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ENERGY-CONSERVING SCHEMES FOR THE TIME-DEPENDENT

INCOMPRESSIBLE MAGNETOHYDRODYNAMICS FLOWS
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In this work we consider the energy conservation property of the magneto-

hydrodynamics problem without the divergence constraint strongly enforced. Based on

the various trilinear forms, we verify the energy conservation of the solutions generated

by the variational formulation, semi-discrete Crank-Nicolson-type scheme with respect to

time and full-discrete linearized Crank-Nicolson-type finite element scheme. Finally, nu-

merical experiment is provided to verify the theoretical findings of the presented scheme.
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1. Introduction

The incompressible magnetohydrodynamic (MHD) flows have many important appli-

cations in astrophysics, geophysics, aerodynamics and so on, and describe the law of motion

of a conductive fluid in an electromagnetic field. In this paper we consider the governing

equations, time-dependent incompressible MHD equations, of the MHD flows. These gov-

erning equations are formed by coupling the incompressible Navier-Stokes equation in fluid

mechanics and the Maxwell equation in electromagnetism under the influence of external

forces and currents.

Given a bounded domain Ω ⊂ Rd, d = 2 or 3, and for a final time T > 0, find the

velocity field u : [0, T ] × Ω → Rd, the pressure p : [0, T ] × Ω → R and the magnetic field

H : [0, T ]× Ω→ Rd satisfying [4, 5]

ut + (u · ∇)u− ν∆u + sH× curlH +∇p = f , in Ω× (0, T ],

divu = 0, in Ω× (0, T ],

sHt + σ−1curlcurlH− scurl(u×H) = σ−1curlg, in Ω× (0, T ],

divH = 0, in Ω× (0, T ],

(1)

where f is the external force term and g denotes the known current satisfying (n×g)|ST
= 0.

Here n represents the unit outer normal of ∂Ω and ST := ∂Ω × [0, T ]. The three constant

physical parameters ν, s and σ are the kinematic viscosity, the magnetic permeability and
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the electric conductivity, respectively. The above equations are equipped with the following

homogeneous boundary

u|ST
= 0, (H · n)|ST

= 0, (n× curlH)|ST
= 0 , (2)

and the initial conditions [14]

u(x, 0) = u0(x), H(x, 0) = H0(x), in Ω, (3)

with divu0 = 0 and divH0 = 0.

The purpose of this paper is to preserve the energy conservation law for the MHD

problem (1)-(3) in the numerical schemes. As is known, the energy conservation is an

important physical law. However, in typical numerical schemes, this conservation law is lost

or a time-step condition is needed to make sure it is conserved. In fact, this lost in Galerkin

discretizations of the Navier-Stokes equations is well-known, and a fix for this problem by

using the rotation and skew-symmetric forms for the nonlinear convection term has been

shown [16, 9, 10, 6]. In particular, for the incompressible Navier-Stokes equations, beyond

just energy, Charnyi et al. [2] have studied some conservation properties of the solutions

generated by the variational formulation based on the different formulation of the nonlinear

term, and semi-discrete Crank-Nicolson scheme [18] with respect to time. Furthermore,

based on the EMA conserving formulation, they have considered the conservation properties

of two linearized methods in [3]. A skew-symmetrized linearization conserves energy, but

the Newton linearization does not ensure that the energy is accurately conserved.

Hence, for the time-dependent incompressible MHD flows, it is also important to find

energy-conserving schemes. At the time of writing, there are numerous works devoted to

the development of energy-conserving schemes for the MHD problem. Some fully discrete

schemes introduced in [15] are analyzed. The numerical solutions to these schemes satisfy

the perturbed discrete energy law. In [7, 8], the energy conservation is preserved at the

discrete level for some nonlinear schemes. Liu and Wang [11] have proposed the MAC-Yee

scheme for the incompressible MHD equations, which preserves the energy identity exactly.

Furthermore, they have studied a class of simple and efficient numerical scheme for the

considered equations with coordinate symmetry [12]. With proper discretization of the

nonlinear terms, the schemes preserve both the energy and helicity identities numerically.

In particular, Case et al. [1] have demonstrated the conversation law of three physical

quantity for solving incompressible MHD equations by using the methods which require

strongly solenoidal constraints. The energy conservation law of the solutions generated by

the full-discrete nonlinear Crank-Nicolson finite element scheme is proved.

