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PROGRAMMING THE TRANSIENT EXPLICIT FINITE 
ELEMENT ANALYSIS WITH MATLAB 

Andrei Dragoş Mircea SÎRBU1, László FARKAS2 

Modern research in automotive crashworthiness relies extensively on explicit 
finite element analysis. Crash analysts require deep understanding of finite element 
method and explicit time integration routines. This work presents the most important 
elements of the theory behind the mathematical apparatus of transient explicit finite 
element method and explains the loop algorithm of model analysis commonly used 
in commercial and publicly available solvers. 

Correctitude of the presented concepts and methodology are verified by using 
a computation example of a simple lumped mass spring system subjected to impact 
loading. The model is analysed both by using a commercial crash solver and by 
using a proposed MATLAB impact algorithm. 
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1. Introduction 

The mathematical apparatus used for describing the continuum evolved to 
reach today a high level of complexity with multiple formulations. Simulation 
environment gained increasing importance in automotive design work, sustained 
by rapidly growing technological capabilities of today. Computational cycle time 
and costs are also continuously reduced by sustainable improvements in computer 
aided design and analysis tools. 

In a similar manner, finite element modelling capabilities evolved with 
technology, advancing with exponential growth of model detail throughout the 
last decades. Crashworthiness research, sharing an important part in automotive 
passive safety, requires considerable resources for design, modelling, analysis and 
testing procedures (model validation). 

Explicit formulation of the finite element method is used for crash 
analysis, having a nonlinear transient dynamic character. Basic finite element 
method concepts will be presented, followed by particularities and work flow of 
explicit crash analysis. In the second part of the paper, a test example is used to 
illustrate the implementation of explicit finite element analysis into the MATLAB 
programming environment and its use for future research. 
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2. The finite element method 

Roughly, the history of the finite element starts from the early 1900s, 
when it was used for elastic bars continua using discrete equivalent formulation 
[1]. As time passed, the finite element method has progressed to become the most 
powerful and complex tool for engineering analysis. The rapid development of the 
finite element method (commonly abbreviated as “FEM” or “FE method”) began 
as the supercomputers were introduced in the mid 1980’s [2]. From this point on, 
the formulation and solution computation of mathematical models have greatly 
evolved, together with hardware processing technology. Understanding the 
processes behind finite element model analysis with the finite element method 
starts from the basics of continuum discretization. 

Crash analysis requires a dynamic analysis formulation (body movements) 
and a nonlinear transient dynamic explicit type of finite element analysis. A 
nonlinear dependency describes the relation between the applied conditions and 
resulting effects (e.g. surfaces in contact change in time or large deformations of 
metal parts). Therefore, a nonlinear analysis is required in this case, since large 
amounts of plastic deformation occur in most crash scenarios. Transient (with 
time integration) character of the analysis is due to the movement and body 
deformations that are time dependent. In crash situations, the time frame is short 
and the analysis is highly dynamic. The explicit formulation of finite element 
analysis is a specific mathematical approach, mostly used for high velocity, short 
time frame scenarios. 

Spatial approximation using the finite element method and time 
approximation where the ordinary differential equations are further approximated 
in time are computed by reaching the dynamic equilibrium equation at the end of 
every time step [3]. Considering ሼݔሽ as the displacement nodal values vector, ሼݔሶሽ 
as the nodal velocities vector and ሼݔሷሽ as the nodal accelerations vector, the 
dynamic equilibrium equation is computed at the end of every time step and has 
the following formulation: 

ሾܯሿሼݔሷ ሽ ൅ ሾܥሿሼݔሶሽ ൅ ሾܭሿሼݔሽ ൌ ሼ݂ሽ   (1) 
Where ሼݔሷ ሽ, ሼݔሶ ሽ and ሼݔሽ are m × 1 vectors, ሾܯሿ is the m × m mass matrix, 

ሾܥሿ is the m × m damping matrix, ሾܭሿ is the m × m stiffness matrix and ሼ݂ሽ is the 
m × 1 total forces vector, while m is the number of nodal degrees of freedom per 
finite element model [3]. 

