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CO-MOVEMENT OF ACTIVE AND REACTIVE POWER 
CONSUMPTION 

Samir AVDAKOVIC1 

In this paper, Wavelet Transform (WT) is applied for analysis active and 
reactive power consumption of the real power system of Bosnia and Herzegovina 
(B&H) for year 2011. Obtained results show that properties of active and reactive 
power consumption are significantly different and these two time series move 
together (in phase) throughout the year, which is especially expressed when it comes 
to daily and weekly periods (24 and 168 hours). Special attention is dedicated to 
changes in the power factor which is characterized by significant fluctuations 
during the summer period. Results based on the wavelet analyses clarify impact of 
changes in active and reactive power values (magnitudes) to the changes of power 
factor during observed time period. 
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1. Introduction 

Fully understanding properties of the power consumption for the system 
operators can be helpful in the better distribution network operating and planning 
[1]. For many years, analysis of the power consumption is the subject of interest 
large number researchers applying different methodological approaches [2], [3], 
[4], [5]. In this paper, the Continuous WT (CWT) is applied to analyze an active 
and reactive power consumption of the real Bosnia and Herzegovina (B&H) 
power system using the data from 2011 obtained from the existing measurement 
system. Hourly values of the time series used in this study present the power 
consumption over 700.000 customers. The mathematical notation of the CWT of a 
function ݔሺݐሻ is given by [6]: 

 

௫ܹ,టሺ߬, ሻݏ ൌ ׬ ሻݐሺݔ ଵ
ඥ|௦|

ஶ
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ቁ  (1)                                                   ݐ݀

 
where are: ߰ is wavelet function, ߬ corresponds to the time dimension and ݏ refers 
to the scale dimension [6]. 

 The wavelet power spectrum of time series ݔሺݐሻ is defined as [6]: 
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ห ௫ܹ,టሺ߬, ሻหଶݏ
 and represents the local variance of time series, while global wavelet 

spectrum presents average variations of whole time series on every scale [2]. The 
Cross-WT (XWT) of active and reactive power consumption time series, noted as 
ܲ and ܳ, will be [7]: ௉ܹொ,టሺ߬, ሻݏ ൌ ௉ܹ,టሺ߬, ሻݏ ொܹ,ట

כ ሺ߬,  ሻ. Also, XWT can beݏ
written as: ௉ܹொ,టሺ߬, ሻݏ ൌ ห ௉ܹொ,టሺ߬, ,ሻห݁థುೂ,ഗሺఛ,௦ሻ, whereas ߶௉ொ,టሺ߬ݏ  ሻݏ
corresponds to the wavelet phase angle [8]. The wavelet phase difference of ܲ 
and ܳ time series now is defined as [9]: 
 

߶௉ொ,టሺ߬, ሻݏ ൌ ଵି݊ܽݐ ூ௠௔௚ቀௐುೂ,ഗሺఛ,௦ሻቁ

ோ௘௔௟ቀௐುೂ,ഗሺఛ,௦ሻቁ
                                                        (2) 

 

where ߶௉ொ א ሾെߨ,  .ሿߨ

 
The Wavelet Coherence (WTC) is defined as the squared absolute value of 

the smoothed cross wavelet spectra normalized by the product of the smoothed 
individual wavelet power spectra of each series [6], [7], [8], [9] [10]:  
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,                                                     (3) 

 

where ܵ is a smoothing operator. 
WTC is often used approach for analyses of time series and present the 

local correlation between the time series in the time-frequency space. The WTC 
ranges from 0 to 1 and it can be interpreted as a correlation coefficient; the closer 
the value is to 1 the more correlated are the two series [1], [6], [7], [8], [9], [10], 
[11]. Also, in this paper the Morlet wavelet function is used and details about this 
function are available in [1], [6], [7], [8], [9], [10], [11]. Software’s applied in this 
study were written by Torrence and Compo [7] and A. Grinsted [9]. Generally, the 
applied approaches, briefly described above, have been often used in different 
science areas [1], [6], [7], [8], [9], [10], [11], [12]. The author contributions in 
these area readers can find in [1], [2] and [12], where they studied the phenomena 
associated with the consumption of electricity. Different from [1], [2] and [12], 
this study has two primary objectives. First, determine the properties of the 
reactive power consumption at different time-frequency/period scales and 
visualize their co-movement with active power consumption. The second 
objective is analyses impact of the changes of active and reactive power 
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consumption to the power factor variations during time. The rest of paper is 
organized as follows. The data from real B&H power system used in this study are 
presented in Section 2. Results and discussion are presented in Section 3, while 
Section 4 presents conclusion section. 

2. The data 

Hourly values of active and reactive power consumption for B&H power 
system and 2011 are presented in Fig. 1, and come from the period between 
01.01.2011. up to 31.12.2011. The values of active and reactive power 
consumption (Fig. 1) present the total power distribution consumption (0.4 kV, 10 
kV, 20 kV and 35 kV) of the Electric Public Company Elektroprivreda B&H d.d. 
Sarajevo in 2011, as one of the three public companies in B&H.  

 

Fig. 1. Bosnian active and reactive power consumption for 2011 
 

 
Fig 2. The power factor based on the data from Fig. 1 

The data come from existing measurement system and 51 transformer 
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substation 110/x kV. For system operators, special attention draws reactive power 
consumption and power factor. The calculated values of power factor (cosfi ൌ
P/ඥPଶ ൅ Qଶ; P [MW], Q [MVAr]) are shown in Fig. 2. Low values of power 
factor (less than 0.95) indicate the increasing of reactive power consumption 
which in addition to increase active power losses in distribution networks could 
results in the significant decreased of the voltage magnitudes. For the observed 
B&H power system, in 2011 the largest variations of the power factor were in the 
summer (Fig. 2). This is the results of decreasing of active power consumption 
and increasing of reactive power consumption, as a response to the high air 
temperatures during this period of year and intensive usage of air-conditions.  