By considering some various formulations of the nonlinear term, we mainly study the

energy conservation law of the solutions generated by the variational formulations, semi-

discrete Crank-Nicolson-type scheme [13] with respect to time and full-discrete linearized

Crank-Nicolson-type finite element scheme of the MHD problem (1)-(3), even if the schemes

do not enforce the divergence constraint strongly. We find that the energy conservation law

of the symmetric, rotation and energy formulations is observed in the form of variation,

semi-discretization with respect to time and full-discretization where the nonlinear terms

are linearized.
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2. Preliminaries

Let us give the notations which will be used in this paper. (·, ·) and ‖ ·‖ denote L2(Ω)

inner product and norm on the domain Ω. For 1 ≤ p ≤ ∞, ‖ · ‖Lp(Ω) denotes Lp(Ω) norm

and ‖·‖Wm,p(Ω) refers to Wm,p(Ω) norm for m ∈ N+. For p = 2, the Sobolev space Wm,2(Ω)

is denoted by Hm(Ω) which is equipped with the norm ‖ · ‖m. Besides, for a function space

X on Ω, Lp(0, t;X) is the space of all functions defined on Ω× (0, t], t ∈ (0, T ] for which the

norm

‖ · ‖Lp(0,t;X) =

(∫ t

0

‖ · ‖pXdt

) 1
p

, p ∈ [1,∞)

is finite. The velocity, magnetic and pressure spaces are respectively introduced as

X = {v ∈ H1(Ω)d : v|∂Ω = 0}, W = {B ∈ H1(Ω)d : B · n|∂Ω = 0},

and

Q = {q ∈ L2(Ω) : (1, q) = 0}.

Then, we define the continuous bilinear forms a(·, ·) and d(·, ·) on X×X and X×Q,

respectively, by

a(u,v) = ν(∇u,∇v), ∀u,v ∈ X,

d(v, q) = (divv, q), ∀v ∈ X, q ∈ Q,

and a trilinear term on X×X×X by

b(u,w,v) = ((u · ∇)w,v), ∀u,w,v ∈ X.

By using the above notations, the week formulation of the time dependent incom-

pressible MHD problem (1)-(3) reads as follow: Find (u, p,H) ∈ L2(0, T ;X)×L2(0, T ;Q)×
L2(0, T ;W) satisfying

(ut,v) + b(u,u,v) + a(u,v) + s(H× curlH,v)− d(v, p) + d(u, q) = (f ,v), (4)

s(Ht,B) + σ−1(curlH, curlB)− s(u×H, curlB) = σ−1(g, curlB), (5)

u(x, 0) = u0(x), H(x, 0) = H0(x), (6)

for all (v, q,B) ∈ X×Q×W and t ∈ (0, T ].

3. Energy conservation for the MHD equations

Denote the symmetric part of ∇u by D(u) := ∇u+(∇u)T

2 and NL(u,u) := (u · ∇)u

in (4). Then, we define various formulations of NL(u,u) as follows:

skew-symmetric form: NLs(u,u) := u · ∇u + 1
2 (divu)u,

rotational form: NLr(u,u) := (curlu)× u,

energy-conserving form: NLe(u,u) := 2D(u)u + (divu)u.
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The same definitions can be found in [16, 2]. In fact, if the divergence constraint divu = 0

holds pointwise, then all the above forms are equivalent. When we use rotational and

energy-conserving forms to replace the nonlinear term in(4), the pressure is modified. For

the rotational form, the modified pressure is the Bernoulli pressure pr = p+ 1
2 |u|

2, and for

the energy-conserving form, the pressure is modified with a negative sign pe = p− 1
2 |u|

2.

For the rotational form, it follows from

(u · ∇)u = (curlu)× u +∇1

2
|u|2, ∀u ∈ H1(Ω)d;

and for the energy-conserving form, it follows from

(u · ∇)u = 2D(u)u−∇1

2
|u|2, ∀u ∈ H1(Ω)d.

