U.P.B. Sci. Bull., Series C, Vol. 86, Iss. 3, 2024 ISSN 2286-3540

A WEB SERVICE IMPLEMENTATION - SOAP VS REST

Tudor-Alin NITESCU?, Andreea-lulia CONCEA-PRISACARU?,
Valentin SGARCIU?

Nowadays, the usage of web services has increased significantly, therefore
choosing a proper architecture is a really important step when designing a web
application. The software architecture can determine the overall structure of the
application, its components and how they interact between themselves. The most
popular software architectural patterns are SOAP and REST, as they are spread all
over the software development market. The main goal of this paper is to highlight the
importance of adopting a proper architecture when designing a web service, as well
as to compare the two architectural patterns SOAP and REST. To achieve this, we
are going to showcase and apply some of the most important concepts of this field via
a demo web application.

Keywords: microservices, web services, web architecture, SOAP, REST.
1. Introduction

In recent years, the software development market is experiencing
continuous growth, driven by the increasing demand for web services across the
software domain. The primary quality of web services is interoperability, enabling
various systems/components to communicate with each other, regardless of the
programming language, framework or platform used.

To ensure that web services are scalable, secured and reliable, it is essential
to select a proper architectural pattern. REST (Representational State Transfer) and
SOAP (Simple Object Access Protocol) are the most representative architectural
patterns used for web services, each one having its own strengths and weaknesses.
The decision to choose one of them should be based on the specific demands and
requirements of each system. What can fold a certain system may not fold for
another, thus in order to make the best decision an extensive analysis should be
performed beforehand.

One notable trend in web service development is the shift towards more
lightweight and flexible architectural patterns. While SOAP has traditionally been

1 PhD student., Dept. of Automation and Industrial Informatics, University POLITEHNICA of
Bucharest, Romania, e-mail: tudor_alin.nitescu@stud.acs.upb.ro.

1 PhD student., Dept. of Automation and Industrial Informatics, University POLITEHNICA of
Bucharest, Romania, e-mail: andreea.concea@stud.acs.upb.ro.

2 Prof., Dept.of Automation and Industrial Informatics, University POLITEHNICA of Bucharest,
Romania, e-mail: valentin.sgarciu@upb.ro.

mailto:tudor_alin.nitescu@stud.acs.upb.ro

82 Tudor-Alin Nitescu, Andreea-lulia Concea-Prisacaru, Valentin Sgarciu

the preferred option for constructing web services, the emergence of REST
architecture has sparked considerable debate within the web software development
area regarding the superior architectural choice. RESTful architecture has gained
interest in the past years due to its simplicity, scalability and compatibility with the
HTTP protocol.

On the opposite, SOAP-based systems offer robust features for security and
reliability but are facing challenges mostly related to complexity due to the
verbosity of SOAP messages and the strict adherence to XML schemas. Therefore,
these can lower performance metrics and hinder interoperability in a web
application.

Additionally, the integration of modern technologies such as microservices,
containerization and cloud computing has further reshaped the landscape of web
service development, focusing on agility, scalability and cost-effectiveness in
deploying and managing web services.

This paperwork aims to perform a comparative study of SOAP and REST
architectures, evaluating their respective strengths and weaknesses considering the
demands of modern web service development area. This was achieved by
implementing a software application using both architectural patterns and following
the same requirements. The implementation and subsequent comparison involved
an evaluation of various factors such as performance, scalability and ease of
implementation.

2. State of the art

In this chapter we are going to explore the findings of other researchers from
both academical and businesses domains. This comprehensive overview will
provide a better understanding of the current state of knowledge in this field,
offering a solid foundation for our future research and analysis.

A group of researchers from Riga Technical University compared the two
software architectures, SOAP and REST, having as guidelines the following
criteria: costs, code length, speed and reliability. Their results were not concluded,
as the decision of adopting a certain architecture should be based on the
requirements of each system. However, they are recommending the usage of REST
for simpler systems and the usage of SOAP for more complex systems consisting
in more components, as SOAP is offering additional security layers [1].

