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GLOBAL CONVERGENCE OF A MODIFIED LIU-STOREY 
CONJUGATE GRADIENT METHOD 

Min LI1, Yu CHEN2, Ai-Ping QU3 

 In this paper4, we make a modification to the LS conjugate gradient method 
and propose a descent LS method. The method can generates sufficient descent 
direction for the objective function. We prove that the method is globally convergent 
with an Armijo-type line search. Moreover, under mild conditions, we show that the 
method is globally convergent if the Armijo line search or the Wolfe line search is 
used. The numerical results show that the proposed methods are efficient 
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1. Introduction 

In this paper, we consider the unconstrained problem 
min ( ) , nf x x R∈                                             (1) 

where : nf R R→  is continuously differentiable. Nonlinear conjugate gradient 
methods are efficient for problem (1). The nonlinear conjugate gradient methods 
generate iterates by letting 

1 ,k k k kx x dα+ = +  
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where kα  is the step-length, ( )k kg g x=  denotes the gradient of f  at kx , and kβ  
is a suitable scalar. Well-known conjugate methods include the HS, FR, PRP, CD, 
LS and DY methods [1-7]. In the survey paper [10], Hager and Zhang reviewed 
the development of different versions of nonlinear gradient methods, with special 
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attention given to global convergence properties. We refer to [10] for more 
details.  

Recently, there is a growing interest in the development of descent 
conjugate gradient methods. The first one was due to the CG_DESCENT method 
proposed by Hager and Zhang [11]. They calculated  kβ  by 
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here and throughout this paper, || ||i  stands for the Euclidean norm of a vector and 

1 1k k ky g g− −= − . An attractive property of the CG_DESCENT method is that the 
directions kd  generated by the CG_DESCENT method satisfy the sufficient 

descent condition 27
8 || ||T

k k kg d g≤ − . The method is globally convergent if the 
Wolfe line search is used [11]. 

 Zhang and Zhou [12] made a modification to the CG_DESCENT method 
and propose a so-called cautious CG_DESCENT method. It was proved that the 
cautious CG_DESCENT method with the standard Armijo line search is also 
globally convergent.  

However, just as Hager and Zhang [10] pointed out that the research about 
the LS method [6] is very few. The purpose of this paper is to develop a descent 
LS method and establish its global convergence. 

In the next section, we propose the method. In section 3, we prove the 
global convergence of the proposed method with an Armijo-type line search. In 
section 4, we establish the global convergence of the proposed method with 
Armijo line search and Wolfe line search. In section 5, we do some numerical 
experiments to test the proposed methods and compare their performance with 
some existing methods. 

2. The algorithms 

The standard LS method [6] specifies the LS
kβ  by 
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Inspired by the CG_DESCENT method, we give the following modified formula 
to MLS

kβ  
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where 1
4t >  is a constant. Obviously, if exact line search is used, then MLS

kβ  will 

reduce to LS
kβ . The theorem below shows an attractive property of the modified 

LS method that the search directions kd  will always be sufficiently descent if 

1 1 0T
k kg d− − ≠ . 

Theorem 2.1.   Let { }kd  be generated by  
MLS

1k k k kd g dβ −= − + , 0 0d g= − ,                                (4) 
If  1 1 0T

k kg d− − ≠ , then the following inequality holds 

( ) 21
4 1 || ||T

k k ktg d g≤ −                                          (5) 

In other words, the directions kd are sufficiently descent directions for function f  
if 1

4t > . 
Proof.  It is clear that (5) holds for 0k = . Suppose that (5) holds for some 

0k > . We are going to show that it holds for 1k + . Multiplying both sides of the 
first equation in (4) by kg , we get 
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The proof is complete. 
The above theorem shows that the directions generated by (4) are sufficient 

descent directions. This feature is independent of the line search used. Based on 
the above process, we present concrete MLS method with an Armijo-type line 
search as follows 
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Algorithm 2.1.  ( MLS Method with an Armijo-type line search.) 
Step 0.  Given constant 0ε > . Given 0

Nx R∈ . Set 0.k =  
Step 1.  Stop  if || ||kg ε∞< . 
Step 2.  Compute kd  by (4). 
Step 3.  Determine the steplength kα by the following Armijo-type search. 

Namely determines max{ , 0,1, 2, }j
k jα ρ= = "  satisfying 

2 4
1( ) ( ) || ||k k k k k kf x d f x dα δ α+ − ≤ −  ,                         (6) 

where 1 0δ >  and 0 1ρ< < . 
Step 4.  Let 1k k k kx x dα+ = + . If || ||kg ε∞< , then stop. 
Step 5.  Set 1k k= + , go to Step 2. 

