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HEEGNER POINTS, FRICKE INVOLUTION AND ALGORITHMS

COMPLEXITY

Radu Gaba1, Vladimir Olteanu2

This paper deals with the development of faster computer programs by mean of

which the authors improve the complexity orders of the algorithms of [1] used by Cânepă
and Gaba to classify the fixed points of the action of Fricke’s involution wn on the open

modular curves Y0(n) as well as a certain class of Heegner points: the pairs (E,E/C),

where E are complex elliptic curves for which there exist cyclic subgroups C ≤ (E,+)
of order n such that the elliptic curves E and E/C are isomorphic. We compute the

complexity orders of the algorithms of [1] as well as the complexity orders of the new

algorithms. Moreover, we provide an exhaustive comparison of the results obtained upon
running the code on the same computer.
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1. Introduction

Throughout this paper we will denote by H the upper half plane, H := {z ∈
C, Im(z) > 0} and by F :=

{
z = x + iy ∈ C : − 1

2 ≤ x < 1
2 and either |z| ≥

1 if x ≤ 0 or |z| > 1 if x > 0
}

the fundamental domain for the action of SL2(Z)

on H, action given by

(
a b
c d

)
· τ = aτ+b

cτ+d , τ ∈ H,

(
a b
c d

)
∈ SL2(Z). SL2(Z)\H is

identified under this action with isomorphic classes of elliptic curves over C. Let E be
a complex elliptic curve given by the lattice L, E = C/L, and C a cyclic subgroup of
order n < ∞ of (E,+). That is, C is a subgroup of order n of the n-torsion subgroup
of E: E[n] := {P ∈ E : [n]P = O} = ker([n] : E → E) = ( 1nL)/L ⊂ C/L. The
group E/C has a structure of Riemann variety due to the fact that C acts effectively and
properly discontinuous on E and this structure is compatible with the natural projection
denoted by π : E → E/C. It is known that the isogeny π is unramified of degree n:
degπ = |π−1(O)| = |C| = n (see [7], Theorem 3.4). By Y0(n) one denotes the open mod-
ular curve defined as the quotient space Γ0(n)/H, equivalently Y0(n) is the set of orbits
{Γ0(n)τ : τ ∈ H}, where Γ0(n) is the ”Nebentypus” congruence subgroup of level n of
SL2(Z), which acts on H from the left:

Γ0(n) = {
(

a b
c d

)
∈ SL2(Z)| c ≡ 0(modn)}.

An enhanced elliptic curve for Γ0(n) is by definition an ordered pair (E,C) where E
is a complex elliptic curve and C is a cyclic subgroup of order n of E. Moreover, two pairs
(E,C) and (E′, C ′) are equivalent if there is some isomorphism E ∼= E′ taking C to C ′. The
set of such equivalence classes is denoted by:
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S0(n) := {enhanced elliptic curves for Γ0(n)}/ ∼.

Moreover, an element of S0(n) is an equivalence class [E,C] and S0(n) is a moduli space of
isomorphism classes of complex elliptic curves and n-torsion data (see [4] for details).

Denote by Λτ the lattice Z+ Zτ , τ ∈ H and by Eτ the elliptic curve C/Λτ . One has
the following bijection (see [4], Theorem 1.5.1 for details):

S0(n) ∼= Y0(n) given by [C/Λτ , ⟨1/n+ Λτ ⟩] 7→ Γ0(n)τ .

In this paper we develop faster algorithms than the ones previously developped by
Cânepă and Gaba in [1] in order to classify on one hand the fixed points of the action of
Fricke’s involution on Y0(n) and a certain class of Heegner points namely: the pairs (E,E/C),
where E are complex elliptic curves for which there exist cyclic subgroups C ≤ (E,+) of
order n such that the elliptic curves E and E/C are isomorphic. We compute the complexity
orders of the old as well as of the new algorithms and provide a thorough comparison of
the results obtained when running them on the same laptop. We point out that in [3] one
improved the noncyclic case algorithm whereas in this paper we analyze the complexity and
improve the algorithm used to classify the fixed points of the action of Fricke’s involution
wn on Y0(n) as well as the cyclic case algorithm since it is natural to cover these remaining
and different cases as well. As expected, the complexity order of the cyclic case algorithm
is different than the complexity order of the noncyclic case algorithm.

