's Corpo Humano, a good illustration of artists in the
quest of rationalizing beauty

How to use quickly the Golden Number?

When you take the first ratio coming from Fibonacci series, for instance
5/3=1.66..., 8/5=1.6 and 13/8=1.625, you have an approximation of @ for not
precise works (for instance painting). Squaring of 3, 5 or 8 are easy to draw when
preparing material for painting, and the previous ratio can help you quickly use
"divine proportions".

Another solution to quickly use Golden Number is to use a Golden
Compass, as provided by Robert Losson for example.

Parallel query optimization: pipelined parallelism scheduling and golden number 119

Fig. 11. Old Egyptian tunic

Fig. 12 Aztec culture

Where we also met Golden Number:

architecture

0 The Parthenon and Greek Architecture
0 Modern Architecture

art
o
0
0
films
human body
poetry
o
o
music
0
0
o
o

* The Eden Project's new Education Building
= (California Polytechnic Engineering Plaza
* The United Nations Building in New York

Leonardo's Art
Modern Art

» Graham Sutherland's Tapestry in Coventry Cathedral
in fashioning Furniture

Stress, Metre and Sanskrit Poetry
Virgil's Aeneid

Golden sections in Violin construction
Did Mozart use the Golden mean?

Phi in Beethoven's Fifth Symphony?
Bartdék, Debussy, Schubert, Bach and Satie

miscellaneous, amusing and odd places

(o}
[0}

TV stations in Halifax, Canada
Turku Power Station, Finland

120 Carmen Elena Odubasteanu, Cilin Aurel Munteanu

REFERENCES

[1] C. Chekuri, W. Hasan, R. Motwani, Scheduling Problems in Parallel Query Optimization, In
Proceedings of Fourteenth ACM SIGACT-SIGMODSIGART Symposium on Principle of
Database Systems, pp: 255-265, San Joes, California,May 1995

[2] D. Florescu, W. Hasan, P. Valdurize, Open Issues in Parallel Query Optimization, Sigmod
Record, 25(3), pp: 28-33, September 1996

[3] D.J. Dewitt, J. Gray, Parallel Database Systems: The Future of High Performance Database
Systems, Communication of ACM, 35(6), pp:85-98, June 1992

[4] S. Englert, R. Glasstone, W. Hasan, Parallelism and Its Price: A Case Study of NonStop
SQL/MP, Sigmod Record, Dec. 1995

[5] W. Hong, Parallel Query Processing Using Shared Memory Multiprocessors and Disk Arrays,
PhD.Thesis, University of California, Berkeley, Department of Computer Science, August
1992

[6] W. Hasan, R. Motwani, Optimization Algorithms for Exploiting the Parallelism,
Communication Tradeoff in Pipelined Parallelism, The 20th International Conference on
VLDB, pp: 36-47, Santigo, Chile, September 1994

[7] A. Termehchy, M. Ghodsi, Pipelined operator tree scheduling in heterogeneous environments,
Journal of Parallel and Distributed Computing, Vol. 63, Number 6, June 2003, pp. 630-
637(8)

[8] RL. Graham, E.L. Lawler, JK. Lenstra, A.H.G. Rinnooy Kan, Optimization and
Approximation in Deterministic Sequencing and Scheduling: A Survey. Annals of Discrete
Mathematics, 5:287-326, 1979

[91 W. Hasan, Optimization of SQL Queries for Parallel Machines, PhD. Thesis, Stanford
University, Dec. 1996

[10] C. Odubasteanu, C. Munteanu, Pipelined operator tree scheduling for heterogeneous and
homogeneous environments, ETAI 2007, Ohrid, Macedonia, 2007

[11] C. Odubasteanu, C. Munteanu, Optimization Algorithms for Scheduling Problem in Pipelined
Parallelism, Proceedings of the 8th international conference on technical informatics,
CONTI, Timisoara, Romania, 2008

[12] www.guillaumemorel.com/en-gold.htm.