As we have shown in Theorem 2.1 that kd  is a descent of f  at kx , it is not 
difficult to see that the above algorithm is well defined. Moreover, if f  is 
bounded from below, we have from (6) that 
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3. The global convergence of Algorithm 2.1 

In this section, we will focus on the global convergence of the Algorithm 
2.1. We first make the following assumptions.  

Assumption 3.1 
I. The level set 0{ | ( ) ( ), }nx f x f x x RΩ = ≤ ∈  is bounded. 
II. In some neighborhood N  of Ω , function f  is continuously 

differentiable and its gradient ( )g x  is Lipschitz continuous, namely, 
there exists a constant  L  such that 

|| ( ) ( ) || || ||, ,g x g y L x y x y N− ≤ − ∀ ∈ .                    (8) 
From now on, throughout this paper, we always suppose that the conditions in this 
assumption hold. It follows directly from the Assumption 3.1 that there exist two 
positive constants B  and 1γ  such that 
 1|| || and || ( ) || , .x B g x xγ≤ ≤ ∀ ∈Ω                     (9) 

In the later part of this section, we will prove the global convergence of 
Algorithm 2.1. At first, we give the following lemma about the boundness of the 
directions kd . 
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Lemma 3.1. Let the conditions in Assumption 3.1 hold, and { }kd  
generated by Algorithm 2.1. If there exists a constant 0γ >  such that 
 || || , 0,kg kγ> ∀ ≥                                       (10) 
then there exists a constant 0M >  such that 

|| || , 0.kd M k≤ ∀ ≥                                      (11) 
Proof.  We get from (4) , (9) and (10) that 
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 (7) implies that for any constant (0,1)b∈ , there exists a index 0k  such that 
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So, we can let  
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k kbM d d d d−= +"  

to get (11). The proof is completed. 
Based on Lemma 3.1, we give the next global convergence theorem for 

Algorithm 2.1 with the Armijo-type line search. 
Theorem 3.2. Let the conditions in Assumption 3.1 hold, { }kx  and { }kd  

be generated by Algorithm 2.1, then either || || 0kg =  for some k or 
liminf || || 0.kk

g
→∞

=                                                     (12) 

Proof. We suppose for contradiction that neither || || 0kg =  nor 
liminf || || 0k kg→∞ = , then there exists a constant 0γ >  such that (10) holds.  We 
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consider the case that liminf 0k kα→∞ > . (7) implies that liminf || || 0k kd→∞ =  . 
This together with  (5) implies liminf || || 0k kg→∞ = , which contradicts (10). 
Suppose that liminf 0k kα→∞ = , then there exists a infinite index set K  such that 

,
liminf 0.kk K k

α
∈ →∞

=                                                    (13) 

From the Step 3 of the Algorithm 2.1, 1
kρ α−  does not satisfy (6), which implies 

1 1 2 4
1( ) ( ) || ||k k k k k kf x d f x dρ α δ ρ α− −+ − > −                     (14) 

By the Lipschitz condition (8) and the mean value theorem, there is a [0,1]kξ ∈ , 
such that 
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This together with (5), (11) and (14) gives 
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This together with ,lim 0k K k kα∈ →∞ =  implies ,lim || || 0k K k kg∈ →∞ = , which 
yields a contradiction and completes the proof. 

4. The global convergence of MLS method with Armijo line search 
and Wolfe line search 

In this section, we will prove the global convergence of the MLS method 
with the Armijo line search and the Wolfe line search. The Armijo line search 
condition is  

( ) ( ) T
k k k k k k kf x d f x g dα δα+ − ≤                              (15) 

where (0, 1)δ ∈ . We determine the steplength kα by letting it be the largest scale 

in the set { , 0,1,2, }j jρ = " , where (0, 1)ρ ∈ .  
The Wolfe line search conditions are the following two inequalities 
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where 0 1.δ σ< ≤ < However, it seems not easy to establish the global 
convergence of the relative method. So, we introduce a cautious update rule to (4) 
and let kd be determined by the following cautious rule 
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where 1 0ε >  is a constant. Such a cautious update rule was proposed by D. Li and 
M. Fukushima in [13] and was used to CG_DESCENT method by Zhang and 
Zhou in [12]. Now we present the cautious MLS method with the Armijo line or 
the Wolfe line search as follows: 

Algorithm 4.1 (The cautious MLS method.) 
Step 0.  Given constants 10, 0ε ε> > . Given 0

Nx R∈ . Set 0.k =  
Step 1.  Stop  if || ||kg ε∞< . 
Step 2.  Compute kd  by (17). 
Step 3. Determine the steplength kα by Armijo line search or Wolfe line 

search.  
Step 4.  Let 1k k k kx x dα+ = + . If || ||kg ε∞< , then stop. 
Step 5.  Set 1k k= + , go to Step 2. 

