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DIAGNOSIS AND OPTIMIZATION OF VEHICLE ROAD 
NOISE UTILIZING THE KRIGING SURROGATE MODEL 

Zhijie HUANG1,2, Haijun WANG1,2,* ,Zhengxin LAN1*, Lei HE 

 A road noise diagnosis and optimization strategy based on the Kriging 
surrogate model is presented in this paper, aiming to elevate automobile NVH 
(Noise, Vibration, Harshness) performance. Utilizing the Transfer Path Analysis 
(TPA) method, the study initially identifies the critical paths for noise propagation. 
Design parameters pertaining to these paths are then designated as variables, with 
the overall vehicle road noise considered as the response function. Through the 
application of optimal Latin hypercube sampling, Design of Experiments (DOE) 
analysis is conducted, yielding variable and response data. Based on this, a Kriging 
surrogate model is constructed for road noise response. This model provides precise 
predictions of the objective function's reactions to shifts in design variables, 
subsequently minimizing computational load throughout the optimization process. A 
detailed quantitative assessment of the relationship between design variables and 
the objective function reveals the primary factors influencing road noise. 
Furthermore, a multi-objective genetic optimization algorithm is deployed to 
efficiently search for the global optimal solution aimed at minimizing road noise. 
This method has proven to be highly effective among numerous possibilities, 
significantly enhancing optimization efficiency and carrying substantial engineering 
significance for improving vehicle NVH  performance. 

Keywords: NVH, Transfer Path Analysis, Noise Optimization, Optimal Latin 
Hypercube, Kriging, Multi-Objective Genetic Optimization. 

1. Introduction 

Road noise refers to the medium- to low-frequency noise typically ranging 
from 20-300Hz generated inside a vehicle when random loads, caused by road 
irregularities, are transmitted through the tires to the chassis suspension and body, 
resulting in acoustic-structural coupling between the interior sound cavity and 
sheet metal components. It affects the riding comfort of the vehicle and is one of 
the NVH (Noise, Vibration, Harshness) performance aspects that consumers focus 
on when purchasing a vehicle, hence it receives significant attention from major 
automobile companies. Numerous scholars and experts have done extensive work 
on this. Bai Z[1] built a transfer path model with secondary contributions for an 
SUV to identify structural noise issues caused by vibrations in the cockpit and 
conducted load identification, determining the main excitation points and energy 
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characteristics causing interior noise along a certain path. Chen Zhao[2] proposed 
a Fast Systems (FS) vehicle road noise CAE diagnostic and optimization method, 
systematically outlining the basic approach to road noise diagnosis and 
optimization; Wei Y [3], Sohrabi S [4], Dooho L [5], and Ragasso J [6] used the 
transfer path analysis (TPA) to determine the main noise transmission paths and 
completed the corresponding noise optimization design. Ce L [7], Yixuan L [8], 
Ke C [9], and Kanghyun A [10], to overcome the inefficiency and high workload 
of traditional TPA, adopted the Operational Path Analysis with Exogeneous 
Inputs (OPAX) for targeted diagnostics and optimizations, improving noise 
issues. These research efforts have provided strong support for the overall vehicle 
NVH development. 

The aforementioned literature, based on TPA analysis, focuses on the 
diagnostic techniques for road noise problems. However, the results of TPA 
analysis can only determine the transmission paths that contribute significantly to 
road noise but cannot further lock down the key design parameters on the 
transmission paths. The actual process of road noise optimization often relies on 
engineering experience or combines techniques such as Operating Deflection 
Shapes (ODS) and Grid Participation Analysis (GPA) to determine optimization 
plans by repeatedly modifying design parameters, which is not very efficient. 
When many variables are involved, it is difficult to consider the cross-effects 
between variables and find a globally optimal solution. 

This paper, set against the backdrop of actual road noise project 
development, proposes a more systematic and efficient method for diagnosing and 
optimizing road noise.  