 
2.1. Explicit formulation 
 
In crash analysis with explicit formulation, equation (1) is integrated in 

time domain by applying certain simplifications. The resulting mathematical 
expression is solved every time step: 
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ሼݔሷ௡ሽ ൌ ሾܯሿିଵ൛ܨ௡
௘௫௧ െ ௡ܨ

௜௡௧ൟ    (2) 
Where the mass matrix [M] is diagonalized for fast inversion (if it is not 

already diagonal) by specific mathematical algorithms, creating a lumped mass 
matrix, with procedures described in detail in [4, 5, 6, 7]. Stiffness or damping (if 
considered) matrix inversion are not required. Stiffness and damping effects are 
included in the internal force vector ሼܨ௡

௜௡௧ሽ definition [8]. 
Newmark’s algorithm is a mathematical routine generally used in dynamic 

analysis [9]. The scheme approximates displacements, velocities and accelerations 
at time step n+1 by using the following routine [3, 10, 11]: 

ሼݔ௡ାଵሽ ൌ ሼݔ௡ሽ ൅ ሶ௡ሽݔሼݐ∆ ൅ ଵ
ଶ

ሺ1 െ ሷ௡ሽݔଶሼݐ∆ଶሻߚ ൅ ଵ
ଶ

 ሷ௡ାଵሽ (3)ݔଶሼݐ∆ଶߚ
ሼݔሶ௡ାଵሽ ൌ ሼݔሶ௡ሽ ൅ ሺ1 െ ሷ௡ሽݔሼݐ∆ଵሻߚ ൅  ሷ௡ାଵሽ  (4)ݔሼݐ∆ଵߚ

Where β1 and β2 are Newmark’s constants and Δt is the analysis time step. 
The values given to Newmark’s constants reduce the equations to either an 
implicit, either an explicit routine. The explicit equations are obtained by setting 
β1=1/2 and β2=0. Consequently, the explicit time integration algorithm becomes: 

ሼݔ௡ାଵሽ ൌ ሼݔ௡ሽ ൅ ሶ௡ሽݔሼݐ∆ ൅ ଵ
ଶ

 ሷ௡ሽ    (5)ݔଶሼݐ∆
 

ሼݔሶ௡ାଵሽ ൌ ሼݔሶ௡ሽ ൅ ଵ
ଶ

ሷ௡ሽݔሼݐ∆ ൅ ଵ
ଶ

 ሷ௡ାଵሽ    (6)ݔሼݐ∆
Looking at the explicit routine equations, it is observed that the 

information at time step n+1 is obtained by using only the information from the 
previous step. The character of the algorithm by directly obtaining the present 
information from previous known data, without the necessity of equations solving 
(as implicit schemes require), gives its name, i.e. explicit formulation. 

Numerical stability is maintained by choosing a small time step Δt. If the 
time step is over-much small, the solution will require long computational time, 
generally with little to no improvements in accuracy. On the other hand, if the 
time step is too large (exceeding the minimum time step size), the solution 
calculation may fail because of divergence. Consequently, there must be a 
maximum value of the time step at which the solution can reach convergence. The 
integration time step Δt must satisfy the Courant condition [2, 3]: 

ݐ∆ ൑ ௟೎
௖
      (7) 

 
Where lc is the smallest characteristic length of all the elements and c is 

the speed of sound in the material. The practical example used herein consists of 
discrete elements. Therefore, the time step is described by the following generic 
condition [12, 13]: 

ݐ∆ ൑ ൫√௠௞ା௖మ൯ି௖
௞

    (8) 
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Where ݉ is the mass lumped in nodes, ݇ is the spring stiffness and ܿ is the 
damping coefficient. Time step treatment is performed by using complex 
mathematical formulations, further described in literature [3, 8, 12]. 

