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DIAGNOSIS AND OPTIMIZATION OF VEHICLE ROAD
NOISE UTILIZING THE KRIGING SURROGATE MODEL

Zhijie HUANG"?, Haijun WANG!>* Zhengxin LAN'", Lei HE

A road noise diagnosis and optimization strategy based on the Kriging
surrogate model is presented in this paper, aiming to elevate automobile NVH
(Noise, Vibration, Harshness) performance. Utilizing the Transfer Path Analysis
(TPA) method, the study initially identifies the critical paths for noise propagation.
Design parameters pertaining to these paths are then designated as variables, with
the overall vehicle road noise considered as the response function. Through the
application of optimal Latin hypercube sampling, Design of Experiments (DOE)
analysis is conducted, yielding variable and response data. Based on this, a Kriging
surrogate model is constructed for road noise response. This model provides precise
predictions of the objective function's reactions to shifts in design variables,
subsequently minimizing computational load throughout the optimization process. A
detailed quantitative assessment of the relationship between design variables and
the objective function reveals the primary factors influencing road noise.
Furthermore, a multi-objective genetic optimization algorithm is deployed to
efficiently search for the global optimal solution aimed at minimizing road noise.
This method has proven to be highly effective among numerous possibilities,
significantly enhancing optimization efficiency and carrying substantial engineering
significance for improving vehicle NVH performance.

Keywords: NVH, Transfer Path Analysis, Noise Optimization, Optimal Latin
Hypercube, Kriging, Multi-Objective Genetic Optimization.

1. Introduction

Road noise refers to the medium- to low-frequency noise typically ranging
from 20-300Hz generated inside a vehicle when random loads, caused by road
irregularities, are transmitted through the tires to the chassis suspension and body,
resulting in acoustic-structural coupling between the interior sound cavity and
sheet metal components. It affects the riding comfort of the vehicle and is one of
the NVH (Noise, Vibration, Harshness) performance aspects that consumers focus
on when purchasing a vehicle, hence it receives significant attention from major
automobile companies. Numerous scholars and experts have done extensive work
on this. Bai Z[1] built a transfer path model with secondary contributions for an
SUV to identify structural noise issues caused by vibrations in the cockpit and
conducted load identification, determining the main excitation points and energy
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characteristics causing interior noise along a certain path. Chen Zhao[2] proposed
a Fast Systems (FS) vehicle road noise CAE diagnostic and optimization method,
systematically outlining the basic approach to road noise diagnosis and
optimization; Wei Y [3], Sohrabi S [4], Dooho L [5], and Ragasso J [6] used the
transfer path analysis (TPA) to determine the main noise transmission paths and
completed the corresponding noise optimization design. Ce L [7], Yixuan L [8],
Ke C [9], and Kanghyun A [10], to overcome the inefficiency and high workload
of traditional TPA, adopted the Operational Path Analysis with Exogeneous
Inputs (OPAX) for targeted diagnostics and optimizations, improving noise
issues. These research efforts have provided strong support for the overall vehicle
NVH development.

The aforementioned literature, based on TPA analysis, focuses on the
diagnostic techniques for road noise problems. However, the results of TPA
analysis can only determine the transmission paths that contribute significantly to
road noise but cannot further lock down the key design parameters on the
transmission paths. The actual process of road noise optimization often relies on
engineering experience or combines techniques such as Operating Deflection
Shapes (ODS) and Grid Participation Analysis (GPA) to determine optimization
plans by repeatedly modifying design parameters, which is not very efficient.
When many variables are involved, it is difficult to consider the cross-effects
between variables and find a globally optimal solution.

This paper, set against the backdrop of actual road noise project
development, proposes a more systematic and efficient method for diagnosing and
optimizing road noise.

Firstly, based on the results of NVH subjective evaluation, we utilized the
LSM NVH testing system to conduct road noise testing on actual vehicles.
Through this testing, we obtained sound pressure curves within the passenger
compartment and successfully identified the frequency ranges that exceeded the
standards. To further investigate the road noise issue, we constructed a high-
precision CAE (Computer-Aided Engineering) model of the entire vehicle. To
improve calculation efficiency, we ingeniously introduced super-element
technology into the model, thereby significantly reducing the time required for a
single calculation.

