
U.P.B. Sci. Bull., Series D, Vol. 75, Iss. 2, 2013 ISSN 1454-2358

PROGRAMMING THE TRANSIENT EXPLICIT FINITE
ELEMENT ANALYSIS WITH MATLAB

Andrei Dragoş Mircea SÎRBU1, László FARKAS2

Modern research in automotive crashworthiness relies extensively on explicit
finite element analysis. Crash analysts require deep understanding of finite element
method and explicit time integration routines. This work presents the most important
elements of the theory behind the mathematical apparatus of transient explicit finite
element method and explains the loop algorithm of model analysis commonly used
in commercial and publicly available solvers.

Correctitude of the presented concepts and methodology are verified by using
a computation example of a simple lumped mass spring system subjected to impact
loading. The model is analysed both by using a commercial crash solver and by
using a proposed MATLAB impact algorithm.

Keywords: FEA, explicit analysis, lumped mass system

1. Introduction

The mathematical apparatus used for describing the continuum evolved to
reach today a high level of complexity with multiple formulations. Simulation
environment gained increasing importance in automotive design work, sustained
by rapidly growing technological capabilities of today. Computational cycle time
and costs are also continuously reduced by sustainable improvements in computer
aided design and analysis tools.

In a similar manner, finite element modelling capabilities evolved with
technology, advancing with exponential growth of model detail throughout the
last decades. Crashworthiness research, sharing an important part in automotive
passive safety, requires considerable resources for design, modelling, analysis and
testing procedures (model validation).

Explicit formulation of the finite element method is used for crash
analysis, having a nonlinear transient dynamic character. Basic finite element
method concepts will be presented, followed by particularities and work flow of
explicit crash analysis. In the second part of the paper, a test example is used to
illustrate the implementation of explicit finite element analysis into the MATLAB
programming environment and its use for future research.

1 PhD Student, Faculty of Transports, Department of Automotive Engineering, University
POLITEHNICA of Bucharest, Romania, e-mail: sarbudragos@gmail.com
2 R&D Project Leader, Simulation Division, LMS International, Leuven, Belgium

62 Andrei Dragoş Mircea Sîrbu, László Farkas

2. The finite element method

Roughly, the history of the finite element starts from the early 1900s,
when it was used for elastic bars continua using discrete equivalent formulation
[1]. As time passed, the finite element method has progressed to become the most
powerful and complex tool for engineering analysis. The rapid development of the
finite element method (commonly abbreviated as “FEM” or “FE method”) began
as the supercomputers were introduced in the mid 1980’s [2]. From this point on,
the formulation and solution computation of mathematical models have greatly
evolved, together with hardware processing technology. Understanding the
processes behind finite element model analysis with the finite element method
starts from the basics of continuum discretization.

Crash analysis requires a dynamic analysis formulation (body movements)
and a nonlinear transient dynamic explicit type of finite element analysis. A
nonlinear dependency describes the relation between the applied conditions and
resulting effects (e.g. surfaces in contact change in time or large deformations of
metal parts). Therefore, a nonlinear analysis is required in this case, since large
amounts of plastic deformation occur in most crash scenarios. Transient (with
time integration) character of the analysis is due to the movement and body
deformations that are time dependent. In crash situations, the time frame is short
and the analysis is highly dynamic. The explicit formulation of finite element
analysis is a specific mathematical approach, mostly used for high velocity, short
time frame scenarios.

Spatial approximation using the finite element method and time
approximation where the ordinary differential equations are further approximated
in time are computed by reaching the dynamic equilibrium equation at the end of
every time step [3]. Considering ሼݔሽ as the displacement nodal values vector, ሼݔሶሽ
as the nodal velocities vector and ሼݔሷሽ as the nodal accelerations vector, the
dynamic equilibrium equation is computed at the end of every time step and has
the following formulation:

ሾܯሿሼݔሷ ሽ ൅ ሾܥሿሼݔሶሽ ൅ ሾܭሿሼݔሽ ൌ ሼ݂ሽ (1)
Where ሼݔሷ ሽ, ሼݔሶ ሽ and ሼݔሽ are m × 1 vectors, ሾܯሿ is the m × m mass matrix,

ሾܥሿ is the m × m damping matrix, ሾܭሿ is the m × m stiffness matrix and ሼ݂ሽ is the
m × 1 total forces vector, while m is the number of nodal degrees of freedom per
finite element model [3].