A group of Macedonian researchers also studied the differences between the
two architectural models. Their findings reveal that SOAP is more restricted in code
level, while REST is more permissive, allowing free format and focusing on
modular code. On top of that, developing applications based on SOAP is more
challenging compared to those based on REST, primarily due to SOAP being an
older software architecture, while REST represents a more modern approach. On

A web service implementation — SOAP vs REST 83

the other hand, REST is still lacking standards on the security policies side, while
SOAP has better support on this end [2].

Another study has brought light over this topic by presenting the
individualization of each architectural model features. Their findings provided
more concrete conclusions compared to previous studies, indicating that REST
outperforms SOAP in terms of speed and memory efficiency, whereas SOAP excels
in terms of security and reliability [3].

A thesis studying the migration efforts from SOAP to REST revealed that
the superior performance of REST client through faster runtime and consistent CPU
usage enhances the application’s capability to handle more requests within the same
timeframe. Moreover, replacing the SOAP implementation with a more efficient
and maintainable service architecture such as REST helps in minimizing the risks
and costs for maintaining an outdated system, since future updates and
improvements to the codebase will require fewer resources. Factors like better code
quality, interface-driven design, unified response handling and modular code
structure ensure that developers can efficiently modify and maintain the code as
needed, helping the software project to adapt to evolving requirements and changes,
while reducing maintenance costs and resource demands [4].

In a recent study employing an experimental approach, ten students were
divided into two groups to assess the maintainability of both REST and SOAP
services. Each group had individual tasks to modify and improve the web services
of already existing applications, in both server and client side. Notably, despite the
similar number of lines of code required for the REST and SOAP providers, REST
clients required twice as many lines of code as SOAP clients. However, this had no
impact on the cyclomatic complexity, which was the same in both implementations.
The study’s findings indicate that designing the application based on MVC (Model-
View-Controller) architecture helps in lowering the maintenance costs, regardless
of whether REST or SOAP protocols are being used, due to its inherent loose
coupling. However, the conclusions suggest that providing web services implies
lower costs using REST, while consuming web services is associated with lower
maintenance costs when using SOAP [5].

These results have shown that both architectural patterns have advantages
and disadvantages, and their adoption is disputable and should be based on some
KPIs (Key Performance Indicators), reporting them to each system context.

3. Methodology

This section will introduce the main concepts utilized in our implementation
which serves as a practical comparison between the two architectures.

84 Tudor-Alin Nitescu, Andreea-lulia Concea-Prisacaru, Valentin Sgarciu

3.1. Concepts

3.1.1. Web services and microservices

The main key concepts used on a wide scale in the field of software
development are web services and microservices.

Web services represent a group of software applications that can be created
using a variety of programming languages, involving the usage of standardized
protocols, such as HTTP, and facilitating the communication between different
types of devices across the internet.

Microservices, on the other hand, refer to a particular architectural style for
creating, designing and delivering applications. This concept involves breaking
down applications into smaller, independent services (called microservices) that
can communicate effectively and utilize lightweight mechanisms for specific
business needs. Each component of the main web service is created and deployed
as a separate service. As a result, services can be upgraded, scaled, or even replaced
without affecting the entire program, providing flexibility. Furthermore, the
scalability of microservices leads to a lower cost of development when comparing
with other technologies [6].

3.1.2. REST API

REST is a type of API architecture that enables communication between a
client and a server in web applications using the HTTP protocol. It offers flexibility
and isn't bound to a specific transfer protocol, making the implementation
straightforward. The main components of REST include addressability, a uniform
interface, and statelessness. REST functions similarly to CRUD operations (Create,
Read, Update, Delete), which map to popular database operations like INSERT,
SELECT, UPDATE, and DELETE in SQL. [7]

The goal of REST is to create a set of guidelines for designing distributed
systems that offer optimal performance, scalability, and simplicity. These
architectural qualities are achieved by imposing specific restrictions on
components, interfaces, and data elements.

