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APPROXIMATION OF BACKWARD HEAT CONDUCTION

PROBLEM USING GAUSSIAN RADIAL BASIS FUNCTIONS

S. Abbasbandy1, B. Azarnavid1, I. Hashim2, A. Alsaedi3

In this work an efficient numerical method is applied for investigation
of the backward heat conduction problem in an unbounded region. The problem is
ill-posed, in the sense that the solution if it exists, does not depend continuously
on the data. The Gaussian radial basis functions are used for discretization of
the problem. The presented method is reducing the problem to an interpolation
problem which is more simple than the collocation type method. To regularize the
resultant ill-conditioned linear system of equations, we apply successfully both the
Tikhonov regularization technique and the L-curve method to obtain a stable nu-
merical approximation to the solution. A new convenient and simply applicable
method is derived. The stability and convergence of the proposed method are in-
vestigated. Two examples are presented to illustrate efficiency and accuracy of the
proposed method.

Keywords: Backward heat conduction problem, ill-posed Problem, Gaussian
radial basis function.

1. Introduction

We consider the backward heat conduction problem (BHCP). The BHCP is
also referred as a final value problem [1]. As is known, BHCP is severely ill posed;
i.e. the solution does not always exist, and when it exists, it does not depend con-
tinuously on the given data. So that the numerical simulations are very difficult and
some special regularization methods are required. This problem has been consid-
ered by several authors in recent decades. Lattes and Lions [2], Showalter [3], Ames
et al. [4] and Miller [5] have approximated BHCP by quasi-reversibility method.
Tautenhahn and Schroter established an optimal error estimate for a special BHCP
[6]. Seidman established an optimal filtering method [7]. Recently Fu et al. used
Fourier regularization method [8]. So far there are many papers on the backward
heat equation [9, 10, 11], but theoretically the error estimates of most regularization
method in the literature are of holder type i.e., the approximate solution v and the

exact solution u satisfies ∥u(., t)−v(., t)∥ ≤ 2E1− t
T δ

t
T , where E is a priori bound on

u(x, 0) and δ is the noise level on final data u(x, T ). We note that the right part of
above inequality tends to 0 as measurement accuracy is improved (δ −→ 0), so this
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means that one can achieve arbitrary accuracy in determining the unknown u |t̸=0,
if one will measure with adequate accuracy. But the error bound at t = 0 is not
more suitable. In this paper we consider the following one dimensional backward
heat conduction problem in an unbounded region{

ut = uxx, −∞ < x < ∞, 0 ≤ t < T ,
u(x, T ) = h(x), −∞ < x < ∞,

(1)

where we want to determine the temperature distribution u(., t) for 0 ≤ t < T from
the final data h(x). The aim of this paper is to provide a new convenient and simply
applicable method for obtaining the suitable solution for the problem (1) specially
at t = 0. Therefore we use the Gaussian radial basis functions (GRBFs) for dis-
cretization of the problem and the suitable attributes of this functions are used to
obtain numerically stable scheme. The unknown coefficients in this method is the
unknown coefficient in the interpolation of the given data function h, using RBFs
interpolation. The proposed method is reducing the problem to an interpolation
problem which is more simple than the collocation type method. Convergence anal-
ysis of RBF interpolation has been carried out by several researchers. Results for
two numerical examples are presented to demonstrate the efficacy of the method.

2. The approximate solution

In this section we try to obtain an approximate solution for (1) based on
discretization using Gaussian RBF. No matter how the distinct data points are
scattered. In practice we have measured final data (xi, h(xi))|(i=1,...,N) at N distinct
points. We write the RBF approximation of u(x, 0) in the following form:

uN (x, 0) =

N∑
i=1

λiϕi(x), (2)

where ϕi(x) |(i=1,...,N) are RBFs and coefficients λi |(i=1,...,N) are unknown to be
determined. For solving the problem (1), we have to consider the following initial
value problem: {

ut = uxx, −∞ < x < ∞, 0 ≤ t < T ,
u(x, 0) = f(x), −∞ < x < ∞.