From Theorem 2.1 we have that kd  is a descent direction of f  at kx . It is easy to 
see that the above algorithm is well defined. We simply call the algorithm CMLS 
method in the later part of this paper.  

To prove the global convergence of CMLS method, we first show the 
following useful lemma, which was essentially proved by Zoutendijk [14]  and   
Wolfe [15,16] 

Lemma 4.1. Let the conditions in Assumption 3.1 hold. and  { }kx  be 
generated by the CMLS method with Armijo line search or Wolfe line search. 
Then we have 
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Proof.  Consider the case where the Armijo line search is used. We first 
show that there is a constant c  such that  
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If 1kα < , by the line search rule, 1
kρ α−  will not satisfy (15). This means 

1 1( ) ( ) T
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By the Lipschitz condition (8) and the mean value theorem, there is a [0,1]kξ ∈ , 
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The last inequality together with inequality (20) implies (19) with  
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On the other hand, we get from the Armijo condition (15) and the boundness of 
{ }kx ⊂ Ω  that 
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Consider the case where the Wolfe line search is used. From the second 
inequality of (16), we have 
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Comparing this with the sufficient descent condition (5) we have 
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In a way similar to the proof for the case of Armijo line search, we can get (18). 
The proof is complete. 

The following theorem establishes the convergence of the CMLS method 
with Armijo line search. 
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Theorem 4.2. Let { }kx  be generated by the CMLS method with Armijo 
line search. If the conditions in Assumption 3.1 hold, then we have either 
|| || 0kg =  for some k , or liminf || || 0.k kg→∞ =  

Proof. We suppose for the sake of contradiction that || || 0, 0kg k≠ ∀ ≥ , 
and liminf || || 0.k kg→∞ >  Denote inf{|| ||: 0}kg kγ = ≥ . It is clear that  0γ >  and 

|| || , 0kg kγ≥ ∀ ≥ .                                           (23) 
Define the index set { | }i iK i d g= = − . It is not difficult to see from the 
Zoutendijk condition (18) that the index set  K  must be finite. By (3), (9), (17) 
and (23), we derive 
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This together with (17) implies 
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Therefore, we get from the Zoutendijik condition (18) 
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which yields a contradiction. The proof is completed. 
In a way similar to Theorem 4.2, it is not difficult to establish the following 
convergence for the CMLS method with the Wolfe line search. 

Theorem 4.3. Let { }kx  be generated by the CMLS method with Wolfe 
line search. If the conditions in Assumption 3.1 hold, then we have either  
|| || 0kg =   for some k, or liminf || || 0.k kg→∞ =  
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4. Numerical results 

In this section, we do some numerical experiments to test the CMLS 
method. We compare the performance with some existing conjugate gradient 
methods including the PRP+ method developed by Nocedal [9] and the 
CG_DESCENT method [11] . The PRP+ code was obtained from Nocedal's web 
page at http:// www.ece.northwestern.edu.nocedalsoftware.html 
and the CG_DESCENT code from Hager's web page at  