The improved versions of those algorithms, developped in this paper, work correctly
and faster in finding the fixed points of the action of the Fricke involution on Y0(n), points
which though known, weren’t studied in the above specified manner (see [1]). Note that
this number of fixed points was previously computed by Ogg (see [8], Proposition 3) and
Kenku (see [6], Theorem 2) and, for n > 3, it is ν(n) = h(−n)+h(−4n) if n ≡ 3(mod4) and
ν(n) = h(−4n) otherwise, where h(−n) is the class number of primitive quadratic forms of
discriminant −n and ν(2) = ν(3) = 2.

2. Preliminaries

In [1], one provided a new method of classifying the fixed points of the action of the
Fricke involution

wn :=

(
0 −1
n 0

)
∈ GL2(Q+)

on the open modular curves Y0(n). One firstly characterized the pairs (E,E/C), where
E are complex elliptic curves for which there exist cyclic subgroups C ≤ (E,+) of order
n such that the elliptic curves E and E/C are isomorphic in Theorem 2.1. Next, upon
imposing certain conditions (Theorem 2.3 of [1]), one also answered the question: ”given a
complex elliptic curve E, when can one find a cyclic subgroup of order n of E such that
(E,C) ≃ (E/C,E[n]/C).

More precisely, in [1] Cânepă and Gaba proved the following theorems:

Theorem 2.1. ( [1], Theorem 1.1)
Let E be a complex elliptic curve determined by the lattice ⟨1, τ⟩, τ ∈ H. Then:
i) ∃C ≤ (E,+) finite cyclic subgroup such that E

C ≃ E ⇔ ∃u, v ∈ Q such that

τ2 = uτ + v with ∆ = u2 + 4v < 0 (i.e. E admits complex multiplication);
ii) If τ satisfies the conditions of i) and u = u1

u2
, v = v1

v2
, u2 ̸= 0, v2 ̸= 0, u1, u2, v1, v2 ∈

Z,Gcd(u1, u2) = Gcd(v1, v2) = 1, d2 = Gcd(u2, v2), then:
∃C ≤ (E,+) cyclic subgroup of order n which satisfies E

C ≃ E ⇐⇒ ∃(a, b′) ∈ Z2 with
Gcd(a, b′) = 1 such that n = detM , where M is the matrix

M =

(
a A
b B

)
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and (a,A, b, B) =
(
a, u2v1

d2
b′, u2v2

d2
b′, a+ u1v2

d2
b′
)
;

iii) The subgroup C from ii) is C=⟨u11+u21τ
n ⟩, where u11, u21 are obtained in the

following way: since detM = n and Gcd(a,A, b, B) = 1 (one deduces easily this), the matrix
M is arithmetically equivalent with the matrix:

M ∼
(

1 0
0 n

)
,

hence

∃U, V ∈ GL2(Z) such that M = U ·
(

1 0
0 n

)
· V.

The elements u11, u21 are the first column of the matrix

U =

(
u11 u12

u21 u22

)
.

Theorem 2.2. ( [1], Theorem 2.3) Let E be an elliptic curve defined over C satisfying the
conditions of 2.1 i). Then the following are equivalent:

{∃C ≤ (E,+) cyclic subgroup of order n of E such that (E,C) ∼ (EC , E[n]
C )} ⇐⇒

{∃(a, b′) ∈ Z2 with gcd(a, b′) = 1 such that det(M) = n and n|Tr(M)} ⇐⇒
{∃(a, b′) ∈ Z2, with gcd(a, b′) = 1 such that det(M) = n and M2 ≡ O2(modn)},
where M is the matrix from 2.1 ii) and Tr(M) the trace of M .