Firstly, based on the results of NVH subjective evaluation, we utilized the 
LSM NVH testing system to conduct road noise testing on actual vehicles. 
Through this testing, we obtained sound pressure curves within the passenger 
compartment and successfully identified the frequency ranges that exceeded the 
standards. To further investigate the road noise issue, we constructed a high-
precision CAE (Computer-Aided Engineering) model of the entire vehicle. To 
improve calculation efficiency, we ingeniously introduced super-element 
technology into the model, thereby significantly reducing the time required for a 
single calculation. 

Next, we utilized this CAE model to conduct a Transfer Path Analysis 
(TPA), successfully identifying the key paths that significantly impact road noise 
results. On this basis, we carefully selected design parameters on these key paths 
that could potentially have a direct impact on road noise, using them as 
subsequent optimization variables. 

To systematically study the relationship between these optimization 
variables and road noise, we employed the Latin Hypercube Method to discretize 
these variables and conducted a Design of Experiments (DOE) analysis within the 
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road noise CAE simulation model. Through this analysis, we obtained discrete 
values for road noise responses and optimization variables. To more intuitively 
understand this relationship, we utilized the Kriging method [31] to fit these 
discrete results into a mathematical response surface (i.e., surrogate model) 
describing the relationship between road noise and optimization variables. 

Based on this surrogate model, we delved into the quantitative relationship 
between optimization variables and road noise and successfully identified the 
most critical variables affecting road noise. To find the optimal variable 
combination that reduces road noise peaks, we employed a genetic optimization 
algorithm for optimization [25-27]. Ultimately, in real-vehicle validation, we 
proved the effectiveness of this optimal variable combination. It not only 
significantly enhanced the vehicle's NVH performance but also greatly improved 
the efficiency of road noise optimization for the entire vehicle. 

In summary, our research provides new ideas and methods for NVH 
development, possessing significant theoretical and practical value. 

2. Description of the actual vehicle road noise problem 

In subjective evaluations of road noise in a new energy vehicle, a distinct rum
bling sound was noticeable in the rear of the passenger cabin, severely affecting the d
riving and riding experience. as shown in Figure 1, acoustic microphones were place
d in the rear passenger compartment seats, and a full-vehicle road noise test was cond
ucted in order to obtain accurate rear road noise data. 

 
Fig. 1. Rear Passenger Compartment Microphone 

 
The road noise test was carried out on the dedicated road noise track at the

 NVH testing facility for complete vehicles. The test vehicle was a self-developed 
new energy sedan with overall dimensions of 4835*1860*1515mm (length*width
*height) and a curb weight of 1680kg. To ensure the accuracy and reproducibility 
of the test data, we avoided conducting tests on rainy days when the road surface 
was wet and slippery, and maintained the vehicle at a constant speed of 60km/h in
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 a straight line throughout the test. The NVH testing equipment from LMS (Labor
atory for Measurement and Simulation) represents an industry-leading solution, w
idely applied in multiple fields such as automotive, aerospace, and military. This e
quipment includes high-precision, high-channel data acquisition systems that supp
ort multi-channel parallel real-time data acquisition, along with various sensors lik
e accelerometers, microphones, force sensors, and pressure sensors, which collecti
vely ensure precise capture of noise and vibration signals. Additionally, LMS offe
rs a powerful software platform, LMS Test.Lab, which supports data acquisition, 
analysis, report generation, and can seamlessly integrate with other LMS software
 tools for a tight coupling of simulation and testing. These devices are characterize
d by high precision, high sampling rates, versatility, and portability, making them 
ideal for NVH testing of complete vehicles, NVH testing of components, and NV
H optimization during the research and development process. In the experiments c
onducted for this paper, LMS equipment was utilized, with specific parameters ou
tlined in Table 1. 