2.1. Explicit formulation

In crash analysis with explicit formulation, equation (1) is integrated in

time domain by applying certain simplifications. The resulting mathematical
expression is solved every time step:

Programming transient explicit finite element analysis with Matlab 63

ሼݔሷ௡ሽ ൌ ሾܯሿିଵ൛ܨ௡
௘௫௧ െ ௡ܨ

௜௡௧ൟ (2)
Where the mass matrix [M] is diagonalized for fast inversion (if it is not

already diagonal) by specific mathematical algorithms, creating a lumped mass
matrix, with procedures described in detail in [4, 5, 6, 7]. Stiffness or damping (if
considered) matrix inversion are not required. Stiffness and damping effects are
included in the internal force vector ሼܨ௡

௜௡௧ሽ definition [8].
Newmark’s algorithm is a mathematical routine generally used in dynamic

analysis [9]. The scheme approximates displacements, velocities and accelerations
at time step n+1 by using the following routine [3, 10, 11]:

ሼݔ௡ାଵሽ ൌ ሼݔ௡ሽ ൅ ሶ௡ሽݔሼݐ∆ ൅ ଵ
ଶ

ሺ1 െ ሷ௡ሽݔଶሼݐ∆ଶሻߚ ൅ ଵ
ଶ

 ሷ௡ାଵሽ (3)ݔଶሼݐ∆ଶߚ
ሼݔሶ௡ାଵሽ ൌ ሼݔሶ௡ሽ ൅ ሺ1 െ ሷ௡ሽݔሼݐ∆ଵሻߚ ൅ ሷ௡ାଵሽ (4)ݔሼݐ∆ଵߚ

Where β1 and β2 are Newmark’s constants and Δt is the analysis time step.
The values given to Newmark’s constants reduce the equations to either an
implicit, either an explicit routine. The explicit equations are obtained by setting
β1=1/2 and β2=0. Consequently, the explicit time integration algorithm becomes:

ሼݔ௡ାଵሽ ൌ ሼݔ௡ሽ ൅ ሶ௡ሽݔሼݐ∆ ൅ ଵ
ଶ

 ሷ௡ሽ (5)ݔଶሼݐ∆

ሼݔሶ௡ାଵሽ ൌ ሼݔሶ௡ሽ ൅ ଵ
ଶ

ሷ௡ሽݔሼݐ∆ ൅ ଵ
ଶ

 ሷ௡ାଵሽ (6)ݔሼݐ∆
Looking at the explicit routine equations, it is observed that the

information at time step n+1 is obtained by using only the information from the
previous step. The character of the algorithm by directly obtaining the present
information from previous known data, without the necessity of equations solving
(as implicit schemes require), gives its name, i.e. explicit formulation.

Numerical stability is maintained by choosing a small time step Δt. If the
time step is over-much small, the solution will require long computational time,
generally with little to no improvements in accuracy. On the other hand, if the
time step is too large (exceeding the minimum time step size), the solution
calculation may fail because of divergence. Consequently, there must be a
maximum value of the time step at which the solution can reach convergence. The
integration time step Δt must satisfy the Courant condition [2, 3]:

ݐ∆ ൑ ௟೎
௖
 (7)

Where lc is the smallest characteristic length of all the elements and c is

the speed of sound in the material. The practical example used herein consists of
discrete elements. Therefore, the time step is described by the following generic
condition [12, 13]:

ݐ∆ ൑ ൫√௠௞ା௖మ൯ି௖
௞

 (8)

64 Andrei Dragoş Mircea Sîrbu, László Farkas

Where ݉ is the mass lumped in nodes, ݇ is the spring stiffness and ܿ is the
damping coefficient. Time step treatment is performed by using complex
mathematical formulations, further described in literature [3, 8, 12].