REST operates within the client-server model and uses a request-response
communication flow. A client initiates an action on a specific resource by sending
a request from a Web Application, API or any component that makes an API call.
This request must contain the identifier of the resource and the action to be
performed on it. Depending on the action, the request and response messages may
have additional meta-data elements, which can be classified into resource data,
resource meta-data, representation data, representation meta-data, and control data
[8]. The request is then processed and based on the action specified by the HTTP
request method, the data is either fetched, created, modified or removed from the
database. The high-level design of the REST architecture can be found below, in
Fig. 1.

A web service implementation — SOAP vs REST 85

Web application

HTTP R Eque HTTP R Eque Diatabaze query

HTTF Response HTTF Response Query respanse

Web Server
Fig. 1. REST architecture

3.1.3. SOAP API

Simple Object Access Protocol (SOAP) is a messaging protocol that utilizes
XML messaging format for communication across networks. It is a critical
component in Service-Oriented Architecture (SOA) and its related web services
needs. The main goal of SOAP is to transmit data over the network, using HTTP to
transfer information across the internet.

SOAP Binding refers to the method of exchanging messages over the
Transport layer. There are two different binding styles for messaging requests in
SOAP: Remote Procedural Call (RPC) and Document Style:

Remote Procedural Call (RPC) - This concept entails
communication between a client and a server based on a request and
a response, using XML as the format for both. The root element,
Envelope, determines the overall structure of the message. RPC
uses a specific design for the request and response messages.
Communication in RPC is synchronous, meaning that a response is
received only after the message request has been sent. This style is
simpler and less versatile, making it more suitable for sending
smaller messages.

Document Style - It is a more sophisticated and complex style,
often referred to as message-oriented. In this style, XML data is
passed as a body rather than as parameters. It allows rich content
and can handle complex data structures [3].

SOAP
Request
Message

Fig. 2. SOAP architecture

86

Tudor-Alin Nitescu, Andreea-lulia Concea-Prisacaru, Valentin Sgarciu

3.1.4. REST API vs SOAP API

Both REST and SOAP frameworks offer support for Service Oriented
Architecture (SOA) applications. The choice between them depends on the business
requirements and the architecture of the entire system. SOAP is an appropriate
choice for applications that require a high level of security, reliability, and
transaction management, and for applications that need to exchange complex data
over the network. REST is the better choice for applications that need to be
lightweight, flexible, and scalable. The best approach depends on the specific
requirements of an application.

A comparison between the two architectural styles is provided below in Fig
3., which was made based on the following categories:

Data Format: while SOAP is very strict regarding the data format,
allowing XML only, REST is more permissive, allowing formats such
as CSV, JSON and RSS.

Underlying Protocol: both use the HTTP protocol.

Statefulness: while SOAP can be either stateless (does not retain
information about the state of a client between requests to the server) or
stateful (each request from a client to the server is treated as an
independent transaction; the server does not store any client-specific
data between requests), REST is completely stateless.

Caching: SOAP can use only POST requests, which are non-idempotent
(can provide different results when repeating the same operation).
Therefore, it can't cache at HTTP level. On the other hand, REST has an
entire caching infrastructure, being able to mark responses as cacheable
or not-cacheable.

HTTP verbs used: SOAP is strictly tied to POST, while REST can use
GET, POST, PUT, DELETE and PATCH.

Security: SOAP provides well standardized security through WS-
SECURITY (Web Services Security), which includes specifications for
message integrity, confidentiality, authentication and authorization. On
top of that, it allows encryption and signing SOAP messages to ensure
their integrity and confidentiality, as well as the authentication of both
the sender and the receiver. On the opposite side, REST supports basic
authentication and communication encryption through TLS (Transport
Layer Security) and it requires further implementation on the server side
to enhance the security level of the application.