Table 1 
Test Equipment Parameter Table 

Instrument Name Performance,application, or requirements Model 
number Quantity 

LMS SCADAS 
Data Acquisition 
System 

Used for collecting and recording electrical 
signals generated by sensors, and completing 
the transformation of electrical signals into 
physical signals 

Mobile 05 1 

LMS Test and 
Analysis System 
Software 

Used for data collection and analysis LMS Test 
Lab.14A 1 

1/4" PCB 
Microphone 

Type 1 Sound Level Meter complying with 
GB/T 3785-1983 
Frequency Range: 20 Hz to 20 kHz 

130E21 4 

PCB Three-axis 
Vibration 
Accelerometer 

Mass: <10 grams 
Frequency Range: 2 Hz to 1000 Hz 
Frequency Response Error: ≤ ±5% 

356A02 16 

GPS Vehicle Speed 
Sensor Measure vehicle speed  1 

After applying A-weighting to the road noise test data, and combining 
subjective evaluations with the development experience of multiple vehicle 
models, it is generally observed that frequency bands where the road noise test 
curve exceeds 50dB(A) often lead to customer complaints and grievances. The 
test results for this occasion, as shown in Fig. 2, reveal that in the frequency bands 
of 80-110Hz, 140-160Hz, and 200-210Hz, the road noise curve surpasses the 
50dB(A) threshold. Notably, in the 140-160Hz band, the peak reaches as high as 
63dB(A), which has become a crucial factor contributing to the rumbling noise in 
the rear of this vehicle model. 
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Fig. 2. Measured Road Noise Sound Pressure Level Curve 

3. Whole vehicle road noise CAE simulation  

Road noise is a vibro-acoustic coupling problem. Its governing equation 
is[32]: 
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where K , C , M , F  represent the stiffness matrix, damping matrix, mass matrix, and 
load vector, respectively, with subscripts s and a  denoting structural and acoustic 
quantities. In road noise analysis, the acoustic load in Equation (1) is relatively 
small and can be neglected, whereas the structural load originates from the hubs 
of the four wheels (hereinafter referred to as hub loads). Once the hub load matrix 
is obtained, the sound pressure level ip  can be determined through Equation (1). 
Unfortunately, due to structural constraints, we cannot directly measure the 
corresponding loads by placing mechanical sensors at the wheel hubs. Instead, we 
need to obtain the hub load vector by solving the inverse matrix[11]. 

To obtain the wheel hub input force, four accelerometers were installed at 
different positions on the steering knuckle of the test vehicle. During the whole 
vehicle road noise test conditions, the corresponding acceleration signals were 
measured as shown in Figure 3. 

The input loads for CAE analysis, i.e., the hub excitations, are obtained via 
the inverse matrix method [12] 

H++
F A A AG = H G H                                        (2) 

where FG  is the hub load power spectrum matrix; AG   is the acceleration 
power spectrum matrix; AH represents the transfer function matrix from wheel hub 
excitation to the acceleration response point, which is obtained through CAE 
analysis. 
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Fig. 3. Steering Knuckle Sensor Layout: (a) Left Front Wheel; (b) Right Front Wheel; (c) Left 

Rear Wheel; (d) Right Rear Wheel 
 

The whole vehicle road noise CAE analysis model includes the chassis 
suspension system, power transmission system, interior body system, and the 
internal sound cavity model. Based on the hub excitation method, the input loads 
obtained through equation (5) already include tire information, hence the CAE 
model should exclude the tire model. Due to the large size of the model, the 
analysis time for a single run is long, but can be reduced using super element 
technology [13-15]. Based on the condensation characteristics of the super-
element model, the division of super-elements should follow the following 
principles: the reduced structure of the super-element should possess a certain 
degree of independence, facilitating its separation from the remaining structure, 
thereby achieving the goal of reducing the solution scale. The interior body and 
acoustic cavity model exhibit a certain independence within the overall vehicle 
structure, primarily connected to the chassis and powertrain through bushings and 
bolts, which aligns with this principle and allows them to be condensed into 
super-elements. This paper generates super elements for the body and internal 
sound cavity model, as shown in Figure 4. 