Moreover, for all u ∈ X, taking the inner product of NL(u,u) with v ∈ X, we deduce

(NLs(u,u),v) = (u · ∇u,v) +
1

2
((divu)u,v)

= b(u,u,v) +
1

2
(−b(u,u,v)− b(u,v,u))

=
1

2
b(u,u,v)− 1

2
b(u,v,u), (7)

and

(NLr(u,u),v) = ((curlu)× u,v)

= ((∇u− (∇u)T)u,v)

= b(u,u,v)− b(v,u,u), (8)

as well as

(NLe(u,u),v) = (2D(u)u,v) + ((divu)u,v)

= ((∇u + (∇u)T)u,v) + ((divu)u,v)

= b(u,u,v) + b(v,u,u) + ((divu)u,v)

= −b(u,v,u) + b(v,u,u). (9)

3.1. Energy conservation of the variational formulation

To prove the conservation of energy for the variational formulation of the MHD equa-

tions, we first define the energy

E :=
1

2

∫
Ω

(u · u + sH ·H)dx.

Next, let us verify the energy conservation for the variational formulation. Setting

v = u and q = p in (4), and B = H in (5), we get

(ut,u) + (NL(u,u),u) + a(u,u) + s(H× curlH,u) = (f ,u), (10)

s(Ht,H) + σ−1(curlH, curlH)− s(u×H, curlH) = σ−1(g, curlH). (11)
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Adding (10) and (11) gives

1

2

d

dt
‖u‖2 +

s

2

d

dt
‖H‖2 + (NL(u,u),u) + ν‖∇u‖2

+ σ−1‖curlH‖2 = (f ,u) + σ−1(g, curlH), (12)

by using [5]

(b× curlB,v) = (v × b, curlB), ∀b,B,v ∈ H1(Ω)d. (13)

In light of (7)-(9), we notice that

(NLs(u,u),u) = (NLr(u,u),u) = (NLe(u,u),u) = 0. (14)

Thus, the energy will be preserved for ν = 0, σ = ∞ and f = 0, for the skew-symmetric,

rotational and energy-conserving forms whenever divu 6= 0.

3.2. Energy conservation of the semi-discrete Crank-Nicolson-type scheme

As is known, some temporal discretizations, backward Euler and BDF2, are known

to dissipate energy by their treatment of the time derivative terms. However, the Crank-

Nicolson scheme, a temporal discretization, is known to be energy conserving. Hence, we

consider the energy conservation of the semi-discrete Crank-Nicolson-type scheme with re-

spect to time for the MHD problem (1)-(3). Here, we show the Galerkin formulation to-

gether with Crank-Nicolson-type time-stepping, and the skew-symmetric, rotational and

energy-conserving forms are applied for the nonlinear term.

Let tn = n∆t for 0 6 n 6 N and N = T
∆t , where ∆t > 0 is the time-step size. Now, we

design the following semi-discrete scheme based on the Crank-Nicolson-type approximation

for the MHD equations.

Step I: Find (u1, p1,H1) ∈ X×Q×W satisfying

(
u1 − u0

∆t
,v

)
+

(
NL(

u1 + u0

2
,
u1 + u0

2
),v

)
+ a

(
u1 + u0

2
,v

)
+ s

(
H1 + H0

2
× curl

H1 + H0

2
,v

)
− d(v, p1) + d

(
u1 + u0

2
, q

)
=
(
f(t 1

2
),v
)
, (15)

s

(
H1 −H0

∆t
,B

)
+ σ−1

(
curl

H1 + H0

2
, curlB

)
− s

(
u1 + u0

2
× H1 + H0

2
, curlB

)
= σ−1

(
g(t 1

2
), curlB

)
, (16)

for all (v, q,B) ∈ X ×Q ×W. Here, f(t 1
2
) = f(t0)+f(t1)

2 and g(t 1
2
) = g(t0)+g(t1)

2 . Note that

u0 = u0 and H0 = H0.
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Step II: For n > 1, given (un−1, pn−1,Hn−1), (un, pn,Hn) ∈ X × Q ×W, find

(un+1, pn+1, Hn+1) ∈ X×Q×W satisfying

(
un+1 − un−1

2∆t
,v

)
+

(
NL(

un+1 + un−1

2
,
un+1 + un−1

2
),v

)
− d(v, pn+1)

+ d

(
un+1 + un−1

2
, q

)
+ s

(
Hn+1 + Hn−1

2
× curl

Hn+1 + Hn−1

2
,v

)
+ a

(
un+1 + un−1

2
,v

)
= (f(tn),v) , (17)

s

(
Hn+1 −Hn−1

2∆t
,B

)
+ σ−1

(
curl

Hn+1 + Hn−1

2
, curlB

)
− s

(
un+1 + un−1

2
× Hn+1 + Hn−1

2
, curlB

)
= σ−1 (g(tn), curlB) (18)

for all (v, q,B) ∈ X×Q×W.