3. Results and discussions 

 The results of the research and discussions are presented in this section. 
The wavelet power spectrum and global wavelet spectrum of active and reactive 
power consumption for 2011 are presented in Figs. 3 and 4, respectively, where 
the colour code for power ranges are from blue (low power) to red (high power-
significant regions) [1], [2], [9].  

 
Fig. 3. The wavelet power spectrum and global wavelet spectrum of active power consumption 

(from Fig. 1) 

 Obtained results from Fig. 3 show that active power consumption is a 
dominant daily time series. This is expected, given the results presented in [2] 
where they also analyzed hourly values of active power consumption for the same 
power system for the Years 2008-2010. Also, in [2] were identified and significant 
changes in power consumption during the observed periods as a consequence of 
certain events that have an impact on power consumption, such as national and 
religious holidays, the suspension of gas supplies, etc. However, for the time 
series of reactive power consumption cannot be said that is a dominant daily time 
series (Fig. 4). Looking at global wavelet spectrum graph in Fig. 4, it is possible 
to discern three local maximums (24, 168 and about 700 hours). The local 
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maximum in the period of 24 hours present a daily reactive power consumption 
variations that are not very pronounced as daily variations of the active power 
consumption. (Fig. 1). 

 
Fig. 4. The wavelet power spectrum and global wavelet spectrum of reactive power consumption 

(from Fig. 1) 

A daily changes in the time series are evident throughout the year, as 
confirmed by the wavelet power spectrum (Fig. 4). The higher value of the local 
maximum for this time series has been identified for the period of 168 hours. This 
is the consequence of reducing of the reactive power consumption during non-
working days (weekend) which can be identified from careful observation in Fig. 
1. This can be interpreted as reduced industrial consumption during non-working 
days, which determines one properties of this time series. Finally, the third local 
maximum is identified for period about 700 hours which gives the properties of 
monthly time series. This is due to air temperature variations which are especially 
expressed in the summer months (Fig. 1).  
 WTC and wavelet phase angle analyses of active and reactive power 
consumption from Fig. 1 is presented in Fig. 5. All identified significant regions 
show in-phase behavior of this two time series (Fig. 5). This is particularly true 
for the periods of 16-32, 64-256 and 300-600 hour bands. In other words, daily 
active and reactive power changes are in-phase, i.e. the increase of the active 
power consumption growth is accompanied by reactive power consumption (and 
vice versa) for 16-32 hour bands. This is evident from the position of the arrow 
(Fig. 5). An arrow pointing to the right demonstrates that for certain 
frequency/period range time series of active and reactive power consumption are 
in phase, while the position of an arrow to the left talks about the out of phase 
behaviour of two time series. Same (in-phase) characteristics of these two time 
series show for weekly changes (64-256 hour bands) during the all observed time 
interval and monthly (300-600 hour bands) changes during the summer (4000-
6000 hours of the observed time interval) (Fig. 5). 



168                                                                    Samir Avdakovic 

 
Fig. 5. WTC and wavelet phase angle of active and reactive power consumption time series (from 

Fig. 1) 

 Finally, to determine impact of active and reactive power variations to the 
power factor over year the WTC and wavelet phase angle analysis was performed 
(Fig. 6 and Fig. 7). Since the power factor present the calculated value of active 
and reactive power, it is clear that there will be significant correlation between 
them (P and cosfi and Q and cosfi). However, from Figs. 1 and 2 is very difficult 
(almost impossible) to determine how active and reactive magnitudes changes 
affect to the values of the power factor. This is possible clearly identify in Figs. 6 
and 7. It is evident that the changes of active power consumption has a significant 
impact to the daily variations of power factor and co-move together for a period of 
8-32 hour bands (Fig. 6). Also, for the same period (16-32 hour bands), the 
reactive power and power factor time series co-move together (Fig. 7). For a 
period of 4-8 hour bands and spring and summer seasons, the changes of power 
factor are consequence from changes of active power consumption. For the 256-
1024 hour bands and autumn-winter seasons, unlike the time series of reactive 
power (Fig. 7), time series of active power consumption co-move together with 
time series of power factor (Fig. 6). The reactive power and power factor time 
series are out of phase for all periods greater than 32 hours. In other words, for 
weekly, monthly or seasonal changes of the power factor, the increase or decrease 
of reactive power consumption mean decrease or increase values of power factor, 
which is especially pronounced for the spring and summer seasons. It can be 
concluded that the main properties of analyzed time series (presented in Figs. 3 
and 4) for different frequency/period bands will determine the power factor 
variations during year.  
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Fig. 6. WTC and wavelet phase angle of active power consumption and power factor time series 

 
Fig. 7. WTC and wavelet phase angle of reactive power consumption and power factor time series 

For example, the active power consumption is the dominant daily time 
series and its impact to the changes of power factor is evident in this period, while 
the time series of reactive power consumption has properties of a weekly and 
monthly time series and change the power factor for these periods are evident. 

4. Conclusions 

In this paper, the wavelet power spectrum, global wavelet power, WTC 
and wavelet phase angle approaches are applied for analyses of real data of active 
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and reactive power consumption of B&H power system for year 2011. The main 
properties of these time series are presented and special attention is focused for 
the better understanding of the power factor variations during the year, which is a 
very important parameter for distribution systems operators. It is shown that 
applied approaches may help in better understanding dynamic behaviors of active 
and reactive power consumption.  
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