(a) (b) 

(c) (d) 
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Fig. 4. Road Noise CAE Model: (a) Full Vehicle Model; (b) Reduced Super-Element Model 
Due to the considered noise frequency range being 20-300Hz, in order to 

enhance the calculation accuracy of the super-element condensation model, when 
setting the modal extraction range for the interior body and fluid acoustic cavity 
model, the upper limit of the modal frequency extraction range is set to 1.5 times 
the upper limit of the calculation frequency (300Hz), which is 450Hz.this super 
element model reduces the time for a single simulation from 2.5 hours to 13 
minutes while ensuring sufficient computational accuracy. Finally, the 
comparison between the road noise simulation and actual measurements is shown 
in Figure 5: 

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

20

30

40

50

60

S
P
L
/
d
B
(
A
)

频率/Hz

 Simulation
 Experimental
 Target

 
Fig. 5. Comparison of Road Noise CAE Analysis and Actual Measurements 

The red line represents the road noise simulation curve, and the blue line 
represents the road noise test curve. It can be seen that the overall trend of the 
CAE simulation results matches the actual measurements, and the frequency 
ranges of the road noise problems are the same. The accuracy of this CAE model 
is high and can be used for subsequent optimization. 

4. Road noise response kriging surrogate model 
4.1 Definition of optimization variables 
To pinpoint the primary transmission paths of road noise issues, the Altair 

NVH Director software was employed to conduct a whole vehicle road noise 

(a) 

(b) 
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Transfer Path Analysis (TPA) using the aforementioned CAE model. The 
vibrational energy causing road noise is transmitted into the interior acoustic 
cavity of the vehicle through the attachment points between the chassis and the 
body. Therefore, these chassis attachment points were defined as the transmission 
paths. The TPA analysis calculates and ranks the contribution of each path to the 
overall vehicle noise, thereby identifying the path with the greatest contribution. 
The analysis results are presented in Figure 6. The results indicated that the 
attachment points of the various control arms of the rear suspension (upper arm, 
lower arm, cross arm) contributed up to 97% to the overall vehicle road noise, 
with the largest contribution coming from the lateral direction of the rear cross 
arm, accounting for 28.4%. 
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Fig. 6. Distribution of Path Contributions in TPA Analysis 

It is evident that the transmission paths with the largest contributions share 
a common characteristic: these rear suspension control arm mounting points are 
all located on the rear subframe. This indicates that a significant portion of the 
vibrational energy causing road noise is transmitted from the rear subframe to the 
interior acoustic cavity of the vehicle. Therefore, there exists a design flaw in the 
rear subframe of this vehicle model. It is necessary to prioritize the optimization 
of the relevant design parameters of the rear subframe as variables for road noise 
response. 

Based on the results of road noise analyses conducted on multiple vehicle 
models developed, the main design parameters of the rear subframe that 
significantly affect road noise performance are: the stiffness of the mounting point 
bushings, the thickness of the sheet metal, and the parameters related to the shape 
variations of the beams. However, these are only quantitative analysis results, and 
there are currently no reported studies on the quantitative relationship between 
these design parameters and road noise. Therefore, this paper will focus on 
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studying the quantitative relationship between these parameters, which will be 
taken as design variables, and road noise. 

Optimization variables for the stiffness of the rear subframe bushings are 
established as follows: F_Bush_R (front bushing radial stiffness), F_Bush_A 
(front bushing axial stiffness), R_Bush_R (rear bushing radial stiffness), and 
R_Bush_A (rear bushing axial stiffness). At the same time, variables for the 
thickness of each beam are established: F_Beam (front crossbeam), R_Beam (rear 
crossbeam), H_Beam (side beam, symmetrical on both sides), as shown in Fig. 7: 

 
Fig. 7. Bushing stiffness variables and thickness variables 

 
The shape variables for the beams are generated using the Hypermorph 

tool, subject to overall layout restrictions. The front and rear crossbeams can 
deform forwards and backwards (in the X-direction) and upwards and downwards 
(in the Z-direction), and the side beams can deform inward (in the Y-direction, 
symmetrical left and right), as shown in Fig. 8: 

 