In the following part of this subsection, we shall verify that the energy is conserving

for our scheme. Define the discrete energy:

En :=
1

2

(
‖un+1‖2 + ‖un‖2 + s(‖Hn+1‖2 + ‖Hn‖2)

)
.

Now, setting (v, q) = (u1+u0

2 , p1) and B = H1+H0

2 in (15) and (16), respectively, it

follows that

1

2∆t
(‖u1‖2 − ‖u0‖2) +

(
NL(

u1 + u0

2
,
u1 + u0

2
),
u1 + u0

2

)
+ ν

∥∥∥∥∇u1 + u0

2

∥∥∥∥2

+ s

(
H1 + H0

2
× curl

H1 + H0

2
,
u1 + u0

2

)
=

(
f(t 1

2
),
u1 + u0

2

)
, (19)

s

2∆t
(‖H1‖2 − ‖H0‖2) + σ−1

∥∥∥∥curl
H1 + H0

2

∥∥∥∥2

− s
(
u1 + u0

2
× H1 + H0

2
, curl

H1 + H0

2

)
= σ−1

(
g(t 1

2
), curl

H1 + H0

2

)
. (20)

Combining (19) and (20) and applying (13), we have

1

2∆t
‖u1‖2 +

s

2∆t
‖H1‖2 +

(
NL(

u1 + u0

2
,
u1 + u0

2
),
u1 + u0

2

)
+ ν

∥∥∥∥∇u1 + u0

2

∥∥∥∥2

+ σ−1

∥∥∥∥curl
H1 + H0

2

∥∥∥∥2

=
1

2∆t
‖u0‖2 +

s

2∆t
‖H0‖2

+

(
f(t 1

2
),
u1 + u0

2

)
+ σ−1

(
g(t 1

2
), curl

H1 + H0

2

)
. (21)
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On the other hand, choosing (v, q) = (un+1+un−1

2 , pn+1) and B = Hn+1+Hn−1

2 in (17)

and (18), respectively, we obtain

1

4∆t
(‖un+1‖2 − ‖un−1‖2) +

(
NL(

un+1 + un−1

2
,
un+1 + un−1

2
),
un+1 + un−1

2

)
+ ν

∥∥∥∥∇un+1 + un−1

2

∥∥∥∥2

+ s

(
Hn+1 + Hn−1

2
× curl

Hn+1 + Hn−1

2
,
un+1 + un−1

2

)
=

(
f(tn),

un+1 + un−1

2

)
, (22)

s

4∆t
(‖Hn+1‖2 − ‖Hn−1‖2) + σ−1

∥∥∥∥curl
Hn+1 + Hn−1

2

∥∥∥∥2

− s
(
un+1 + un−1

2
× Hn+1 + Hn−1

2
, curl

Hn+1 + Hn−1

2

)
= σ−1

(
g(tn), curl

Hn+1 + Hn−1

2

)
. (23)

Combining (22) with (23) and summing the ensuing equation over n = 1, 2, · · · ,
N − 1, we obtain

1

4∆t
(‖uN‖2 + ‖uN−1‖2 − ‖u1‖2 − ‖u0‖2) + ν

N−1∑
n=1

∥∥∥∥∇un+1 + un−1

2

∥∥∥∥2

+

N−1∑
n=1

(
NL(

un+1 + un−1

2
,
un+1 + un−1

2
),
un+1 + un−1

2

)
+

s

4∆t
(‖HN‖2

+ ‖HN−1‖2 − ‖H1‖2 − ‖H0‖2) + σ−1
N−1∑
n=1

∥∥∥∥curl
Hn+1 + Hn−1

2

∥∥∥∥2

=

N−1∑
n=1

(
f(tn),

un+1 + un−1

2

)
+

N−1∑
n=1

σ−1

(
g(tn), curl

Hn+1 + Hn−1

2

)
. (24)