http://www. math.ufl.edu/hager/papers/CG. 
Table 1 

Melting points and elemental analyses 
N Prob Dim N Prob Dim N Prob Dim 
1 PENALTY1 1000 37 GENHUMPS 1000 73 BROYDN7D 5000 
2 NONDQUAR 10000 38 MSQRTBLS 1024 74 DIXMAANF 9000 
3 SENSORS 100 39 WOODS 10000 75 DIXMAANG 3000 
4 VARDIM 200 40 QUARTC 5000 76 CHAINWOO 10000 
5 FMINSRF2 5625 41 CURLY20 1000 77 FLETCBV2 1000 
6 TQUARTIC 5000 42 WOODS 4000 78 DIXMAAND 9000 
7 BRYBND 10000 43 DIXMAANI 9000 79 POWER 5000 
8 VAREIGVL 1000 44 SPMSRTLS 4999 80 GENROSE 500 
9 COSINE 10000 45 DIXMAANG 9000 81 POWELLSG 1000 
10 FREUROTH 5000 46 SCHMVETT 10000 82 DQDRTIC 5000 
11 DIXMAANJ 9000 47 SROSENBR 10000 83 FMINSRF2 1024 
12 GENROSE 100 48 PENALTY2 200 84 CRAGGLVY 5000 
13 TOINTPSP 50 49 ERRINROS 50 85 BRYBND 5000 
14 VAREIGVL 50 50 NONDQUAR 5000 86 EG2 1000 
15 CURLY30 1000 51 DIXMAANA 9000 87 EDENSCH 2000 
16 GENHUMPS 5000 52 CHNROSNB 50 88 LIARWHD 10000 
17 DQDRTIC 1000 53 DIXMAANK 1500 89 DIXMAANE 9000 
18 MANCINO 100 54 DIXON3DQ 1000 90 SPMSRTLS 10000 
19 TQUARTIC 1000 55 SCHMVETT 5000 91 ARGLINC 100 
20 DIXMAANC 9000 56 LIARWHD 5000 92 MANCINO 50 
21 ENGVAL1 1000 57 FLETCBV2 5000 93 DIXMAANB 3000 
22 DQRTIC 5000 58 MOREBV 5000 94 POWELLSG 5000 
23 MSQRTALS 1024 59 CURLY20 100 95 DIXMAANL 9000 
24 SINQUAD 1000 60 DIXMAANB 9000 96 SINQUAD 5000 
25 CURLY10 100 61 TOINTGOR 50 97 ENGVAL1 5000 
26 FLETCHCR 1000 62 QUARTC 10000 98 COSINE 1000 
27 MOREBV 1000 63 FREUROTH 1000 99 TOINTQOR 50 
28 POWER 10000 64 FLETCHCR 100 100 ARGLINA 100 
29 BDQRTIC 1000 65 DECONVU 61 101 FMINSURF 5625 
30 ARGLINB 100 66 SROSENBR 5000 102 DIXMAANE 3000 
31 ARWHEAD 5000 67 CURLY10 1000 103 DIXMAAND 3000 
32 TESTQUAD 5000 68 CURLY30 100 104 DIXMAANA 3000 
33 NONDIA 10000 69 PENALTY1 500 105 FMINSURF 1024 
34 NONDIA 5000 70 DIXMAANJ 3000 106 TOINTGSS 10000 
35 TRIDIA 10000 71 DIXMAANI 3000 107 SPARSQUR 5000 
36 DIXON3DQ 10000 72 DIXMAANH 9000 108 DIXMAANH 3000 
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All the test problems are the unconstrained problems in the CUTEr [19] library 
with dimensions varying from 50 to 10000. We stop the iteration if 

6|| || 10kg −
∞≤ is satisfied. All codes were written in Fortran and run on a PC with 

2.8 GHZ CPU processor and 2GB RAM memory and Linux operation system. 
Table 1 lists all the problems (Prob) and their dimensions (Dim). All the result are 
listed in Table 2, which include the total number of iterations (Iter), the total 
number of function evaluations (Nf), the total number of gradient evaluations 
(Ng), the CPU time (Time) in seconds, respectively. In Table 2, “− ” means the 
method failed. 

Table 2 
Melting points and elemental analyses 

N CMLS method CG_DESCENT method PRP+ method 
Iter/Nf/Ng/Time Iter/Nf/Ng/Time Iter/Nf(Ng)/Time 

1 55/133/86/0.021 50/121/77/0.018 42/173/0.025 
2 10007/20027/10089/27.5 10007/20025/10429/23.9 -/-/-
3 21/61/45/0.522 25/57/44/0.506 27/66/0.491
4 28/57/29/0.002 28/57/29/0.002 8/44/0.001
5 323/647/324/0.992 363/729/366/1.07 350/707/1.446 
6 18/46/33/0.044 21/52/38/0.049 9/32/0.03
7 31/64/34/0.261 29/60/32/0.234 69/154/0.773 
8 76/207/131/0.087 93/243/150/0.097 30/65/0.031
9 14/32/26/0.12 12/32/28/0.12 9/28/0.104
10 43/86/77/0.198 65/126/95/0.25 -/-/-
11 356/713/357/1.485 295/591/296/1.152 293/593/1.381 
12 293/613/333/0.014 305/641/347/0.013 288/603/0.015 
13 128/262/180/0.003 155/327/211/0.004 -/-/-
14 64/175/111/0.004 60/164/104/0.005 25/57/0.001
15 10740/17083/16943/11.02 9765/15713/15122/9.3 -/-/-
16 6832/13923/7135/41.858 9412/18948/9575/54.02 7442/15241/46.93 
17 6/13/7/0.006 7/15/8/0.004 5/15/0.004
18 12/25/13/0.148 11/23/12/0.136 11/27/0.172
19 13/47/40/0.01 24/64/46/0.012 11/37/0.007
20 11/23/12/0.052 10/21/11/0.043 6/25/0.058
21 26/48/32/0.013 26/49/33/0.013 -/-/-
22 50/101/51/0.057 33/67/34/0.033 17/66/0.034
23 3629/7265/3638/18.25 3393/6793/3402/16.73 2934/5873/20.98 
24 89/188/144/0.082 84/184/151/0.08 -/-/-
25 918/1677/1259/0.043 1013/1797/1508/0.046 -/-/-
26 4741/9599/4881/2.069 6828/14236/7479/2.90 4371/8767/2.173 
27 425/851/426/0.157 425/851/426/0.143 425/851/0.18 
28 371/743/372/0.685 369/739/370/0.565 355/719/0.669 
29 479/991/699/0.325 628/1296/1025/0.434 -/-/-
30 4/9/8/0.004 6/12/13/0.005 -/-/-
31 10/23/16/0.036 3763/6992/8726/18.26 -/-/-
32 1718/3437/1719/1.583 1715/3431/1716/1.301 1590/3183/1.409 
33 9/20/12/0.05 9/22/16/0.057 6/26/0.065
   Table 2  continuous  
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N CMLS method CG_DESCENT method PRP+ method 
Iter/Nf/Ng/Time Iter/Nf/Ng/Time Iter/Nf(Ng)/Time 