 
Fig. 8. Beam shape variables 

 
Ultimately, for the 13 design parameters of the rear subframe, the 

following optimization variables were established, as shown in Table 2. It should 
be noted that the initial value of each parameter variable corresponds to the initial 
design state value of the vehicle model, while the upper and lower limits of the 
variables are based on the extreme values that can be achieved in the actual design 
of the design parameters. 
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Table 2 
Design Variable Table 

Variable Lower limit Initial value Upper limit Unit 
F_Bush_R 5000 20000 21000 N/mm 
F_Bush_A 400 20000 21000 N/mm 
R_Bush_R 5000 20000 21000 N/mm 
R_Bush_A 400 20000 21000 N/mm 

F_Beam 1.5 2.2 2.8 mm 
R_Beam 1.4 2 2.6 mm 
H_Beam 1.8 2.5 3.2 mm 
FrontX -80 0 80 mm 
FrontZ -50 0 50 mm 
rearX -50 0 50 mm 
rearZ -50 0 50 mm 
Hright 0 0 30 mm 
Hleft 0 0 30 mm 

4.2 Definition of response function 
Based on the road noise simulation results, response functions for the 

frequency bands exceeding the standards are established using RMS-weighted 
methods: 
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where ln  and un  are the lower and upper limits of the exceeding frequency bands, 
respectively, and iA   is the A-weighted result of road noise pressure, given by: 
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where iP  is the sound pressure value at the frequency point, 5
0 a2.01 10P P= ×  is the 

reference sound pressure; fA is the narrow-band A-weighting coefficient, f is the 
narrow-band frequency[33]. Using equations (3) and (4), three road noise 
response functions for exceeding frequency bands were established: 100R   (rear seat 
80-110Hz), 150R  (rear seat 140-160Hz), 205R  (rear seat 200-210Hz). 

4.3 Design of Experiments (DOE) 
Although using super elements for road noise simulation saves time per 

simulation, multiple computations are still time-consuming. To improve the 
efficiency of diagnostics and optimization, this paper obtains sample point data 
through Design of Experiments (DOE), then constructs surrogate models and uses 
them for studying the correlation between design variables and responses, as well 
as for road noise optimization. 
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The experimental design requires an efficient sampling method; Optimal 
Latin Hypercube Sampling (OLHS) is a stratified sampling method that 
distributes sample points evenly across each dimension, ensuring coverage across 
the entire parameter space [16-18,31]. This method uses the maximum distance 
minimization criterion (Equation 5)[31], optimizing initial sample points through 
the simulated annealing algorithm, avoiding possible gaps, and enhancing 
sampling efficiency and quality. 
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where ijd  is the distance between sample points. In this paper, a DOE analysis 
model is established in optimization software, and 500 instances of optimal Latin 
hypercube sampling were performed. Figure 9 shows the distribution statistics for 
FrontX (front crossbeam X-direction deformation parameter), from which the 
histogram and probability density function curve indicate that this sampling 
method achieves a uniform distribution of variables within the feasible domain. 
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Fig. 9 Optimal Latin Hypercube Distribution of Typical Variables 

4.4 Kriging-based whole vehicle road noise surrogate model 

Due to its strong non-linear response description capability and the 
quantification ability for interpolation uncertainties, the Kriging surrogate model 
is widely used in the field of engineering optimization, achieving good 
optimization results in many complex engineering problems [19-24]. This model 
defines system response as a stochastic process, constructed by combining a 
polynomial regression model with a stochastic error[21]:  

2 2
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where β  is a linear regression function; ( )f x  is a polynomial function of the 
variables x , providing a good approximation for the model's establishment; 2σ  is 
the process variance; R  is the correlation matrix of the variables x ; r represents 
the correlation between sample points and prediction points; c  provides the 
weights in the linear combination of the Kriging fitting model, which should be 
minimized. ( )z x is a non-zero covariance random process following a normal 
distribution 2(0,  )N σ , providing a local approximation of the model bias. The 
covariance matrix of ( )z x can be written as[21]: 