Most finite element analysis solvers based on the explicit algorithm
adapted the Newmark scheme into a staggered time marching routine, in which
the nodal velocities are computed at half time steps (ሼݔሶ௡ାభ

మ
ሽ) and displacements at

full time steps (ሼݔ௡ାଵሽ) [12]. The integration algorithm is referred to as the central
difference routine:

൜ݔሶ௡ାభ
మ
ൠ ൌ ሼݔሶ௡ିభ

మ
ሽ ൅ ሷ௡ሽ (9)ݔሼݐ∆

ሼݔ௡ାଵሽ ൌ ሼݔ௡ሽ ൅ ሶ௡ାభݔሼݐ∆
మ
ሽ (10)

The computation cycle is presented in a more detailed manner in literature
[2, 8, 10, 12, 13, 14]. Fig. 1 presents the general flow chart of the central
difference time integration algorithm for time step n.

Fig. 1 – Flow chart of central difference time integration for time step n

Forces

Velocities

Stress

Strain rates

Accelerations

Displacements

n

n+½

n+1

Update geometry

Loop over
elements

Repeat for next time step

Programming transient explicit finite element analysis with Matlab 65

The initiation of the time march starts from time step 0, with information
known from the initial conditions. It is assumed that ሼݔሶି భమ

ሽ=ሼݔሶ଴ሽ, in order to

satisfy equation (8).

3. Programming an explicit impact algorithm

MATLAB [15] environment is chosen for programming the explicit finite

element analysis impact algorithm. For simplicity, a simple 1D system is
considered, i.e. a lumped mass spring system with three masses linked together by
two springs. The three masses travel at a velocity of v0, until the system suffers
impact loading by contacting one of the rigid walls, see Figure 2.

Figure 2 – Lumped mass spring system

Data values for the problem to be solved are presented in Table 1.

Table 1
Problem data

 1 2 3
Mass, M [kg] 3 2 1

Elastic stiffness, ke [N/m] 900 500 -
Plastic stiffness, kp [N/m] 400 800 -

Damping coefficient, c [N·s/m] 0.4 0.7 -
Yield limit, Fy [N] 200 150 -

Length, l [m] 0.5 0.3 -
Distance to wall, d [m] 0.2 0.7 -

v0=5 m/s

Spring material behaviour is described by a bilinear force displacement

dependency with isotropic hardening, as presented in Fig. 3.

c2, ke2
 c1, ke1

v
0
 v

0
 v

0

l
1
 l

2

M
3
 M

2
 M

1

d1 d2

66 Andrei Dragoş Mircea Sîrbu, László Farkas

Fig. 3 – Force displacement relation describing spring elastoplasticity

Finite element translation of the abovementioned system is performed by

using nodes and elements. Fig. 4 shows the discrete finite element model to be
solved, where nodes are symbolized by N and elements by E. Masses are lumped
in nodes. Elements have nonlinear (bilinear) spring material behaviour, with
plasticity, isotropic hardening and damping properties.

Fig. 4 – Equivalent discrete model of the lumped mass spring system

Result reference is considered to be the LS-DYNA [16] analysis of the

model, which is presented in the next section.

3.1. LS-DYNA Reference

Spring behaviour is modelled by using

*MAT_SPRING_ELASTOPLASTIC material, with elastoplastic translational
properties and isotropic hardening [17]. It has bilinear force displacement
dependence (as shown in Fig. 4), which is defined by two tangents (elastic and
plastic) and a yield force [18].

N
3
 N

2
 N

1
 E

2
 E

1

v
0
 v

0
 v

0

Elastoplastic
unloading

kp

ke

Fy

Displacement

Fo
rc

e

Programming transient explicit finite element analysis with Matlab 67

Damping characteristics are described by *MAT_DAMPER_VISCOUS
material [17]. The rigid walls are defined as completely rigid and constrained,
allowing no deformation or penetration. Consequently, the contact is defined as
rigid.