(3)

By following the reference [12], the solution of the above problem exists uniquely

u(x, t) =

∫ +∞

−∞
k(x− s, t)f(s)ds = Kt(f(x)), (4)

where Kt is a integral operator with kernel k(x− s, t) and k(x, t) is the fundamental

solution of heat equation, k(x, t) = 1√
4πt

exp(−x2

4t ). By substituting the final data of

(1) into (4), we have

u(x, T ) = KT (f(x)) =

∫ +∞

−∞
k(x− s, T )f(s)ds = h(x), (5)

where u(x, 0) = f(x) is unknown. We use the Gaussian RBF in the following form

ϕi(x) = exp(−(x− xi)
2

c2
), (i = 1, . . . , N), (6)
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and by operating, Kt in ϕi(x) we have

Φi(x, t) = kt(ϕi(x)) =
c√

c2 + 4t
exp(−(x− xi)

2

c2 + 4t
). (7)

Substituting the expansion of uN (x, 0) = fN (x) of the form (2) into (5),

h(x) =

∫ +∞

−∞
k(x− s, T )

N∑
i=1

λiϕi(s)ds =

N∑
i=1

λikT (ϕi(x)) =

N∑
i=1

λiΦi(x, T ), (8)

where ϕi(x) and Φi(x, T ) are Gaussian RBF of the form (6) and (7), and by sub-
stituting collocation points xi (i = 1, . . . , N) in (8), we have the following system in
the matrix form

ANC = b, (9)

where

AN = AN×N = {aij}, aij = Φi(xj , T ), C =

 λ1
...

λN

 , b =

 h(x1)
...

h(xN )

 . (10)

By solving (9), we get the unknown coefficient λi |(i=1,...,N). In fact the matrix A is
the Gaussian RBF interpolation matrix of the final data function h(x) at distinct
points xi (i = 1, . . . , N), which is symmetric and nonsingular [13], i.e. there is
an unique interpolant of the form (8) no matter how the distinct data points are
scattered. This is an advantage of the proposed method versus the conventional
collocation methods based on radial basis functions. By solving the linear system
(9) we approximate u(x, 0) = f(x) in following form

uN (x, 0) = fN (x) =

N∑
i=1

λiexp(−
(x− xi)

2

c2
), (11)

and by using (7) and (4) we have uN (x, t) for constant t in following form

uN (x, t) =

∫ +∞

−∞
k(x− s, t)fN (s)ds =

N∑
i=1

λikt(exp(−
(x− xi)

2

c2
))

=

N∑
i=1

λi
c√

c2 + 4t
exp(−(x− xi)

2

c2 + 4t
). (12)

Differentiating Φi(x, t) we have

∂Φi(x, t)

∂t
= Φi(x, t)(

−2

c2 + 4t
+

4(x− xi)
2

(c2 + 4t)2
),

∂2Φi(x, t)

∂x2
= Φi(x, t)(

−2

c2 + 4t
+

4(x− xi)
2

(c2 + 4t)2
),

so by substituting uN (x, t) defining by (12) in ut − uxx = 0 we can see

∂uN (x, t)

∂t
− ∂2uN (x, t)

∂x2
= 0.
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In fact the problem reduce to a RBF interpolation problem of known data function.
The coefficients λi |(i=1,...,N) in (11) are the interpolation coefficients of the known
data function h, that obtain by solving the linear system (9).

3. Convergence

The superior accuracy of the RBF interpolation is supported by theoretical
error estimate. For example, for the case of interpolating a regular function, Madych
and Nelson [14] showed that for a class of RBFs including the multiquadric and the
Gaussian interpolation error convergence at the exponential rate,

| f − fN | = O(γ
1
ω ), (13)

where ω is the maximum mesh size, and 0 < γ < 1. For the Gaussian, Wendlandm

[15] further refined the error bound as | f − fN | = O(γ

√
1
ω ).

Lemma 3.1. Suppose that h and hδ are exact and measured data such that | h−hδ |≤
δ. Let uN (x, 0) = fN and uδN (x, 0) = f δ

N be solution obtained by proposed method

using h and hδ, respectively. Then we have

| fN − f δ
N |≤

√
c2 + 4T

c
[2O(γ

1
ω ) + δ].

Proof. Suppose that hN and hδN are RBF approximation of h and hδ. From
(13) we have

| hN−hδN |=| hN−h+h−hδ+hδ−hδN |≤| hN−h | + | h−hδ | + | hδ−hδN |≤ 2O(γ
1
ω )+δ.

And we have

exp(−(x− xi)
2

c2
) ≤ exp(−(x− xi)

2

c2 + 4T
) ⇒ ϕi(x) ≤

√
c2 + 4T

c
Φi(x, T ), (14)

then we have

| fN − f δ
N |=|

N∑
i=1

(λi − λδ
i )ϕi(x) |≤

√
c2 + 4T

c
|

N∑
i=1

(λi − λδ
i )Φi(x, T ) |=

√
c2 + 4T

c
| hN − hδN |≤

√
c2 + 4T

c
[2O(γ

1
ω ) + δ].