A web service implementation — SOAP vs REST 87

e Asynchronous processing: Both REST and SOAP support
asynchronous processing.

SOAP REST
Data Format XML CSV, JSON, RSS
Underlying HTTP HTTP
Protocol
Statefulness Can be either stateless or stateful Completely stateless
Caching Because it uses only POST, which is Good caching infrastructure, can mark
id tent. it t he at HTTP level responses as cacheable or
non-idempotent, it can't cache af evel e
ES;P LEE POST GET POST, PUT, DELETE, PATCH
Supports basic authentication and

Security Well standardized security through communication encryption through TLS

WS-SECURITY Further security should be additionally

implemented on the server side

Asynchronous SOAP 1.2 offers additional standards Offers support, by retuming HTTP
processing to support asynchronous processing code 202 for asynchronous processing

Fig. 3. SOAP vs REST

3.2. Tools

For the implementation, we have used the following tools: IntelliJ
Enterprise Edition for the coding part (written in Java) and Postman for the code
testing through API calls.

3.2.1. Intellid

IntelliJ IDEA is an integrated development environment (IDE) created by
JetBrains. It is a Java-based software that provides a comprehensive set of tools and
features to help developers write, test, and debug code efficiently. IntelliJ IDEA's
intelligent code completion and error analysis capabilities help developers to write
code quickly and accurately. Additionally, its integrated debugging tools simplify
the process of identifying and resolving errors. The IDE offers advanced refactoring
capabilities, facilitating the reorganization and restructuring of code. This ensures
that the code remains well-structured, maintainable, and readable [9].

3.2.2. Postman

Postman is a user-friendly interface designed for sending HTTP requests,
receiving responses, and visualizing the data returned from APIs. With Postman,
developers can easily test and debug their APIs. It provides a large variety of
features, including the ability to save and organize collections of API requests,

88 Tudor-Alin Nitescu, Andreea-lulia Concea-Prisacaru, Valentin Sgarciu

automate repetitive tasks, generate code snippets in various programming
languages, and perform advanced tasks such as setting up and managing
environments and variables [10].

4. Implementation

This section showcases the implementation of a web services application,
adhering to both REST and SOAP architecture principles, for the purpose of
conducting a comparative analysis.

The implemented application provides functionalities for managing
customers and accounts, enabling a range of CRUD operations (create, read, update
and delete) for both customers and accounts. Upon creation in the database, each
customer has the capability to be associated with one or multiple accounts,
representing a one-to-many relationship between customers and accounts tables in
the database. Additionally, the application ensures data integrity and consistency
by implementing input validation mechanisms and enforcing referential integrity
constraints between customers and their associated accounts within the database
schema.

4.1. REST implementation

For the REST implementation, we have split the code in various code
packages. In the controller package we have implemented the logic for handling
incoming HTTP requests; in the entity package we have defined the model structure
(the attributes and validations for Account and Customer objects); in the repository
package we have defined the database operations (create, read, update and delete);
in the service package we have implemented the methods which are called by the
endpoints to perform the database operations. We have used SQL.ite, which is an
in-memory database (it stores the data in computer’s main memory, eliminating the
need to access disk storage). In the figures from below, the results of CRUD
operations (Create, Read, Delete and Update) performed using Postman HTTP
requests are illustrated, with the response times and sizes highlighted with red in
response section.

A web service implementation — SOAP vs REST 89

http://localhost:8080/customer/create

Body

form-data x-www-form-urlencoded @ raw binary GraphQL

http://localhost:8080/customer/get/1

Autho o 6) Body Pre p tti

form-data x-www-form-urlencoded binary GraphQL

DELETE http://localhost:8080/customer/delete/1

Body

form-data x-www-form-urlencoded raw binary GraphQL

Fig. 6. DELETE example for REST API

90 Tudor-Alin Nitescu, Andreea-lulia Concea-Prisacaru, Valentin Sgarciu

http:/flocalhost:8080/customer/patch/1

Body Pre-ri

form-data x-www-form-urlencoded @ raw binary GraphQL

Fig. 7. PATCH (Update) example for REST API

The average response time of our sample requests was 9.7 milliseconds per
call, this low response time being influenced by the usage of an in-memory
database, which removes the need to connect to a database server.