Next, we utilized this CAE model to conduct a Transfer Path Analysis
(TPA), successfully identifying the key paths that significantly impact road noise
results. On this basis, we carefully selected design parameters on these key paths
that could potentially have a direct impact on road noise, using them as
subsequent optimization variables.

To systematically study the relationship between these optimization
variables and road noise, we employed the Latin Hypercube Method to discretize
these variables and conducted a Design of Experiments (DOE) analysis within the
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road noise CAE simulation model. Through this analysis, we obtained discrete
values for road noise responses and optimization variables. To more intuitively
understand this relationship, we utilized the Kriging method [31] to fit these
discrete results into a mathematical response surface (i.e., surrogate model)
describing the relationship between road noise and optimization variables.

Based on this surrogate model, we delved into the quantitative relationship
between optimization variables and road noise and successfully identified the
most critical variables affecting road noise. To find the optimal variable
combination that reduces road noise peaks, we employed a genetic optimization
algorithm for optimization [25-27]. Ultimately, in real-vehicle validation, we
proved the effectiveness of this optimal variable combination. It not only
significantly enhanced the vehicle's NVH performance but also greatly improved
the efficiency of road noise optimization for the entire vehicle.

In summary, our research provides new ideas and methods for NVH
development, possessing significant theoretical and practical value.

2. Description of the actual vehicle road noise problem

In subjective evaluations of road noise in a new energy vehicle, a distinct rum
bling sound was noticeable in the rear of the passenger cabin, severely affecting the d
riving and riding experience. as shown in Figure 1, acoustic microphones were place
d in the rear passenger compartment seats, and a full-vehicle road noise test was cond
ucted in order to obtain accurate rear road noise data.

Fig. 1. Rear Passenger Compartment Microphone

The road noise test was carried out on the dedicated road noise track at the
NVH testing facility for complete vehicles. The test vehicle was a self-developed
new energy sedan with overall dimensions of 4835*1860*1515mm (length*width
*height) and a curb weight of 1680kg. To ensure the accuracy and reproducibility
of the test data, we avoided conducting tests on rainy days when the road surface
was wet and slippery, and maintained the vehicle at a constant speed of 60km/h in
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a straight line throughout the test. The NVH testing equipment from LMS (Labor

atory for Measurement and Simulation) represents an industry-leading solution, w
idely applied in multiple fields such as automotive, aerospace, and military. This e
quipment includes high-precision, high-channel data acquisition systems that supp
ort multi-channel parallel real-time data acquisition, along with various sensors lik
e accelerometers, microphones, force sensors, and pressure sensors, which collecti
vely ensure precise capture of noise and vibration signals. Additionally, LMS offe
rs a powerful software platform, LMS Test.Lab, which supports data acquisition,
analysis, report generation, and can seamlessly integrate with other LMS software
tools for a tight coupling of simulation and testing. These devices are characterize
d by high precision, high sampling rates, versatility, and portability, making them
ideal for NVH testing of complete vehicles, NVH testing of components, and NV
H optimization during the research and development process. In the experiments ¢
onducted for this paper, LMS equipment was utilized, with specific parameters ou
tlined in Table 1.

Table 1
Test Equipment Parameter Table
. . Model .
Instrument Name Performance,application, or requirements number Quantity
Luis scapas | Dt ey nd g ool
Data Acquisition & & > By o PICUNE | N obile 05 1
the transformation of electrical signals into
System . .
physical signals
LMS Test and . . LMS Test
Analysis System Used for data collection and analysis 1
Lab.14A
Software
1/4" PCB Type 1 Sound Level Meter complying with
Microphone GB/T 3785-1983 130E21 4
P Frequency Range: 20 Hz to 20 kHz