Most finite element analysis solvers based on the explicit algorithm 
adapted the Newmark scheme into a staggered time marching routine, in which 
the nodal velocities are computed at half time steps (ሼݔሶ௡ାభ

మ
ሽ) and displacements at 

full time steps (ሼݔ௡ାଵሽ) [12]. The integration algorithm is referred to as the central 
difference routine: 

൜ݔሶ௡ାభ
మ
ൠ ൌ ሼݔሶ௡ିభ

మ
ሽ ൅  ሷ௡ሽ     (9)ݔሼݐ∆

ሼݔ௡ାଵሽ ൌ ሼݔ௡ሽ ൅ ሶ௡ାభݔሼݐ∆
మ
ሽ     (10) 

The computation cycle is presented in a more detailed manner in literature 
[2, 8, 10, 12, 13, 14]. Fig. 1 presents the general flow chart of the central 
difference time integration algorithm for time step n. 

 
Fig. 1 – Flow chart of central difference time integration for time step n 
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The initiation of the time march starts from time step 0, with information 
known from the initial conditions. It is assumed that ሼݔሶି భమ

ሽ=ሼݔሶ଴ሽ, in order to 

satisfy equation (8). 
 
3. Programming an explicit impact algorithm 
 
MATLAB [15] environment is chosen for programming the explicit finite 

element analysis impact algorithm. For simplicity, a simple 1D system is 
considered, i.e. a lumped mass spring system with three masses linked together by 
two springs. The three masses travel at a velocity of v0, until the system suffers 
impact loading by contacting one of the rigid walls, see Figure 2. 

 

 
Figure 2 – Lumped mass spring system 

 
Data values for the problem to be solved are presented in Table 1. 
 

Table 1 
Problem data 

 1 2 3 
Mass, M [kg] 3 2 1 

Elastic stiffness, ke [N/m] 900 500 - 
Plastic stiffness, kp [N/m] 400 800 - 

Damping coefficient, c [N·s/m] 0.4 0.7 - 
Yield limit, Fy [N] 200 150 - 

Length, l [m] 0.5 0.3 -
Distance to wall, d [m] 0.2 0.7 - 

v0=5 m/s 
 
Spring material behaviour is described by a bilinear force displacement 

dependency with isotropic hardening, as presented in Fig. 3. 
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Fig. 3 – Force displacement relation describing spring elastoplasticity 

 
Finite element translation of the abovementioned system is performed by 

using nodes and elements. Fig. 4 shows the discrete finite element model to be 
solved, where nodes are symbolized by N and elements by E. Masses are lumped 
in nodes. Elements have nonlinear (bilinear) spring material behaviour, with 
plasticity, isotropic hardening and damping properties. 

 

 
Fig. 4 – Equivalent discrete model of the lumped mass spring system 

 
Result reference is considered to be the LS-DYNA [16] analysis of the 

model, which is presented in the next section. 
 
3.1. LS-DYNA Reference 
 
Spring behaviour is modelled by using 

*MAT_SPRING_ELASTOPLASTIC material, with elastoplastic translational 
properties and isotropic hardening [17]. It has bilinear force displacement 
dependence (as shown in Fig. 4), which is defined by two tangents (elastic and 
plastic) and a yield force [18].  
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Damping characteristics are described by *MAT_DAMPER_VISCOUS 
material [17]. The rigid walls are defined as completely rigid and constrained, 
allowing no deformation or penetration. Consequently, the contact is defined as 
rigid.  

The critical time step is computed by LS-DYNA as 0.046 s for the first 
element and 0.027 s for the second element. However, in order to increase the 
analysis accuracy, a much lower time step is fixed, as 10-5 s. This ensures smooth 
data output plots and a more accurate reference data set. 

The analysis is run for 2 seconds of impact time, in order to gather more 
data for validation. Results are pre-processed by using LS-PrePost 3.2 [19] and 
presented as plots in Fig. 5, Fig. 6 and Fig. 7. Time is expressed in seconds, 
coordinates in meters, velocities in m/s and accelerations in m/s2.  

As a convention, any vector oriented towards the left hand side has 
negative value, while the ones heading in the opposite direction have positive 
value. 