The lowest response size is on DELETE, since this endpoint returns just the
status 200 OK for a successful response, with an empty body. The average response
size is 273.3 bytes. This result is influenced by the JSON format, which is
lightweight and does not use a lot of memory.

For the local implementation we have used HTTP protocol, but on a
production-like application, the HTTPS protocol should be used for encrypting the
data using SSL or TLS.

All the requests we made were synchronous, and we had 201 Created and
200 OK as response statuses.

4.2. SOAP implementation

The same application was implemented following the SOAP standards to
compare the results obtained from both approaches. This approach was less
modular, using just two packages: repository, which contains the data initialization
logic and the methods used for the database access, and the endpoint package,
containing the implementation of the API endpoints business logic for customer
and account management. In the figures from below, an illustration of the same
CRUD (Create, Read, Update and Delete) operations performed using Postman
POST requests is shown:

A web service implementation — SOAP vs REST 91

httprifiocalhost:8080/ws

Body

Fig. 8. Create example for SOAP API

http:/flocalnost:8080/ws
Body

form-data @ x-www-form-uriencoded @ raw @ binary @ GraphQL

Fi

g. 9. Read example for SOAP API

hitp/flocaiost 8080/ ws

Authorization e Body

none @ form-data @ x-www-form-uriencoded @ raw @ binary @ GraphQL

Fig. 10. Delete example for SOAP API

92 Tudor-Alin Nitescu, Andreea-lulia Concea-Prisacaru, Valentin Sgarciu

Fig. 11. Update example for SOAP API

The average response time of the sample requests in this case was 11
milliseconds per call, the higher response time being influenced by the larger
amount of data sent using the XML format.

The lowest response size was on the delete operation in the SOAP case as
well, since this endpoint returns an empty body for a successful deletion. The
average response size was 685.7 bytes. This higher result was again influenced by
the XML format, which is richer in information.

For the SOAP implementation, the requests we performed were also
synchronous, having the HTTP code 200 OK for all the response statuses. The
HTTP method POST was used for all the requests, as stated in the guidelines.

5. Results

In our implementation, the REST approach has proven to be more effective
in terms of response time and size, mainly due to the lightweight nature of JSON,
which consumes less memory. On the other hand, the inferior outcomes observed
in the SOAP case can be attributed to the use of XML format, which, although being
richer in information, tends to increase response time and size.

Another winning point for the REST implementation comes with the
compatibility with multiple HTTP methods, POST, PUT, PATCH and DELETE,
each one being allocated to its specific CRUD (Create, Read, Update, Delete)
operation. From security perspective, the clear distinction between operations can
help in restricting certain sensitive methods such as DELETE or PATCH, which
can result in significant risks when used improperly. Additional security
mechanisms or authentication requirements can be selectively applied based on the

A web service implementation — SOAP vs REST 93

HTTP method used in a request. In the SOAP case, all operations must be
performed using POST requests, which can raise idempotency and access control
problems.

From the ease of implementation perspective, REST is again the preferable
choice, being a more modern architectural style with widespread support and
extensive documentation. This abundance of resource helps in solving the code
implementation impediments, as developers can easily access a wide variety of
tutorials, examples and community forums. In contrast, SOAP, being an outdated
architectural style, presents greater challenges in debugging and solving coding
problems due to its complex nature and relatively limited online resources
available. Besides that, REST has a better approach in terms of modularity, which
facilitates the implementation of loosely coupled components.

Comparing the results obtained in this paperwork with the ones described
in the state-of-the-art chapter, the tendency towards REST is shown in all cases in
terms of modularity, faster runtime and lower memory usage. Moreover, the ease
of implementation factor should also be considered, being easier to maintain and
develop new features for an application that is designed with scalability in mind.