This number of fixed points of the action of Fricke’s involution wn on Y0(n) is ν(n) =
h(−n)+h(−4n) if n ≡ 3(mod4) for n > 3 and ν(n) = h(−4n) otherwise. One can also obtain
this number by using the second algorithm of [1]. In [1] Cânepă and Gaba also developped
the algorithms classifying these points and implemented them in Magma. The non-cyclic
case has been studied by them in [2].

We briefly recall now this algorithm developed in [1] for the classification of the fixed
points of the Fricke’s involution action.

The complete details can be found in [1] (pages 496-498). Note that we keep the same
notations. Moreovever, we provide here sufficient details to make the exposure clear enough
while following [1]. It is known that the complex elliptic curves are of the form C

L for some

L = Z+Zτ ⊂ C where τ ∈ F =
{
z = x+ iy ∈ C : − 1

2 ≤ x < 1
2 and either |z| ≥ 1 if x ≤

0 or |z| > 1 if x > 0
}
.

If E is an elliptic curve satisfying the condition i) of Theorem 2.1, one can assume (up to
isomorphism) that E is of the form C

L with L = Z + Zτ ⊂ C and τ ∈ F. If τ2 − uτ − v =

0, u, v ∈ Q,∆ = u2 + 4v < 0 and τ ∈ F, then one further obtains τ =
u± i

√
|∆|

2 , −1 ≤ u < 1
and |∆| ≥ 3.
Since ∆ = u2 + 4v < 0, one has that v < 0. Moreover, one can assume without loss of
generality that v2 > 0, v1 < 0 and u2 > 0. Theorem 2.1, ii) leads to:

n = aB − bA =
(
a+

u1v2
2d

b′
)2

− u2
2v

2
2∆

4d2
b′2 (∗) (1)

Furthermore d = Gcd(u2, v2), ∆ =
u2
1

u2
2
+ 4v1

v2
and let u′

2 := u2/d and v′2 := v2/d. Let also

v1 := −v1 and remark that u2, v2, v1 > 0 and also that ∆ ≤ −3. One multiplies (∗) by 4
and hence obtain:

4n = (2a+ u1v
′
2b

′)2 + v′2b
′2(4v1du

′2
2 − v′2u

2
1) (2)

This leads to the inequality 4n ≥ v′2b
′2 · 4v1du′2

2 hence n ≥ v′2b
′2 · v1du′2

2 . Next denote

by ξ := 4v1du
′2
2 −v′2u

2
1 and note that ∆ ≤ −3 is equivalent to

u2
1

d2u′2
2
−4 v1

dv′
2
≤ −3 and moreover
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to u2
1v

′
2 − 4dv1u

′2
2 ≤ −3d2u′2

2 v
′
2 that is −ξ ≤ −3d2u′2

2 v
′
2, i.e. ξ ≥ 3d2u′2

2 v
′
2 (∗∗). From (∗∗)

and (2) one gets that 4n ≥ v′2b
′2 ·3d2u′2

2 v
′
2 hence 4n/3 ≥ v′22 b′2 ·d2u′2

2 . Let k :=
√
4n/3. One

obtains next that u′
2 runs from 1 to the integer part of k, [k], v′2 from 1 to [k/u′

2], b
′ from 1

to [k/u′
2/v

′
2] and d from 1 to [k/u′

2/v
′
2/b

′]. Moreover, −1/2 ≤ Re(τ) < 1/2 is equivalent to
−1/2 ≤ u1/(2u2) < 1/2 that is −u2 ≤ u1 < u2. Consequently u1 runs from −du′

2 to du′
2−1.

Let m := (2a+u1v
′
2b

′)2. From (2) one obtains now that 4n+ v′22 b′2u2
1 = m+4v′2b

′2v1du
′2
2 ≥

4v′2b
′2v1du

′2
2 and hence v1 ≤ 4n+v′2

2 b′2u2
1

4v′
2b

′2du′2
2

. Consequently, v1 will run from 1 to [
4n+v′2

2 b′2u2
1

4v′
2b

′2du′2
2

].