2

1

[ ( ) ( )] ( , , )

( , , ) ( , )    
n

j j j
j

E z z x x
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where ( , , )xθ ωΨ is the spatial correlation function between any two sample points 
ω  and x . The parameters θ  in the correlation function are unknown and 
represent the correlation of samples across different spatial dimensions. n  is the 
dimension of input parameters. In this paper, the correlation function uses the 
commonly applied Gaussian kernel function, as[21]: 

2( , ) exp(    ) j j j j j jx xθ ω θ ωΨ − = − −    (8) 
Kriging fitting was performed on the 500 sample data sets obtained in 

section C. The fitting accuracy of the three response functions was good, with 
Coefficient of Determination all exceeding 0.9 (the closer to 1.0, the higher the 
accuracy), as shown in Table 3. 

Table 3 
Kriging Surrogate Model Fitting Accuracy 

Response Function Corresponding Road Noise Frequency Band Coefficient of Determination( 2R ) 
R100 Rear Seat80-100Hz 0.928 
R150 Rear Seat140-160Hz 0.955 
R205 Rear Seat200-210Hz 0.932 

5. Road noise diagnosis and optimization based on surrogate model 

5.1 Correlation analysis between variables and road noise response 

The Kriging surrogate model has established the mathematical relationship 
between road noise response and the variables. Utilizing this mathematical 
relationship, it becomes convenient to investigate the correlation between the 
variables and the road noise response. For the aforementioned thirteen variables, 
discrete values are taken at 100 points with equal intervals within their defined 
domains. Subsequently, combinations of these variables are substituted into the 
Kriging surrogate model to calculate the corresponding road noise responses. 
Finally, the Pearson correlation coefficients are computed: 
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where x  and R represent the variable and the response, respectively. Superscript-
indicates its mean. Figure 10 presents the correlation coefficient matrix.From 
Figure 10, the following conclusions can be drawn: 

The stiffness of the bushings has a strong correlation with road noise 
response. Specifically, the correlation coefficient between R100 and the axial 
stiffness of the front mounting point bushing reached 0.41, showing a strong 
positive correlation; whereas R150 and the axial stiffness of the rear mounting 
point bushing had a correlation coefficient as high as 0.52, becoming a key factor 
affecting road noise response. Notably, R205 shows a negative correlation with the 
axial stiffness of the front mounting point bushing, with a correlation coefficient 
of -0.46. These findings indicate that adjusting the stiffness of the rear subframe 
bushings has significant potential for road noise optimization. 
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Fig. 10. Correlation Coefficient Diagram between Response Functions and Variables 

Shape variables also correlate with road noise response, second only to 
bushing stiffness. For example, the correlation coefficients between R100 and the 
X-direction deformation of the front and rear crossbeams (FrontX, RearX) are 0.2 
and 0.16, respectively, suggesting that optimizing related shape variables could 
reduce road noise response. 

The thickness of the beams shows a smaller correlation with road noise 
response and may not be a focus for optimization. 

5.2 Cumulative impact of multiple variables on road noise response 

Based on the Kriging fitting results, response surface plots were generated, 
revealing that due to the cross-effects of variables, the road noise response within 
the feasible domain is very complex when influenced by multiple variables. 
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Figures 11(a) and (b) show the Gaussian smoothed surfaces for R150 within the 
domains of front and rear bushing stiffness, respectively, characterized by many 
peaks and valleys, indicating a highly complex response. 

 
(a)                                                          (b) 

Fig. 11. Response surface of R150 within the stiffness domain of the front and rear bushing: (a) 
Response surface of R150 within the stiffness domain of the front bushing; (b) Response surface of 

R150 within the stiffness domain of the rear bushing 

5.3 Analysis of the impact of single variables on road noise response 
To study the relationship between single variables and road noise, other 

variables can be fixed while conducting another DOE analysis using the Kriging 
surrogate model, and generating a second-level Kriging surrogate model with the 
sampled data. 