 

 
Fig. 5 – Time  history of nodal coordinates in LS-DYNA 

 
Fig. 5 shows the three impacts with the rigid walls. The model travels left 

and right during the 2 seconds of analysis, impacting the rigid walls at: 0.02-0.32 
s, 0.57-0.8 s and finally 1.6-1.7 and 1.8-1.9 s. Fig. 6 presents the evolution of 
nodal velocities in time – as the model impacts the rigid walls, the velocities are 
being reduced by the energy absorption induced by the spring plasticity and the 
damping elements. The energy absorption is also shown by Fig. 7 with the 
decreasing acceleration peaks, which are most clearly observed from node 3. 
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Fig. 6 – Time history of nodal velocities in LS-DYNA 

 

 
Fig. 7 – Time history of nodal accelerations in LS-DYNA 

 
The plots containing time histories of nodal displacement, velocities and 

accelerations were presented in order to accurately verify correlation of all the 
three outputs. As the result reference was obtained, the same analysis results must 
be obtained by using the programmed impact algorithm. 
 

3.2. Proposed impact algorithm 
 

Identical model parameters (presented in Table 1) are considered for the 
MATLAB [15] code. The explicit finite element analysis solver is programmed 
within MATLAB version R2011b, including pre-processing, processing and post-
processing phases. The time step is fixed throughout the analysis and identical to 
the reference analysis, as 10-5 s. 

Data input and manipulation is done by using a matrix-oriented solving 
process, for compact and efficient information computation. Forces are checked 
every time step to determine the loading or unloading conditions of the elements, 
which are elastic or plastic. As presented in Fig. 1, a calculation loop over all 
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elements determines the loading conditions, resulting from the element 
deformation (spring force) and element deformation rate (damping force). 

The contact between the model and the rigid walls is calculated by 
checking for penetration every time step and applying the required conditions 
where necessary. As stated, the contact is defined as rigid. Therefore, after each 
time step, if wall penetration is detected, a reaction force is computed as a 
function of the penetration length and the spring material. Afterwards, the node is 
repositioned so that penetration condition is cancelled. 

Result outputs are computed for nodal coordinates, velocities and 
accelerations. As a code convention, element compression strain generates 
negative force values, while element stretching produces positive force values. 

 

 
Fig. 8 – Time history of nodal coordinates in MATLAB 

 
 

 
Fig. 9 – Time history of nodal velocities in MATLAB 
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Fig. 10 – Time history of nodal accelerations in MATLAB 

 
By comparing the result outputs generated from MATLAB shown in Fig. 

8, Fig. 9 and Fig. 10 with the LS-DYNA reference results, it is concluded that the 
MATLAB code is perfectly validated for further research. 

Initial modelling check is performed prior to the time march. Initial 
penetrations are verified: if any are found, the solver stops execution and returns 
an error message requiring rigid wall(s) or model repositioning. 

The hereby programmed MATLAB explicit impact solver can perform 
calculations with an unlimited number of nodes and elements. The only 
limitations can arise from MATLAB version or license related maximum matrix 
dimensions that may limit the number of nodes. 

 
4. Conclusions 
 
This work briefly presented the mathematical apparatus of explicit crash 

solvers together with a flow chart of internal solver processes. The presented 
theory is a good base for understanding and creating any crash analysis code 
based on the explicit formulation of the finite element method. 

MATLAB environment was chosen for programming the proposed 
explicit impact algorithm. It was chosen for its mathematically-oriented 
environment and for its code flexibility which recommends it for programming 
finite element analysis routines.  

Couplings with other analysis concepts can be performed in future works, 
like coupling with the fuzzy concept for uncertainty modelling or with 
optimization processes. Additionally, the proposed algorithm can be used at the 
early stage of product design, in concept modelling, as a simplification of detailed 
models by using a lumped mass spring system approach. 
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The programmed impact algorithm can be extended towards using 
integrated elements and various material formulations (like adding failure 
parameters). Also, the modelling space can be extended to 2D or 3D environment 
for increased system complexity. 
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