Finally, one has to make sure that the condition τ ∈ F is entirely fulfilled by setting:
(u1 > 0 or v1 ≥ v2) and (u1 ≤ 0 or v1 > v2). The cyclic case algorithm of [1] is therefore
Algorithm 1 (see [1], page 498). Throughout the code, the substitutions made are b := b′,
u2 := u2/d and v2 := v2/d, where d = Gcd(u2, v2) and b′, u2, v2 are defined in Theorem 2.1.

In Algorithm 1, one made the substitutions b := b′, u2 := u2/d and v2 := v2/d, where
d = Gcd(u2, v2) and b′, u2, v2 are defined in Theorem 2.1. After modifying the previous
code one computes the fixed points of the Fricke involution by adding a few conditions.
That is, by using Theorem 2.2, one has that det(M) = n and n|Tr(M) or equivalently:
a2 + au1v2b + u2v2d · bu2v1b = n and n|(2a + u1v2b). Algorithm 2 (fixed points of Fricke’s
involution) is obtained by inserting these two conditions in the cyclic case algorithm.

After modifying the first code by using the notations of Theorem 2.2, [1] obtained the
second agorithm namely Algorithm 2 (see [1], page 499). Throughout the next section we
will also compute their order of complexity and improve the algorithms.

3. Main Results

Note that the isomorphism (EC ≃ E) can only occur for non-singular projective curves
of genus 1 (see for example [3], Lemma 1).

We are ready to compute now the complexity orders of the algorithms of [1].

Theorem 3.1. The order of complexity of Algorithm 1 (C cyclic) is O(n3 · log2n).

Proof. Line 2 is O(k) time. One has that O(Floor(k)) = O(k), hence line 3 is O(k) iterations.

However, since
∑k

u2=1(k/u2) → k · ln(k), we obtain that lines 3 and 4 combined are O(k ·
log(k)) iterations (for this, note that

∑k
u=1(1/u)− ln(k) → γ ≈ 0.57 hence O(

∑k
u=1(1/u)) =

O(ln(k))). Since Gcd is O(log(k)) time, one obtains that line 5 is O(log(k)) time. Since
(k/u2/v2)max = k, it follows that Line 6 is O(k) time (note that k/u2/v2 = k

u2·v2 ). Remark

that
∑k

b=1(k/b) → kln(k), hence lines 6 and 7 combined are O(k·log(k)) iterations. Note that
dmax = k for u2 = 1 hence line 8 is O(2 · k) iterations, which is O(k) iterations. Recall now
that n = 3k2/4. Line 9 is O(log(k2)) = O(2 · log(k)) = O(log(k)) iterations. Observe that
(v1)max = (4·n+v22 ·u2

1 ·b2)/(4·v2 ·b2 ·d·u2
2) = 3k2/(4·v2 ·b2 ·d·u2

2)+v22 ·u2
1 ·b2/(4·v2 ·b2 ·d·u2

2) =
3k2/(4 · v2 · b2 · d · u2

2) + v2 · u2
1/(4 · d · u2

2). Consequently line 10 is O(k2) iterations. Line 11
is O(log(k2)) = O(2 · log(k)) = O(log(k)) iterations. Remark that O(if c1 then c2 else c3) is
O(c1)+Max(O(c2), O(c3)), which is Max(O(c1), O(c2), O(c3)). It follows that line 12 is O(1),
line 13 is O(1). IsSquare function is O(sqrt) and since from line 13 one has that m ≤ 3k2,
it follows that line 14 is O(sqrt(k2)) = O(k). Line 15 is O(1). Line 16 is O(1) since IsEven
is O(1). Line 17 is O(1). Remark that from line 17 one obtains a < k · sqrt(3)/2 < k. Since
b ≤ k2 one obtains that Gcd(a,b) < k. Consequently one obtains that line 18 is O(log(k)).
The remaining lines of the algorithm are O(1). Using now the above, the order of complexity
of the algorithm is O(k+k · log(k)(log(k)+(k · log(k) ·k ·(log(k)+k2 ·(log(k)+k+log(k))))) =
O(k + k · log(k)(log(k) + (k4log(k) · (k + log(k)))) = O(k + k5log2(k) · (k + log(k)))) =
O(k + k6log2(k)) = O(k6log2(k)) = O(n3 · log2(

√
n)) = O(n3 · log2n). □

Theorem 3.2. The order of complexity of the Algorithm 2 (fixed points of Fricke’s involu-
tion) is O(n3 · log2n).
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Proof. We compare it to the first algorithm and remark that the difference is given by Line
20 in which one imposes two extra conditions both being in O(1). Consequently Line 20 is
still O(1) iterations.