5.3.1 Impact of bushing stiffness on road noise response 
Taking the relationship between R100 and R150 and the rear bushing 

stiffness as an example, the response surfaces are plotted using a second-level 
Kriging surrogate model as shown in Figure 12: 

 
(a)                                                          (b) 

Fig. 12. Impact of Rear Bushing Stiffness on R100 and R150: (a) The effect of rear bushing 
stiffness on R100; (b) The effect of rear bushing stiffness on R150 

Fig. 12(a) indicates that the road noise R100 peak is higher when the rear 
mounting point bushing stiffness is at 14000N/mm (radial) and 5000N/mm 
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(axial), and this combination should be avoided in the design. Figure 12(b) shows 
that as the axial stiffness of the rear bushing gradually decreases from 5000N/mm, 
the road noise R150 significantly reduces. This suggests that reducing the axial 
stiffness of the rear bushing, while ensuring its fatigue durability, can effectively 
reduce road noise in the 140-160Hz frequency band, providing a clear direction 
for optimization. 

5.3.2 Impact of shape variables on road noise response 
Figure 13 presents the response surfaces for R100 and R150 with the front 

crossbeam shape variables. It is observed that the greater the negative X-direction 
deformation of the front crossbeam, the smaller the responses of R100 and R150. 
This indicates that the deformation of the front crossbeam of the rear subframe is 
beneficial for improving road noise performance. 

 
(a)                                                          (b) 

Fig. 13. Impact of Front Crossbeam Shape Variables on R100 and R150: (a) The effect of the 
shape variable of the front crossbeam on R100; (b) T The effect of the shape variable of the front 

crossbeam on R150 

5.3.3 Impact of sheet metal thickness on road noise response 
Fig. 14 shows the response surfaces for R100 and R150 with the thickness of 

the front and rear crossbeams’ sheet metal. It can be seen that the response surface 
changes are moderate, which again indicates that the thickness of the beam sheet 
metal has a relatively minor impact on road noise response. Furthermore, the 
thickness of the front crossbeam has a positive correlation with road noise 
response; the greater the thickness, the greater the road noise response. 
Optimization should appropriately reduce the thickness to achieve lightweight 
goals. 



118                            Zhijie Huang, Haijun Wang, Zhengxin Lan, Lei He 

 
(a)                                                          (b) 

Fig. 14. Impact of Front and Rear Crossbeam Sheet Metal Thickness on R100 and R150: (a) The 
effect of front and rear crossbeam thickness on R100; (b) The effect of front and rear crossbeam 

thickness on R150 

5.4 Multi-objective genetic optimization of road noise response 
Due to the complex and variable road noise response under the cumulative 

effect of multiple variables, traditional optimization algorithms tend to fall into 
numerical oscillations of local optima, making it difficult to achieve global optima 
[25-27]. This paper utilizes a multi-objective genetic optimization algorithm to 
optimize whole vehicle road noise. 

The multi-objective genetic optimization algorithm is based on the basic 
framework of genetic algorithms, including population initialization, fitness 
assessment, selection, crossover, and mutation. It can evaluate the fitness of 
multiple objective functions, has a flexible selection mechanism for Pareto 
optimal solutions, and possesses better computational efficiency and global 
optimization capability. 

The optimization mathematical model established in this paper is as 
follows: 

[ ]100 150 205min (x)= ( ), ( ), ( )
. .          

L U

R R x R x R x
s t
x x x




 ≤ ≤

  (10) 

where x  represents the design variables, L  and U   represent the upper and lower 
limits, respectively. After 97 steps of optimization iteration (the iterative process 
curve is shown in Figure 15), the final global optimum solution is presented in 
Table 4. 