Multiplying (21) and (24) with ∆t and 2∆t, respectively, and adding the ensuing

equations, we get

1

2
(‖uN‖2 + ‖uN−1‖2) +

s

2
(‖HN‖2 + ‖HN−1‖2) + ν∆t

∥∥∥∥∇u1 + u0

2

∥∥∥∥2

+ 2∆t

N−1∑
n=1

(
NL(

un+1 + un−1

2
,
un+1 + un−1

2
),
un+1 + un−1

2

)

+ ∆t

(
NL(

u1 + u0

2
,
u1 + u0

2
),
u1 + u0

2

)
+ σ−1∆t

∥∥∥∥curl
H1 + H0

2

∥∥∥∥2

+ ν∆t

N−1∑
n=1

‖∇(un+1 + un−1)‖2 + σ−1∆t

N−1∑
n=1

‖curl(Hn+1 + Hn−1)‖2

= ‖u0‖2 + s‖H0‖2 + ∆t

(
f(t 1

2
),
u1 + u0

2

)
+ σ−1∆t

(
g(t 1

2
), curl

H1 + H0

2

)
+ ∆t

N−1∑
n=1

(f(tn),un+1 + un−1) + ∆t

N−1∑
n=1

σ−1(g(tn), curl(Hn+1 + Hn−1)). (25)
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Further, according to (7)-(9), there holds(
NLs(

un+1 + un−1

2
,
un+1 + un−1

2
),
un+1 + un−1

2

)
=

(
NLr(

un+1 + un−1

2
,
un+1 + un−1

2
),
un+1 + un−1

2

)
=

(
NLe(

un+1 + un−1

2
,
un+1 + un−1

2
),
un+1 + un−1

2

)
= 0,

as well as(
NLs(

u1 + u0

2
,
u1 + u0

2
),
u1 + u0

2

)
=

(
NLr(

u1 + u0

2
,
u1 + u0

2
),
u1 + u0

2

)
=

(
NLe(

u1 + u0

2
,
u1 + u0

2
),
u1 + u0

2

)
= 0.

Hence, one gets

1

2
(‖uN‖2 + ‖uN−1‖2) +

s

2
(‖HN‖2 + ‖HN−1‖2) = ‖u0‖2 + s‖H0‖2, (26)

when ν = 0, σ =∞ and f = 0. Due to

‖u1‖2 + s‖H1‖2 = ‖u0‖2 + s‖H0‖2, (27)

which results from (21), the energy is preserved for the presented semi-discrete scheme (15)-

(18) with NL taken as NLs, NLr and NLe. We recall that the divergence constraint is not

strongly enforced.

3.3. Energy conservation of the full-discrete linearized Crank-Nicolson-

type scheme

In this subsection, we introduce a spatial discretization of the time-discrete MHD

equations (15)-(18) , where the nonlinear terms are linearized, by using the mixed finite

element method.

To begin with, we take Xh ⊂ X, Qh ⊂ Q, and Wh ⊂ W as the conforming finite

element spaces under a regular partition πh of Ω with the largest diameter h for πh. Further-

more, the finite element space pair Xh ×Qh is assumed to satisfy the usual discrete inf-sup

condition or LBBh condition for the stability of the discrete pressure: there is a constant α

independent of the mesh size h such that

inf
qh∈Qh

sup
vh∈Xh

(qh,divvh)

‖∇vh‖‖qh‖
≥ α > 0.

Next, we define (un
h, p

n
h,H

n
h) to be a full-discrete approximation of the solution (u(tn),

p(tn),H(tn)) of (1). The full-discrete linearized Crank-Nicolson-type scheme is as follows:
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Step I: Find (u1
h, p

1
h,H

1
h) ∈ Xh×Qh×Wh, such that for all (v, q,B) ∈ Xh×Qh×Wh,(

u1
h − u0

h

∆t
,v

)
+

(
NL(u0

h,
u1
h + u0

h

2
),v

)
+ a

(
u1
h + u0

h

2
,v

)
+ s

(
H0

h × curl
H1

h +H0
h

2
,v

)
− d(v, p1

h) + d

(
u1
h + u0

h

2
, q

)
=
(
f(t 1

2
),v
)
, (28)

s

(
H1

h −H0
h

∆t
,B

)
+ σ−1

(
curl

H1
h + H0

h

2
, curlB

)
+ σ−1

(
div

H1
h + H0

h

2
,divB

)
− s

(
u1
h + u0

h

2
×H0

h, curlB

)
= σ−1

(
g(t 1

2
), curlB

)
. (29)