From the Lemma (3.1) we see that the approximate solution given by (2) depends
continuously on the given data.

Lemma 3.2. For any regular function we have, ∥ Kt(f(x)) ∥≤∥ f(x) ∥.

Proof. Let f̂ be the fourier transform of f then with respect to Parseval’s
relation and fourier transform of convolution we have

∥ kt(f(x)) ∥=∥ k̂t(f) ∥=∥ k̂tf̂ ∥=∥ e−ts2 f̂ ∥≤∥ f̂ ∥=∥ f(x) ∥ . (15)

Theorem 3.1. Suppose that h and hδ are exact and measured data such that |
h−hδ |≤ δ. Let uN (x, t) and uδN (x, t) be solution obtained by proposed method using

h and hδ, respectively. Then

| u(x, t)− uδN (x, t) |≤ C1O(γ
1
ω ) + C2δ,

where γ < 1, ω is maximum step size, C1 = 1 + 4
√
c2+4T
c and C2 =

√
c2+4T
c .
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Proof. If we substitute the approximation of f(x) with interpolated function
using Gaussian RBF in Eq. (5) i.e. f̄N (x) = ΣN

i=1λ̄iϕi(x) then the right part of
the equation is exchanged by a new function that we denote it by h̄. So h̄N (x) =∫ +∞
−∞ k(x− s, T )f̄N (s)ds, and we obtain the system

AN C̄ = b̄, (16)

where

AN = AN×N = {aij}, aij = Φi(xj , T ), C̄ =

 λ̄1
...

λ̄N

 , b̄ =

 h̄(x1)
...

h̄(xN )

 . (17)

Let uN (x, 0) = fN (x) then

| f − fN |≤| f − f̄N | + | f̄N − fN |, (18)

by relation (13) we have

| f − f̄N |≤ O(γ
1
ω ), (19)

and using (14) we have

| f̄N − fN |=|
N∑
i=1

(λ̄i − λi)ϕi(x) |≤
√
c2 + 4T

c
|

N∑
i=1

(λ̄i − λi)Φi(x, T ) |

=

√
c2 + 4T

c
| h̄N − hN |, (20)

where λi |(i=1,...,N) and λ̄i |(i=1,...,N) obtained by (9) and (16), respectively. Using
Lemma (3.2) and (13) we have

| h̄N − hN |≤| h̄N − h | + | h− hN |=| KT (f̄N − f) | + | h− hN |

≤| f̄N − f | + | h− hN |≤ 2O(γ
1
ω ). (21)

Then by using Eqs. (18)-(21),

| f − fN |≤ (1 + 2

√
c2 + 4T

c
)O(γ

1
ω ),

and by using Lemma (3.1) and Lemma (3.2),

| u(x, t)−uδN (x, t) |=|
∫

k(x− s, t)(f(x)− f δ
N (x)) |≤| f − f δ

N |=| f − fN + fN − f δ
N |

≤| f−fN | + | fN −f δ
N |< (1+2

√
c2 + 4T

c
)O(γ

1
ω )+2

√
c2 + 4T

c
O(γ

1
ω )+

√
c2 + 4T

c
δ.

The right hand side of estimates in Theorem (3.1) and Lemma (3.1) contain two
terms. The first term represents the error due to interpolation and tends to zero
as ω → 0. The second term represents the error due to noise in the given data
and tends to zero as δ → 0. So this means that one can achieve arbitrary accu-
racy in results, if one will measure with adequate accuracy and use the suitable
interpolation of the given data. The method should not produce results more accu-
rate than the level of error in the given data. Many RBF methods contain a free
shape parameter that plays an important role for the accuracy of the method. In
proposed method the unknown coefficients λi |(i=1,...,N) in (2) are the interpolation
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coefficients of the given data function h, that obtain by solving the linear system
(9). So the shape parameter in (6) is the shape parameter in (7) that used for RBF
interpolation of the given data function h. Despite research done by many scientists
to develop algorithms for selecting the value of shape parameter which produce the
most accurate interpolation [16, 17, 18], the optimal choice of shape parameter is
still an open problem. The proposed methods in literature for selecting the optimal
shape parameter for RBF interpolation can be use for improving the method. The
main difficulty with the method based on radial basis function is that the condition
number of the interpolation matrix A can be enormous. In addition in a real-world
application, the right-hand side vector of (9) is always contaminated by various
types of errors, such as measurement, approximation and rounding errors. Thus
the large condition number of the matrix can be disastrous. Standard method may
fail to yield satisfactory results due to the combination of the matrix and noise in
data. In order to obtain stable and accurate results, more advanced computational
method must be applied to solve the matrix equation. Regularization methods are
most powerful and efficient methods for ill-posed problems. In our computation
we use Tikhonov regularization method [19] to solve the matrix equation arising
from RBF interpolation problem. Other regularization method such as truncated
singular value decomposition and conjugate gradient methods, could be considered.
The Tikhonov’s regularization method finds a solution Cα which minimizes a qua-
dratic functional ∥AC − b∥2 + α∥C∥2, where α > 0 is a regularization parameter,
which controls the degree of smoothing applied to the problem. The minimization
of functional (21) produces the solution