The critical time step is computed by LS-DYNA as 0.046 s for the first
element and 0.027 s for the second element. However, in order to increase the
analysis accuracy, a much lower time step is fixed, as 10-5 s. This ensures smooth
data output plots and a more accurate reference data set.

The analysis is run for 2 seconds of impact time, in order to gather more
data for validation. Results are pre-processed by using LS-PrePost 3.2 [19] and
presented as plots in Fig. 5, Fig. 6 and Fig. 7. Time is expressed in seconds,
coordinates in meters, velocities in m/s and accelerations in m/s2.

As a convention, any vector oriented towards the left hand side has
negative value, while the ones heading in the opposite direction have positive
value.

Fig. 5 – Time history of nodal coordinates in LS-DYNA

Fig. 5 shows the three impacts with the rigid walls. The model travels left

and right during the 2 seconds of analysis, impacting the rigid walls at: 0.02-0.32
s, 0.57-0.8 s and finally 1.6-1.7 and 1.8-1.9 s. Fig. 6 presents the evolution of
nodal velocities in time – as the model impacts the rigid walls, the velocities are
being reduced by the energy absorption induced by the spring plasticity and the
damping elements. The energy absorption is also shown by Fig. 7 with the
decreasing acceleration peaks, which are most clearly observed from node 3.

[s]

[m]

68 Andrei Dragoş Mircea Sîrbu, László Farkas

Fig. 6 – Time history of nodal velocities in LS-DYNA

Fig. 7 – Time history of nodal accelerations in LS-DYNA

The plots containing time histories of nodal displacement, velocities and

accelerations were presented in order to accurately verify correlation of all the
three outputs. As the result reference was obtained, the same analysis results must
be obtained by using the programmed impact algorithm.

3.2. Proposed impact algorithm

Identical model parameters (presented in Table 1) are considered for the
MATLAB [15] code. The explicit finite element analysis solver is programmed
within MATLAB version R2011b, including pre-processing, processing and post-
processing phases. The time step is fixed throughout the analysis and identical to
the reference analysis, as 10-5 s.

Data input and manipulation is done by using a matrix-oriented solving
process, for compact and efficient information computation. Forces are checked
every time step to determine the loading or unloading conditions of the elements,
which are elastic or plastic. As presented in Fig. 1, a calculation loop over all

[s]

[s]

[m/s]

[m/s2]

Programming transient explicit finite element analysis with Matlab 69

elements determines the loading conditions, resulting from the element
deformation (spring force) and element deformation rate (damping force).

The contact between the model and the rigid walls is calculated by
checking for penetration every time step and applying the required conditions
where necessary. As stated, the contact is defined as rigid. Therefore, after each
time step, if wall penetration is detected, a reaction force is computed as a
function of the penetration length and the spring material. Afterwards, the node is
repositioned so that penetration condition is cancelled.

Result outputs are computed for nodal coordinates, velocities and
accelerations. As a code convention, element compression strain generates
negative force values, while element stretching produces positive force values.

Fig. 8 – Time history of nodal coordinates in MATLAB

Fig. 9 – Time history of nodal velocities in MATLAB

70 Andrei Dragoş Mircea Sîrbu, László Farkas

Fig. 10 – Time history of nodal accelerations in MATLAB

By comparing the result outputs generated from MATLAB shown in Fig.

8, Fig. 9 and Fig. 10 with the LS-DYNA reference results, it is concluded that the
MATLAB code is perfectly validated for further research.

Initial modelling check is performed prior to the time march. Initial
penetrations are verified: if any are found, the solver stops execution and returns
an error message requiring rigid wall(s) or model repositioning.

The hereby programmed MATLAB explicit impact solver can perform
calculations with an unlimited number of nodes and elements. The only
limitations can arise from MATLAB version or license related maximum matrix
dimensions that may limit the number of nodes.