PCB Three-axis Mass: <10 grams
Vibration Frequency Range: 2 Hz to 1000 Hz 356A02 16
Accelerometer Frequency Response Error: < +5%
GPS Vehicle Speed Measure vehicle speed 1
Sensor

After applying A-weighting to the road noise test data, and combining

subjective evaluations with the development experience of multiple vehicle
models, it is generally observed that frequency bands where the road noise test
curve exceeds 50dB(A) often lead to customer complaints and grievances. The
test results for this occasion, as shown in Fig. 2, reveal that in the frequency bands
of 80-110Hz, 140-160Hz, and 200-210Hz, the road noise curve surpasses the
50dB(A) threshold. Notably, in the 140-160Hz band, the peak reaches as high as
63dB(A), which has become a crucial factor contributing to the rumbling noise in
the rear of this vehicle model.
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Fig. 2. Measured Road Noise Sound Pressure Level Curve
3. Whole vehicle road noise CAE simulation

Road noise is a vibro-acoustic coupling problem. Its governing equation
1s[32]:
. 2 S (1)

(K, +joC,—o"M )p,—o"Mu,=F,

where Kk, C, M, F represent the stiffness matrix, damping matrix, mass matrix, and
load vector, respectively, with subscripts § and ¢ denoting structural and acoustic
quantities. In road noise analysis, the acoustic load in Equation (1) is relatively
small and can be neglected, whereas the structural load originates from the hubs
of the four wheels (hereinafter referred to as hub loads). Once the hub load matrix

is obtained, the sound pressure level p; can be determined through Equation (1).

{(KS + joC, —a)zMS)ui +K,p,=F,

Unfortunately, due to structural constraints, we cannot directly measure the
corresponding loads by placing mechanical sensors at the wheel hubs. Instead, we
need to obtain the hub load vector by solving the inverse matrix[11].

To obtain the wheel hub input force, four accelerometers were installed at
different positions on the steering knuckle of the test vehicle. During the whole
vehicle road noise test conditions, the corresponding acceleration signals were
measured as shown in Figure 3.

The input loads for CAE analysis, i.e., the hub excitations, are obtained via
the inverse matrix method [12]

GF = HA+GAHA+H (2)

G

where G+ is the hub load power spectrum matrix; ©+ is the acceleration

power spectrum matrix; H, represents the transfer function matrix from wheel hub

excitation to the acceleration response point, which is obtained through CAE
analysis.



108 Zhijie Huang, Haijun Wang, Zhengxin Lan, Lei He

Fig. 3. Steering Knuckle Sensor Layout: (a) Left Front Wheel; (b) Right Front Wheel; (c) Left
Rear Wheel; (d) Right Rear Wheel

The whole vehicle road noise CAE analysis model includes the chassis
suspension system, power transmission system, interior body system, and the
internal sound cavity model. Based on the hub excitation method, the input loads
obtained through equation (5) already include tire information, hence the CAE
model should exclude the tire model. Due to the large size of the model, the
analysis time for a single run is long, but can be reduced using super element
technology [13-15]. Based on the condensation characteristics of the super-
element model, the division of super-elements should follow the following
principles: the reduced structure of the super-element should possess a certain
degree of independence, facilitating its separation from the remaining structure,
thereby achieving the goal of reducing the solution scale. The interior body and
acoustic cavity model exhibit a certain independence within the overall vehicle
structure, primarily connected to the chassis and powertrain through bushings and
bolts, which aligns with this principle and allows them to be condensed into
super-elements. This paper generates super elements for the body and internal
sound cavity model, as shown in Figure 4.
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Fig. 4. Road Noise CAE Model: (a) Full Vehicle Model; (b) Reduced Super-Element Model

Due to the considered noise frequency range being 20-300Hz, in order to
enhance the calculation accuracy of the super-element condensation model, when
setting the modal extraction range for the interior body and fluid acoustic cavity
model, the upper limit of the modal frequency extraction range is set to 1.5 times
the upper limit of the calculation frequency (300Hz), which is 450Hz.this super
element model reduces the time for a single simulation from 2.5 hours to 13
minutes while ensuring sufficient computational accuracy. Finally, the
comparison between the road noise simulation and actual measurements is shown
in Figure 5:
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Fig. 5. Comparison of Road Noise CAE Analysis and Actual Measurements
The red line represents the road noise simulation curve, and the blue line
represents the road noise test curve. It can be seen that the overall trend of the
CAE simulation results matches the actual measurements, and the frequency
ranges of the road noise problems are the same. The accuracy of this CAE model
is high and can be used for subsequent optimization.