From Table 4, it can be seen that the optimization of the whole vehicle 
road noise is significant. Particularly, the road noise in the 140-160Hz frequency 
range (R150) has been significantly reduced by 13.2 dB (A). Comparatively, the 
road noise in the 80-110Hz (R100) and 200-210Hz (R205) frequency ranges, though 
not as significantly improved as R150, have also achieved reductions of 3.3 dB(A) 
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and 0.6 dB(A), respectively, proving that the optimization strategy has a certain 
effect across multiple frequency bands. 
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Fig. 15. Multi-objective Genetic Optimization Iterative Process 

Table 4 
Multi-objective Genetic Optimization Results for Road Noise 

 Item Initial Value Optimized Value Increment Unit 

Variable 

FrontX 0 -80.0 -80 mm 
FrontZ 0 -41.0 -41 mm 
rearX 0 50.0 50 mm 
rearZ 0 -50.0 -50 mm 
Hright 0 20.4 20.4 mm 
Hleft 0 20.4 20.4 mm 

F_Bush_R 20000 13688 -6312 N/mm 
F_Bush_A 20000 570.0 -19430 N/mm 
R_Bush_R 20000 11115 -8885 N/mm 
R_Bush_A 20000 425 -19575 N/mm 

F_Beam 2.2 2.0 -0.2 mm 
R_Beam 2 2.5 0.5 mm 
H_Beam 2.5 2.0 -0.5 mm 

Response 
R100 58.1 54.8 -3.3 dB(A) 
R150 57.1 43.9 -13.2 dB(A) 
R205 43.8 43.2 -0.6 dB(A) 

To validate the feasibility of the optimization solution, manual samples of 
the subframe and bushings were made according to Table 3, and real vehicle 
validation and whole vehicle road noise curve tests were conducted. From Figure 
16, it can be seen that the optimization solution is effective, with a noise reduction 
in the 140-160Hz frequency range exceeding 10 dB(A), significantly improving 
the whole vehicle's NVH performance. 
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Fig. 16. Real Vehicle Validation of Whole Vehicle Road Noise Optimization 

6. Conclusions 
This paper, leveraging traditional TPA analysis, has successfully identified 

the primary paths for road noise transmission. Utilizing super-element technology 
alongside optimal Latin hypercube sampling, a Kriging surrogate model was 
generated. Through this surrogate model, an analysis of the correlation matrix 
between variables and response functions was conducted. Additionally, 
quantitative relationships between multiple and single variables pertaining to road 
noise response were examined. As a result, a comprehensive diagnosis of whole-
vehicle road noise was achieved, precisely pinpointing the key variables that 
impact road noise. This approach offers novel insights for road noise diagnosis. 

Considering that whole-vehicle road noise is influenced by multiple 
factors, and these factors exhibit significant cross-effects within their feasible 
domain, the optimization functions often possess numerous peaks and valleys. To 
tackle this complexity, the paper employs a multi-objective genetic optimization 
algorithm, emphasizing the pursuit of global optimal solutions. This method not 
only demonstrates computational efficiency but also possesses robust optimization 
capabilities. 

Real-vehicle validation results indicate that the optimized solution has 
reduced whole-vehicle road noise response by 3.3 dB(A) in the critical frequency 
range of 90-110Hz and by 13.2 dB(A) in the 140-160Hz range. This significant 
reduction in noise levels has greatly enhanced the vehicle's NVH (Noise, 
Vibration, and Harshness) performance. 

This research has shifted from the traditional development model 
primarily reliant on engineering experience and repetitive modifications, 
improving optimization efficiency and quality. The use of a Kriging surrogate 
model for whole vehicle road noise diagnosis and multi-objective genetic 
optimization provides new avenues for whole vehicle NVH development, with 
significant practical engineering implications. However, given that this study 
originated from an actual engineering project and was somewhat rushed, it 
employed older and more mature methods for the regression model and 
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optimization methods. In future research, more advanced regression strategies 
could be explored, such as combined surrogate models or deep neural network 
regression models, which could improve the accuracy of the surrogate model with 
fewer data sampling points. Similarly, for optimization algorithms, newly 
emerged and proven efficient intelligent optimization algorithms such as the 
Black-winged Kite Algorithm (BKA) [28] and the Differentiated Creative Search 
(DCS) [29] could be utilized to enhance optimization efficiency. 
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