4. Conclusions

This work briefly presented the mathematical apparatus of explicit crash

solvers together with a flow chart of internal solver processes. The presented
theory is a good base for understanding and creating any crash analysis code
based on the explicit formulation of the finite element method.

MATLAB environment was chosen for programming the proposed
explicit impact algorithm. It was chosen for its mathematically-oriented
environment and for its code flexibility which recommends it for programming
finite element analysis routines.

Couplings with other analysis concepts can be performed in future works,
like coupling with the fuzzy concept for uncertainty modelling or with
optimization processes. Additionally, the proposed algorithm can be used at the
early stage of product design, in concept modelling, as a simplification of detailed
models by using a lumped mass spring system approach.

Programming transient explicit finite element analysis with Matlab 71

The programmed impact algorithm can be extended towards using
integrated elements and various material formulations (like adding failure
parameters). Also, the modelling space can be extended to 2D or 3D environment
for increased system complexity.

Acknowledgements

Andrei Dragoş Mircea Sîrbu gratefully acknowledges the PhD funding

from the Sectoral Operational Programme Human Resources Development 2007-
2013 of the Romanian Ministry of Labour, Family and Social Protection through
the Financial Agreement POSDRU/88/1.5/S/61178. Additionally, Andrei Drago�
Mircea Sîrbu would like to thank LMS International for hosting his PhD visiting
research stage at their headquarters in Leuven, Belgium.

B I B L I O G R A P H Y

[1] S. Moaveni, Finite Element Analysis. Theory and application with ANSYS, Prentice-Hall,
USA, 1999;

[2] P. Du Bois et.al., Vehicle crashworthiness and occupant protection, American Iron and Steel
Institute, Michigan, USA, 2004;

[3] J. N. Reddy, An Introduction to Nonlinear Finite Element Analysis, Oxford University Press,
USA, 2004;

[4] A. A. Shabana, Computational Continuum Mechanics, Cambridge University Press, 2008;
[5] C. Felippa, Introduction to Finite Element Methods, University of Colorado courses, retrieved

in 2012 from www.colorado.edu/engineering
[6] S. R. Wu and W. Qiu, Nonlinear transient dynamic analysis by explicit finite element with

iterative consistent mass matrix, in Communications in Numerical Methods in Engineering,
vol. 25, no. 3, Apr. 2008, pp. 201-217;

[7] P. Solin, Partial Differential Equations and the Finite Element Method, John Wiley & Sons,
USA, 2006;

[8] ANSYS, ANSYS LS-DYNA User’s Guide Release 13.0, USA, 2010;
[9] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method – Fifth Edition – Volume 1:

The Basics, Butterworth-Heinemann, USA, 2000;
[10] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method – Fifth Edition – Volume 2:

Solid Mechanics, Butterworth-Heinemann, USA, 2000;
[11] G. R. Liu and S. S. Quek, The Finite Element Method: A Practical Course, Butterworth-

Heinemann, 2003;
[12] M. A. Crisfield, Non-linear Finite Element Analysis of Solids and Structures – Volume 2:

Advanced Topics, John Wiley & Sons, England, 1997;
[13] RADIOSS, Radioss Theory Manual 10.0, USA, 2009;
[14] J. Bonet and R. D. Wood, Nonlinear continuum mechanics for finite element analysis,

Cambridge University Press, USA, 1997;

72 Andrei Dragoş Mircea Sîrbu, László Farkas

[15] MathWorks, MATLAB, www.mathworks.com/products/matlab, 2012;
[16] LSTC, LS-DYNA, www.lstc.com/products/ls-dyna, 2011;
[17] LSTC, LS-DYNA Keyword User’s Manual, California, USA, May, 2010;
[18] LSTC, LS-DYNA Theory Manual, California, USA, March 2006;
[19] LSTC, LS-PrePost, www.lstc.com/lspp, 2012.