Cα = (AtA+ αI)−1Atb (22)

where I is the identity matrix. For α = 0 the regularized solution (22) coincides with
the solution produced by the least-squares method which is unstable. The choice of
the regularization parameter α is crucial and various methods have been proposed
for this purpose. However, in this study we use the L-curve method of Hansen and
O’Leary [20] for the selection of a suitable value of α. This method plots, on a log-
log scale, the l2−norm of the regularized solution ∥Cα∥ versus the l2−norm of the
residual vector ∥ACα − b∥, the graph being called the L-curve due to its L-shaped
corner, in general. Since ∥ACα − b∥, measures the fit to the data, whereas ∥Cα∥
measures the smoothness of the numerical solution, the solution at the corner has
an optimum balance between fit and smoothness and hence it is considered to be a
suitable choice.

4. Numerical example

In this section, for testing the accuracy and efficiency of described method we
solve two test examples. By using (11) and various number of distinct data points
N , and also solving the arising system (9) using Tikhonov regularization method,
we can obtain the approximate solution. When the input data contain noises, we
simulate noisy data as hδ(xi) = h(xi)+riδ, where h(xi) is the exact one, ri |(i=1,...,N)

are pseudo random values drawn from the standard uniform distribution on the open
interval (0,1) produced by ”rand” function in Matlab and δ is the noise level.
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Figure 1. Comparison of approximated solution uδN (x, t) with the
exact one for example 4.1,T = 1, t = 0, N = 30, c = 1.(a),(b),(c) and
(d) correspond to the results of adding the noise δ = 6 × 10−2, 6 ×
10−3, 6× 10−4 and 6× 10−5.

Example 4.1. Consider the problem (1) with the following final data h(x) = 1√
1+4T

e
−x2

1+4T

which has the exact solution u(x, t) = 1√
1+4t

e
−x2

1+4t .

Example 4.2. Consider the problem (1) with the following final data h(x) = e−T sin(x)
which has the exact solution u(x, t) = e−tsin(x).

We compared our numerical solution with the exact solution in Figures (1-4).
These figures show that the approximate solution continuously depend on input data
which is consistent with the error estimate in Theorem (3.1) and stability estimate
in Lemma (3.1). Our approximate solutions are demonstrate the efficiency of the
method computationally.

5. Conclusions

In this paper we introduce a convenient and simply applicable method for
solving the backward heat conduction problem in unbounded region. We used the
Gaussian radial basis functions (GRBFs) for discretization of the problem and the
suitable attributes of this functions are used to obtain numerically stable scheme.
The stability and convergence of the proposed method are investigated. The intro-
duced method is applicable for approximate the distribution u(x, t) at t = 0 which
is self-starting and it is an advantage of this method. As for the computational
aspect we can easily implement the method. In practice the problem reduced to a
RBF interpolation problem. Numerical results show that the method is working well.
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Figure 2. Comparison of approximated solution uδN (x, t) with the
exact one for example 4.1, T = 1, t = 0, N = 50, c = 1.(a),(b),(c) and
(d) correspond to the results of adding the noise δ = 6 × 10−2, 6 ×
10−3, 6× 10−4 and 6× 10−5.
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Figure 3. Comparison of approximated solution uδN (x, t) with the
exact one for example 4.2, T = 1, t = 0, N = 30, c = 10.(a),(b),(c)
and (d) correspond to the results of adding the noise δ = 6×10−2, 6×
10−3, 6× 10−4 and 6× 10−5.
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Figure 4. Comparison of approximated solution uδN (x, t) with the
exact one for example 4.2, T = 1, t = 0, N = 50, c = 10.(a),(b),(c)
and (d) correspond to the results of adding the noise δ = 6×10−2, 6×
10−3, 6× 10−4 and 6× 10−5.
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