4. Road noise response Kkriging surrogate model
4.1 Definition of optimization variables

To pinpoint the primary transmission paths of road noise issues, the Altair
NVH Director software was employed to conduct a whole vehicle road noise
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Transfer Path Analysis (TPA) using the aforementioned CAE model. The
vibrational energy causing road noise is transmitted into the interior acoustic
cavity of the vehicle through the attachment points between the chassis and the
body. Therefore, these chassis attachment points were defined as the transmission
paths. The TPA analysis calculates and ranks the contribution of each path to the
overall vehicle noise, thereby identifying the path with the greatest contribution.
The analysis results are presented in Figure 6. The results indicated that the
attachment points of the various control arms of the rear suspension (upper arm,
lower arm, cross arm) contributed up to 97% to the overall vehicle road noise,
with the largest contribution coming from the lateral direction of the rear cross
arm, accounting for 28.4%.

I Ll-cross arm (left) :+Z
I 12-cross arm (right) :+Z
2. 8% I 13-upper arm (left) :+Z
I L4-upper arm (left) :-X
[ L5-cross arm (right) :=X
W L6-upper arm (right) :+Z
I L7-lower arm (left) :-Z
I 18-lower arm (left) :+X
I others
‘8. %
20. 8%

15. 3%

Fig. 6. Distribution of Path Contributions in TPA Analysis

It is evident that the transmission paths with the largest contributions share
a common characteristic: these rear suspension control arm mounting points are
all located on the rear subframe. This indicates that a significant portion of the
vibrational energy causing road noise is transmitted from the rear subframe to the
interior acoustic cavity of the vehicle. Therefore, there exists a design flaw in the
rear subframe of this vehicle model. It is necessary to prioritize the optimization
of the relevant design parameters of the rear subframe as variables for road noise
response.

Based on the results of road noise analyses conducted on multiple vehicle
models developed, the main design parameters of the rear subframe that
significantly affect road noise performance are: the stiffness of the mounting point
bushings, the thickness of the sheet metal, and the parameters related to the shape
variations of the beams. However, these are only quantitative analysis results, and
there are currently no reported studies on the quantitative relationship between
these design parameters and road noise. Therefore, this paper will focus on



Diagnosis and optimization of vehicle road noise utilizing the kriging surrogate model 111

studying the quantitative relationship between these parameters, which will be
taken as design variables, and road noise.

Optimization variables for the stiffness of the rear subframe bushings are
established as follows: F Bush R (front bushing radial stiffness), F Bush A
(front bushing axial stiffness), R Bush R (rear bushing radial stiffness), and
R Bush A (rear bushing axial stiffness). At the same time, variables for the
thickness of each beam are established: F Beam (front crossbeam), R Beam (rear
crossbeam), H Beam (side beam, symmetrical on both sides), as shown in Fig. 7:

Fig. 7. Bushing stiffness variables and thickness variables

The shape variables for the beams are generated using the Hypermorph
tool, subject to overall layout restrictions. The front and rear crossbeams can
deform forwards and backwards (in the X-direction) and upwards and downwards
(in the Z-direction), and the side beams can deform inward (in the Y-direction,
symmetrical left and right), as shown in Fig. 8:

Hright

FrontZ
RearX

Fig. 8. Beam shape variables

Ultimately, for the 13 design parameters of the rear subframe, the
following optimization variables were established, as shown in Table 2. It should
be noted that the initial value of each parameter variable corresponds to the initial
design state value of the vehicle model, while the upper and lower limits of the
variables are based on the extreme values that can be achieved in the actual design
of the design parameters.
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Table 2
Design Variable Table
Variable Lower limit Initial value Upper limit Unit
F Bush R 5000 20000 21000 N/mm
F Bush A 400 20000 21000 N/mm
R Bush R 5000 20000 21000 N/mm
R Bush A 400 20000 21000 N/mm
F Beam 1.5 2.2 2.8 mm
R Beam 1.4 2 2.6 mm
H Beam 1.8 2.5 3.2 mm
FrontX -80 0 80 mm
FrontZ -50 0 50 mm
rearX -50 0 50 mm
rearZ -50 0 50 mm
Hright 0 0 30 mm
Hleft 0 0 30 mm

4.2 Definition of response function

Based on the road noise simulation results, response functions for the
frequency bands exceeding the standards are established using RMS-weighted
methods:

Rpvs = \/i Ai2 /(n,—n,) 3)

where 7, and n, are the lower and upper limits of the exceeding frequency bands,
respectively, and 4, is the A-weighted result of road noise pressure, given by:

4= 2010gm(A_, ‘P/P)

A, =204 ———— 1222002,{” — - )
- (f7 +20.64)( /2 +12200%)(f* +107.7%)(f* +737.9%)
where £, is the sound pressure value at the frequency point, £ =2.01x10°%, is the
reference sound pressure; 4,is the narrow-band A-weighting coefficient, f'is the
narrow-band frequency[33]. Using equations (3) and (4), three road noise
response functions for exceeding frequency bands were established: R. (rear seat
80-110Hz), Ry (rear seat 140-160Hz), Ry (rear seat 200-210Hz).

4.3 Design of Experiments (DOE)

Although using super elements for road noise simulation saves time per
simulation, multiple computations are still time-consuming. To improve the
efficiency of diagnostics and optimization, this paper obtains sample point data
through Design of Experiments (DOE), then constructs surrogate models and uses
them for studying the correlation between design variables and responses, as well
as for road noise optimization.
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The experimental design requires an efficient sampling method; Optimal
Latin Hypercube Sampling (OLHS) is a stratified sampling method that
distributes sample points evenly across each dimension, ensuring coverage across
the entire parameter space [16-18,31]. This method uses the maximum distance
minimization criterion (Equation 5)[31], optimizing initial sample points through
the simulated annealing algorithm, avoiding possible gaps, and enhancing
sampling efficiency and quality.

min  d(x,,x;)

i<j.j<n,i#j

dx,x ) =d,; = (2
k=1

s

Pp = min(zle Jidi_z )"

where 9, is the distance between sample points. In this paper, a DOE analysis
model is established in optimization software, and 500 instances of optimal Latin
hypercube sampling were performed. Figure 9 shows the distribution statistics for
FrontX (front crossbeam X-direction deformation parameter), from which the
histogram and probability density function curve indicate that this sampling

method achieves a uniform distribution of variables within the feasible domain.
30 A 1.0

Wl histogram
=@= probability density
== cumulative distribution

2

Xig _xjk| )" (5)

T
o
o0

Freauency ()
s
o
>
Probability (P)

T
N
~

T
S
o

o
S

0 80
Fig. 9 Optimal Latin Hypercube Distribution of Typical Variables

4.4 Kriging-based whole vehicle road noise surrogate model

Due to its strong non-linear response description capability and the
quantification ability for interpolation uncertainties, the Kriging surrogate model
is widely used in the field of engineering optimization, achieving good
optimization results in many complex engineering problems [19-24]. This model
defines system response as a stochastic process, constructed by combining a
polynomial regression model with a stochastic error[21]:

TGO =FC0" B+ 2(x) ©)
@’ (x)=c>(1+cRc—2c"r)
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where £ is a linear regression function; f(x) is a polynomial function of the
variables X, providing a good approximation for the model's establishment; o° is
the process variance; R is the correlation matrix of the variables X ; 7 represents
the correlation between sample points and prediction points; ¢ provides the
weights in the linear combination of the Kriging fitting model, which should be
minimized. z(x)is a non-zero covariance random process following a normal
distribution N(0,6* ), providing a local approximation of the model bias. The
covariance matrix of z(x)can be written as[21]:
E[z(®)z(x)] = o*¥ (8, w, x)