Step II: For n > 1, given (un−1
h , pn−1

h ,Hn−1
h ), (un

h, p
n
h,H

n
h) ∈ Xh × Qh ×Wh, find

(un+1
h , pn+1

h ,Hn+1
h ) ∈ Xh ×Qh ×Wh, such that for all (v, q,B) ∈ Xh ×Qh ×Wh,(

un+1
h − un−1

h

2∆t
,v

)
+

(
NL(u∗h,

un+1
h + un−1

h

2
),v

)
+ a

(
un+1
h + un−1

h

2
,v

)
− d(v, pn+1

h ) + d

(
un+1
h + un−1

h

2
, q

)
+ s

(
H∗h × curl

Hn+1
h + Hn−1

h

2
,v

)
= (f(tn),v) , (30)

s

(
Hn+1

h −Hn−1
h

2∆t
,B

)
+ σ−1

(
curl

Hn+1
h + Hn−1

h

2
, curlB

)
+ σ−1

(
div

Hn+1
h + Hn−1

h

2
,divB

)
− s

(
un+1
h + un−1

h

2
×H∗h, curlB

)
= σ−1 (g(tn), curlB) , (31)

where u∗h = 3
2u

n
h − 1

2u
n−1
h and H∗h = 3

2H
n
h − 1

2H
n−1
h .

Then, according to (7)-(9), the linearized trilinear term NL(·, ·) in (28) can be written

as (
NLs(u

0
h,

u1
h + u0

h

2
),v

)
=

1

2
b

(
u0,

u1 + u0

2
,v

)
− 1

2
b

(
u0,v,

u1 + u0

2

)
,(

NLr(u0
h,

u1
h + u0

h

2
),v

)
= b

(
u1 + u0

2
,u0,v

)
− b

(
v,u0,

u1 + u0

2

)
,(

NLe(u
0
h,

u1
h + u0

h

2
),v

)
= b

(
v,

u1 + u0

2
,u0

)
− b

(
u1 + u0

2
,v,u0

)
,

and the linearized trilinear term NL(·, ·) in (30) can be written as(
NLs(u

∗
h,

un+1
h + un−1

h

2
),v

)
=

1

2
b

(
u∗,

un+1 + un−1

2
,v

)
− 1

2
b

(
u∗,v,

un+1 + un−1

2

)
,(

NLr(u∗h,
un+1
h + un−1

h

2
),v

)
= b

(
un+1 + un−1

2
,u∗,v

)
− b

(
v,u∗,

un+1 + un−1

2

)
,(

NLe(u
∗
h,

un+1
h + un−1

h

2
),v

)
= b

(
v,

un+1 + un−1

2
,u∗
)
− b

(
un+1 + un−1

2
,v,u∗

)
.
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Note that (
NLs(u

∗
h,

un+1
h + un−1

h

2
),
un+1
h + un−1

h

2

)
=

(
NLr(u∗h,

un+1
h + un−1

h

2
),
un+1
h + un−1

h

2

)
=

(
NLe(u

∗
h,

un+1
h + un−1

h

2
),
un+1
h + un−1

h

2

)
= 0, (32)

and (
NLs(u

0
h,

u1
h + u0

h

2
),
u1
h + u0

h

2

)
=

(
NLr(u0

h,
u1
h + u0

h

2
),
u1
h + u0

h

2

)
=

(
NLe(u

0
h,

u1
h + u0

h

2
),
u1
h + u0

h

2

)
= 0, (33)

if we choose v =
un+1
h + un−1

h

2
and v =

u1
h + u0

h

2
in (30) and (28), respectively.