□

We are ready to improve the two algorithms. For this, we introduce two helper classes
and reimplement the algorithms in C++ . The source code is available upon request. The
first class is called GCDs. It computes Gcds using dynamic programming. It holds a
(k + 1) × (n + 1) matrix which stores all Gcds once they are computed. Computing the
Gcds for all pairs (i, j) with i ≤ k and j ≤ n is done in O(k ∗ n) time. Moreover the lookup
cost is O(1) once a Gcd has been already computed. Consequently, the amortized cost of
all GCDs :: gcd calls is O(k ∗ n) = O(k3). The second class is called Squares. This class
features a single method called sqrtIfPerfectSq, which returns the square root of a number
if the respective number is a perfect square and −1 otherwise. This class holds a 4∗n+1 size
vector, initialized with −1; Next, for each i such that i2 < 4 ∗ n+1, we populate the vector
at index i2 with i’s. The instantiation of the Squares class is done in O(4 ∗ n+ 1) = O(k2)
time. The calls to sqrtIfPerfectSq are vector lookups, and hence in O(1). We obtain
below:

Theorem 3.3. The order of complexity of the improved version of Algorithm 1 (case C
cyclic) is O(n2

√
n · log2n).

Proof. In the improved version of Algorithm 1 the Gcd and IsSquare are replaced by the
classes GCDs :: gcd and Squares :: sqrtIfPerfectSq respectively as oposed to the non-
optimized version. The key point is that in this manner we front-load the costs, and then
treat all subsequent calls as being O(1). The operations concerning GCDs are in O(k3), and
the operations concerning Squares are in O(k2). Analysing now the improved algorithm:
line 2 is in O(k) as in Algorithm 1. Lines 3 and 4 are O(k · log(k)) iterations. Lines 6 and 7
are also O(k · log(k)) iterations. Line 8 is O(k) iterations. Line 9 is O(1) as subsequent call of
GCD. Line 10 is O(k2) iterations. The remaining lines are O(1) . We obtain that the order
of complexity is O(k3) +O(k2) +O(k) +O(k · log(k)) ·O(k · log(k)) ·O(k)(O(1) +O(k2)) =
O(k3) + O(k5 · log2k) = O(k5 · log2k) = O(n2

√
n · log2n)).

□

Similarly we obtain Theorem 3.4 below:

Theorem 3.4. The order of complexity of the improved version of Algorithm 2 (fixed points
of the Fricke involution) is O(n2

√
n · log2n).

Proof. The Algorithm 2 is derived from Algorithm 1 by restricting solutions to the case
when a2 + au1v2b + u2v2d · bu2v1b = n and n|(2a + u1v2b) in the innermost loop. This
check is however in O(1). Consequently, the order of complexity will be the same as the one
obtained for the optimized version of Algorithm 1. This ends the proof.

□

The main function of the second improved algorithm namely Algorithm 2 (Fricke’s
involution fixed points) will contain the code below (the complete C++ code is available
upon request). Deleting the lines 33 and 34 will give us Algorithm 1 (cyclic case).

4. Examples

We provide now several examples of the fixed points of the Fricke’s involution as well
as the numbers of classes of CM elliptic curves E which admit cyclic subgroups C of order n
such that E ∼= E/C. The examples are gathered in Table 1 and Table 2. The extended set
of values also contains the set provided in [1]. However, the runs were made on a different
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Algorithm 3.1 Fricke’s involution fixed points in C++ Input: any random integer number;
Output: u1/u2, v1/v2.