‘P(G,a),x):ﬁ‘{’j(&a)j—xj) (7)

Jj=1
where Y(0,o,x)is the spatial correlation function between any two sample points
@ and x . The parameters ¢ in the correlation function are unknown and
represent the correlation of samples across different spatial dimensions. 7 is the
dimension of input parameters. In this paper, the correlation function uses the
commonly applied Gaussian kernel function, as[21]:
Y, (0,0, —x;) =exp(—0, |a)j—xj| 2) (8)
Kriging fitting was performed on the 500 sample data sets obtained in
section C. The fitting accuracy of the three response functions was good, with
Coefficient of Determination all exceeding 0.9 (the closer to 1.0, the higher the
accuracy), as shown in Table 3.

Table 3
Kriging Surrogate Model Fitting Accuracy

Response Function| Corresponding Road Noise Frequency Band | Coefficient of Determination( R*)
Rioo Rear Seat80-100Hz 0.928
Riso Rear Seat140-160Hz 0.955
Roos Rear Seat200-210Hz 0.932

5. Road noise diagnosis and optimization based on surrogate model
5.1 Correlation analysis between variables and road noise response

The Kriging surrogate model has established the mathematical relationship
between road noise response and the variables. Utilizing this mathematical
relationship, it becomes convenient to investigate the correlation between the
variables and the road noise response. For the aforementioned thirteen variables,
discrete values are taken at 100 points with equal intervals within their defined
domains. Subsequently, combinations of these variables are substituted into the
Kriging surrogate model to calculate the corresponding road noise responses.
Finally, the Pearson correlation coefficients are computed:
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Z(x —x)(R R)

\/Z(x—x) Z(R - R)?

where x and Rrepresent the variable and the response, respectively. Superscript-
indicates its mean. Figure 10 presents the correlation coefficient matrix.From
Figure 10, the following conclusions can be drawn:

The stiffness of the bushings has a strong correlation with road noise
response. Specifically, the correlation coefficient between Rigo and the axial
stiffness of the front mounting point bushing reached 0.41, showing a strong
positive correlation; whereas Riso and the axial stiffness of the rear mounting
point bushing had a correlation coefficient as high as 0.52, becoming a key factor
affecting road noise response. Notably, Roos shows a negative correlation with the
axial stiffness of the front mounting point bushing, with a correlation coefficient
of -0.46. These findings indicate that adjusting the stiffness of the rear subframe
bushings has significant potential for road noise optimization.
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Fig. 10. Correlation Coefficient Diagram between Response Functions and Variables

Shape variables also correlate with road noise response, second only to
bushing stiffness. For example, the correlation coefficients between Rioo and the
X-direction deformation of the front and rear crossbeams (FrontX, RearX) are 0.2
and 0.16, respectively, suggesting that optimizing related shape variables could
reduce road noise response.

The thickness of the beams shows a smaller correlation with road noise
response and may not be a focus for optimization.

5.2 Cumulative impact of multiple variables on road noise response

Based on the Kriging fitting results, response surface plots were generated,
revealing that due to the cross-effects of variables, the road noise response within
the feasible domain is very complex when influenced by multiple variables.
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Figures 11(a) and (b) show the Gaussian smoothed surfaces for Riso within the
domains of front and rear bushing stiffness, respectively, characterized by many
peaks and valleys, indicating a highly complex response.

(a) (b)
Fig. 11. Response surface of Riso within the stiffness domain of the front and rear bushing: (a)
Response surface of Riso within the stiffness domain of the front bushing; (b) Response surface of
Ris0 within the stiffness domain of the rear bushing

5.3 Analysis of the impact of single variables on road noise response

To study the relationship between single variables and road noise, other
variables can be fixed while conducting another DOE analysis using the Kriging
surrogate model, and generating a second-level Kriging surrogate model with the
sampled data.