Moreover, letting (v, q,B) be ∆t(
u1

h+u0
h

2 , p1
h,

H1
h+H0

h

2 ) and 2∆t(
un+1

h +un−1
h

2 , pn+1
h ,

Hn+1
h +Hn−1

h

2 )

in (28), (29) and (30), (31), respectively, adding the ensuing equations and using (32) and

(33), we arrive at

1

2
(‖uN

h ‖2 + ‖uN−1
h ‖2) +

s

2
(‖HN

h ‖2 + ‖HN−1
h ‖2) + ν∆t

∥∥∥∥∇u1
h + u0

h

2

∥∥∥∥2

+ σ−1∆t

∥∥∥∥curl
H1

h + H0
h

2

∥∥∥∥2

+ σ−1∆t

∥∥∥∥div
H1

h + H0
h

2

∥∥∥∥2

+ ν∆t

N−1∑
n=1

‖∇(un+1
h + un−1

h )‖2 + σ−1∆t

N−1∑
n=1

‖curl(Hn+1
h + Hn−1

h )‖2

+ σ−1∆t
N−1∑
n=1

‖div(Hn+1
h + Hn−1

h )‖2

= ‖u0
h‖2 + s‖H0

h‖2 + ∆t

(
f(t 1

2
),
u1
h + u0

h

2

)
+ σ−1∆t

(
g(t 1

2
), curl

H1
h + H0

h

2

)
+ ∆t

N−1∑
n=1

(f(tn),un+1
h + un−1

h ) + ∆t

N−1∑
n=1

σ−1(g(tn), curl(Hn+1
h + Hn−1

h )). (34)

Finally, if ν = 0, σ =∞ and f = 0, we have

1

2
(‖uN

h ‖2 + ‖uN−1
h ‖2) +

s

2
(‖HN

h ‖2 + ‖HN−1
h ‖2) = ‖u0

h‖2 + s‖H0
h‖2. (35)

Besides, from the same argument as applied to obtain (27),

‖u1
h‖2 + s‖H1

h‖2 = ‖u0
h‖2 + s‖H0

h‖2

holds. Hence, the energy is preserved for the presented full-discrete scheme (28)-(31) with

NL taken as NLs, NLr and NLe that does not enforce the divergence constraint strongly.
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4. Numerical experiment

For verifying the theoretical analysis results, a numerical experiment was presented

to test the energy conservation of the full-discrete linearized Crank-Nicolson-type scheme

based on the skew-symmetric, rotational and energy-conserving forms for the nonlinear term

in this part.
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Fig. 1. The plot of time versus energy for the three formulations
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Fig. 2. Velocity streamlines: the skew-symmetric scheme (a); the energy-

conserving scheme (b); the rotational scheme (c) and the scheme in [20] (d)
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Fig. 3. Magnetic streamlines: the skew-symmetric scheme (a); the energy-

conserving scheme (b); the rotational scheme (c) and the scheme in [20] (d)

For the numerical test, we consider the problem (1) on a unit square domain [0, 1]2

with the use of the finite element pair (P1b, P1,P1b) [17] for the velocity field/pressure/magnetic

field. In order to verify the property of energy conservation, we set σ−1 = 0, ν = 0 and f = 0.

Besides, we choose the magnetic permeability s = 1 and the initial values are taken as [19]

u0(x) = (x2(x− 1)2y(y − 1)(2y − 1),−y2(y − 1)2x(x− 1)(2x− 1)),

B0(x) = (sin(πx) cos(πy),− sin(πy) cos(πx)).

We take ∆t = 0.01, h = 1
64 and apply the full-discrete scheme (28)-(31) to get the en-

ergy at the final time T = 1. Figure 1 presents the numerical results obtained by the

skew-symmetric, rotational, and energy-conserving forms. Conformation of the energy con-

servation property of the schemes is shown.

In addition, in Figures 2 and 3, the profiles for the velocity streamlines and mag-

netic streamlines obtained by our schemes and the proposed scheme in [20] are presented.

Compared our numerical solutions from Figures 2 and 3 with the solutions obtained by the

proposed scheme in [20], we can find that the numerical results of these schemes almost

coincide.
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5. Conclusions

In this paper, we have presented some energy-conserving schemes for the time-dependent

incompressible MHD problem based on the various nonlinear terms including the skew-

symmetric, rotation and energy-conserving formulations. The absorbing point of these

schemes lie in persevering energy without the divergence constraint strongly enforced in

the form of variation, semi-discretization with respect to time and the full-discrete lin-

earized Crank-Nicolson-type finite element scheme. The theoretical results are verified by

the numerical test.
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