1: list⟨pair⟨double, double⟩⟩ fricke(int n)
2: {
3: list⟨pair⟨double, double⟩⟩ result;
4: int k = sqrtInt(4 ∗ n/3);
5: GCDs gcds(k + 1, n + 1);
6: Squares squares(4 ∗ n + 1);
7: for(int u2 = 1; u2 <= k; u2 + +) {
8: for(int v2 = 1; v2 <= k/u2; v2 + +) {
9: if (gcds.gcd(u2, v2)! = 1)

10: continue;
11: for(int b = 1; u2 <= k/u2/v2; b + +) {
12: for(int d = 1; u2 <= k/u2/v2/b; d + +) {
13: for(int u1 = −d ∗ u2; u1 <= d ∗ u2− 1; u1 + +) {
14: if (gcds.gcd(u1,d ∗ u2)! = 1)
15: continue;
16: int v1max = (4 ∗ n + sq(v2) ∗ sq(u1) ∗ sq(b))/(4 ∗ v2 ∗ sq(b) ∗ d ∗ sq(u2));

17: for(int v1 = 1; v1 <= v1max; v1 + +) {
18: if (gcds.gcd(v1,d ∗ v2)! = 1)
19: continue;
20: if (sq(u1)/sq(d)/(u2 ∗ u2)− 4 ∗ v1/d/v2 > −3);
21: continue;
22: int m = 4 ∗ n− v2 ∗ sq(b) ∗ (4 ∗ v1 ∗ d ∗ sq(u2)− v2 ∗ sq(u1));
23: int y = squares.sqrtIfPerfectSq(m);
24: if (y == −1)
25: continue;
26: if ((y − u1 ∗ v2 ∗ b)%2! = 0)
27: continue;
28: int a = (y − u1 ∗ v2 ∗ b)/2;
29: gcdAB = gcds.gcd(a,b);
30: if (gcdAB! = 1)
31: continue;
32: if ((u1 > 0||v1 >= d ∗ v2)&&(u1 <= 0||v1 > d ∗ v2))
33: if (((a ∗ a + a ∗ u1 ∗ v2 ∗ b + u2 ∗ v2 ∗ d ∗ b ∗ u2 ∗ v1 ∗ b) == n)
34: &&((2 ∗ a+ u1 ∗ v2 ∗ b)%n == 0)))

35: result.push back({1.0 ∗ u1/d/u2,−1.0 ∗ v1/d/v2});
36: }
37: }
38: }
39: }
40: }
41: }
42: return result;
43: }
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n the cyclic case old CPU time new CPU time
2 3 0.001s 0.001s
39 54 0.016s 0.001s
101 108 0.016s 0.002s
1457 1498 0.811s 0.036s
2012 3039 1.326s 0.042s
2022 4055 3.167s 0.047s
2023 2425 2.995s 0.052s
5772 12558 6.755s 0.251s
12383 14856 21.403s 0.724s
124071 165782 804.918s 20.993s
253124 443302 2134.828s 38.011s

Table 1. Number of classes of complex elliptic curves, the cyclic case:
computations for various n

n fixed points of wn old CPU time new CPU time
2 2 0.001s 0.001s
39 8 0.016s 0.001s
101 14 0.016s 0.002s
1457 24 0.811s 0.043s
2012 42 1.326s 0.050s
2022 24 3.026s 0.057s
2023 36 2.948s 0.062s
5772 48 6.396s 0.244s
12383 184 20.733s 0.747s
124071 708 703.689s 24.990s
253124 456 2078.292s 44.340s

Table 2. Number of fixed points of Fricke’s involution

machine than the one used in [1] namely the computations were done using Magma 2.19-9
as well as C++ on the same Lenovo i3-3110M laptop at 2.40 GHz and 8 GB RAM. For each
n we have also recorded the CPU time the processor took to complete these calculations
with the old code (written in Magma) as well as with the new one (written in C++).

5. Conclusions

In this paper we improve the orders of complexity of the algorithms of [1] and provide
examples as well as an extended comparison between the old CPU time recorded and the
new one. The new code implemented in C++ is available upon request and can be further
used in problems involving the Fricke involution in the theory of complex elliptic curves.
Moreover, we also emphasize here the utility of studying elliptic curve quotients.
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