5.3.1 Impact of bushing stiffness on road noise response

Taking the relationship between Rigo and Riso and the rear bushing
stiffness as an example, the response surfaces are plotted using a second-level
Kriging surrogate model as shown in Figure 12:

e 1NN IS
OO RS ES - ONCR 000
i e e e e e AT AT D D D

(b)
Fig. 12. Impact of Rear Bushing Stiffness on R100 and R;so: (a) The effect of rear bushing
stiffness on Rioo; (b) The effect of rear bushing stiffness on Riso
Fig. 12(a) indicates that the road noise Rioo peak is higher when the rear

mounting point bushing stiffness is at 14000N/mm (radial) and 5000N/mm
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(axial), and this combination should be avoided in the design. Figure 12(b) shows
that as the axial stiffness of the rear bushing gradually decreases from 5000N/mm,
the road noise Riso significantly reduces. This suggests that reducing the axial
stiffness of the rear bushing, while ensuring its fatigue durability, can effectively
reduce road noise in the 140-160Hz frequency band, providing a clear direction
for optimization.

5.3.2 Impact of shape variables on road noise response

Figure 13 presents the response surfaces for Rigo and Riso with the front
crossbeam shape variables. It is observed that the greater the negative X-direction
deformation of the front crossbeam, the smaller the responses of Rioo and Riso.
This indicates that the deformation of the front crossbeam of the rear subframe is
beneficial for improving road noise performance.

59.13
5903
58.94

58. 84
58. 74

(a)
Fig. 13. Impact of Front Crossbeam Shape Variables on R100 and R150: (a) The effect of the
shape variable of the front crossbeam on Rjoo; (b) T The effect of the shape variable of the front
crossbeam on R150

5.3.3 Impact of sheet metal thickness on road noise response

Fig. 14 shows the response surfaces for Rigo and Riso with the thickness of
the front and rear crossbeams’ sheet metal. It can be seen that the response surface
changes are moderate, which again indicates that the thickness of the beam sheet
metal has a relatively minor impact on road noise response. Furthermore, the
thickness of the front crossbeam has a positive correlation with road noise
response; the greater the thickness, the greater the road noise response.
Optimization should appropriately reduce the thickness to achieve lightweight
goals.
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Fig. 14. Impact of Front and Rear Crossbeam Sheet Metal Thickness on R100 and R150: (a) The
effect of front and rear crossbeam thickness on Rigo; (b) The effect of front and rear crossbeam
thickness on Riso

5.4 Multi-objective genetic optimization of road noise response

Due to the complex and variable road noise response under the cumulative
effect of multiple variables, traditional optimization algorithms tend to fall into
numerical oscillations of local optima, making it difficult to achieve global optima
[25-27]. This paper utilizes a multi-objective genetic optimization algorithm to
optimize whole vehicle road noise.

The multi-objective genetic optimization algorithm is based on the basic
framework of genetic algorithms, including population initialization, fitness
assessment, selection, crossover, and mutation. It can evaluate the fitness of
multiple objective functions, has a flexible selection mechanism for Pareto
optimal solutions, and possesses better computational efficiency and global
optimization capability.

The optimization mathematical model established in this paper is as
follows:

min R(x)= [RIOO (), Ry 50(x), Ry (x)]
s.t. (10)

X, SXx<Xx,

where X represents the design variables, L and U represent the upper and lower
limits, respectively. After 97 steps of optimization iteration (the iterative process
curve is shown in Figure 15), the final global optimum solution is presented in
Table 4.