6. Conclusions

Our study showcased the main concepts of web services and some of the
most popular architectural types, SOAP and REST.

We presented the main concepts regarding SOAP and REST architectural
patterns, as well as a comparison between the two of them, which helped us further
in our implementation process.

Our main contribution was the parallel implementation of an API, using
both standards. The application was a proof of concept which offered basic
functionalities for customer and account management, which can be used in the
financial domain. We have implemented all CRUD (Create, Read, Update, Delete)
operations and we have analyzed and compared the results.

We obtained better results for the REST implementation, having as KPIs
(Key Performance Indicators) the following criteria: ease of implementation,
runtime and memory efficiency. The average results for REST were the following:
a response time of 9.7 milliseconds per call and a response size of 273.3 bytes. In
comparison, the results obtained for SOAP were: a response time of 11 milliseconds
per call and a response size of 685.7 bytes. In this regard it should be mentioned
that REST is using JSSON as data format, while SOAP is using XML, which is richer
in information. Moreover, a common point is the fact that both architectural styles
are using HTTP as underlying protocol, REST using all HTTP methods for the
database operations, while SOAP is using only POST. Once again, this observation
favors REST over SOAP. Additionally, SOAP, relying solely on the POST method,

94 Tudor-Alin Nitescu, Andreea-lulia Concea-Prisacaru, Valentin Sgarciu

requires extra configuration in the XML files, further impacting both speed and
memory size indicators.

Furthermore, speaking from our own experience, the widespread popularity
of REST and the abundance of documentation in this regard facilitated the first part
of our implementation, proving to be highly user-friendly, enabling straightforward
development and maintenance, while in the SOAP case we faced challenges due to
the lack of comprehensive resources, which complicated the implementation
process.

As future directions of this paperwork we would also like to analyze SOAP
vs REST from security perspective, in order to see which one is better from this
point of view, as security is a very important aspect in the SDLC (Software
Development Lifecycle) of a project.

REFERENCES

[1] J. Tihomirovs, J. Grabis, “Comparison of SOAP and REST Based Web Services Using
Software Evaluation Metrics,” Information Technology and Management Science,
vol. 19, pp. 92-97, December 2016.

[2] F.Halili, E. Ramadani, “Web Services: A Comparison of Soap and Rest Services”, Modern
Applied Science, vol. 12, no. 3, 2018.

[3] A. Soni, V. Ranga, “API features individualizing of web services: REST and SOAP",
Journal of Innovative Technology and Exploring Engineering, vol. 8, pp. 664-671, July
2019.

[4] R. Virta, “Migrating Integration from SOAP to REST”, Master of Science in Technology
Thesis, University of Turku, Department of Computing, May 2023.

[5] S. Ahmad, S. Ali, N. Wagar, N. S. Naz, M. H. Mehmood, “Comparative evaluation of the
maintainability of RESTful and SOAP-WSDL web services”, pp. 1-9, IEEE, 2023.

[6] F. Dahri, A. M. Elhanafi, D. Handoko, N. Wulan, “Implementation of Microservices
Architecturein Learning Management System E-Course Using Web Service Method”,
Sinkron: Jurnal dan Penelitian Teknik Informatika, vol. 7, no. 1, January 2022.

[7]1 A.A. Prayogi, M. Niswar, 1. Amirullah, M. Rijal, “Design and Implementation of REST
API for Academic Information System” IOP Conference Series Materials Science and
Enginering, July 2020.

[8] L. L. lacono, H. V. Nguyen, P. L. Gorski, “On the Need for General REST-Security
Framework”, Future Internet — MDPI, December 2019.

[9]1 K Jarostaw, “Intelli] IDEA Essentials”, Packt Publishing Ltd, 2014.

[10] D. Westerveld, “API Testing and Development with Postman: A practical guide to creating,
testing, and managing APIs for automated software testing”, Packt Publishing Ltd, 2021.