From Table 4, it can be seen that the optimization of the whole vehicle
road noise is significant. Particularly, the road noise in the 140-160Hz frequency
range (Ris0) has been significantly reduced by 13.2 dB (A). Comparatively, the
road noise in the 80-110Hz (R100) and 200-210Hz (R20s) frequency ranges, though
not as significantly improved as Riso, have also achieved reductions of 3.3 dB(A)
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and 0.6 dB(A), respectively, proving that the optimization strategy has a certain
effect across multiple frequency bands.
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Fig. 15. Multi-objective Genetic Optimization Iterative Process

Table 4
Multi-objective Genetic Optimization Results for Road Noise
Item Initial Value Optimized Value Increment Unit
FrontX 0 -80.0 -80 mm
FrontZ 0 -41.0 -41 mm
rearX 0 50.0 50 mm
rearZ 0 -50.0 -50 mm
Hright 0 204 20.4 mm
Hleft 0 20.4 20.4 mm
Variable F Bush R 20000 13688 -6312 N/mm
F Bush A 20000 570.0 -19430 N/mm
R Bush R 20000 11115 -8885 N/mm
R Bush A 20000 425 -19575 N/mm
F Beam 2.2 2.0 -0.2 mm
R Beam 2 2.5 0.5 mm
H Beam 2.5 2.0 -0.5 mm
Rigo 58.1 54.8 -3.3 dB(A)
Response Riso 57.1 43.9 -13.2 dB(A)
Raos 43.8 43.2 -0.6 dB(A)

To validate the feasibility of the optimization solution, manual samples of
the subframe and bushings were made according to Table 3, and real vehicle
validation and whole vehicle road noise curve tests were conducted. From Figure
16, it can be seen that the optimization solution is effective, with a noise reduction
in the 140-160Hz frequency range exceeding 10 dB(A), significantly improving
the whole vehicle's NVH performance.



120 Zhijie Huang, Haijun Wang, Zhengxin Lan, Lei He

| = Before optimization
60 = After optimization
= + Target
2:\50 — - - el - - — - oe— o — — e E—— e — . —
=)
o
~
3
240+
30
20 1 1 1 1 1 1 1 1 1 1 1 1 1
2 40 60 80 100 120 140 160 180 200 220 240 260 280 300

frequency/Hz

Fig. 16. Real Vehicle Validation of Whole Vehicle Road Noise Optimization
6. Conclusions

This paper, leveraging traditional TPA analysis, has successfully identified
the primary paths for road noise transmission. Utilizing super-element technology
alongside optimal Latin hypercube sampling, a Kriging surrogate model was
generated. Through this surrogate model, an analysis of the correlation matrix
between variables and response functions was conducted. Additionally,
quantitative relationships between multiple and single variables pertaining to road
noise response were examined. As a result, a comprehensive diagnosis of whole-
vehicle road noise was achieved, precisely pinpointing the key variables that
impact road noise. This approach offers novel insights for road noise diagnosis.

Considering that whole-vehicle road noise is influenced by multiple
factors, and these factors exhibit significant cross-effects within their feasible
domain, the optimization functions often possess numerous peaks and valleys. To
tackle this complexity, the paper employs a multi-objective genetic optimization
algorithm, emphasizing the pursuit of global optimal solutions. This method not
only demonstrates computational efficiency but also possesses robust optimization
capabilities.

Real-vehicle validation results indicate that the optimized solution has
reduced whole-vehicle road noise response by 3.3 dB(A) in the critical frequency
range of 90-110Hz and by 13.2 dB(A) in the 140-160Hz range. This significant
reduction in noise levels has greatly enhanced the vehicle's NVH (Noise,
Vibration, and Harshness) performance.

This research has shifted from the traditional development model
primarily reliant on engineering experience and repetitive modifications,
improving optimization efficiency and quality. The use of a Kriging surrogate
model for whole vehicle road noise diagnosis and multi-objective genetic
optimization provides new avenues for whole vehicle NVH development, with
significant practical engineering implications. However, given that this study
originated from an actual engineering project and was somewhat rushed, it
employed older and more mature methods for the regression model and
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optimization methods. In future research, more advanced regression strategies
could be explored, such as combined surrogate models or deep neural network
regression models, which could improve the accuracy of the surrogate model with
fewer data sampling points. Similarly, for optimization algorithms, newly
emerged and proven efficient intelligent optimization algorithms such as the
Black-winged Kite Algorithm (BKA) [28] and the Differentiated Creative Search
(DCS) [29] could be utilized to enhance optimization efficiency.
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