34 12/29/21/0.037 8/27/22/0.035 5/26/0.03
35 1115/2231/1116/2.714 1115/2231/1116/2.37 1112/2227/2.78 
36 10000/20001/10002/24.0 10000/20001/10002/21.0 10000/20006/24.673 
37 2471/5094/2658/3.047 2697/5568/2908/3.233 2116/5025/2.909 
38 2208/4423/2217/11.102 2318/4642/2325/11.391 2396/4797/17.161 
39 227/491/294/0.983 187/426/257/0.787 232/487/1.04 
40 50/101/51/0.056 33/67/34/0.032 17/66/0.034
41 9775/15435/15148/7.415 9757/15481/15084/7.111 -/-/-
42 226/491/286/0.359 148/342/214/0.236 190/393/0.316 
43 3627/7255/3628/15.258 2687/5375/2688/10.343 3542/7091/16.534 
44 202/411/211/0.676 218/443/227/0.698 212/430/0.872 
45 261/523/262/1.098 266/533/267/1.026 404/816/1.905 
46 47/80/63/0.94 39/65/54/0.783 44/102/0.982 
47 9/20/13/0.033 12/26/17/0.039 8/26/0.04
48 190/225/347/0.122 199/234/365/0.126 -/-/-
49 1505/2978/2161/0.037 1013/2023/1444/0.024 -/-/-
50 5008/10029/5131/6.486 5014/10053/5154/5.636 -/-/-
51 8/17/9/0.043 9/19/10/0.04 7/23/0.054
52 252/506/255/0.006 272/545/273/0.005 314/636/0.008 
53 1399/2799/1400/0.879 1434/2869/1435/0.835 1404/2818/1.017 
54 1000/2001/1002/0.23 1000/2001/1002/0.199 1000/2005/0.235 
55 44/75/59/0.437 39/66/53/0.38 41/91/0.439
56 25/56/41/0.079 21/48/32/0.062 16/46/0.062
57 0/1/1/0.004 0/1/1/0.004 4101/8203/17.226 
58 167/335/169/0.328 147/295/149/0.264 161/323/0.369 
59 910/1664/1350/0.067 899/1670/1310/0.063 -/-/-
60 10/21/11/0.045 9/19/10/0.04 7/26/0.063
61 119/218/147/0.006 122/224/154/0.006 -/-/-
62 53/107/54/0.125 35/71/36/0.073 16/69/0.073
63 98/201/128/0.068 85/173/113/0.058 -/-/-
64 796/1670/895/0.036 782/1664/895/0.035 798/1610/0.041 
65 306/613/308/0.022 457/916/462/0.03 696/1398/0.062 
66 9/20/13/0.016 12/26/16/0.018 10/29/0.022
67 8887/13894/13325/4.241 9431/14475/14406/4.18 -/-/-
68 927/1750/1323/0.084 982/1843/1441/0.088 -/-/-
69 49/114/72/0.01 45/107/69/0.008 29/113/0.009 
70 1239/2479/1240/1.56 297/595/298/0.349 360/728/0.531 
71 3193/6387/3194/3.988 2552/5105/2553/2.996 2399/4804/3.437 
72 261/523/262/1.1 263/527/264/1.016 530/1069/2.497 
73 1426/2840/1443/13.54 1502/2988/1524/14.05 6007/12369/83.27 
74 270/541/271/1.156 269/539/270/1.054 242/491/1.141 
75 167/335/168/0.211 170/341/171/0.199 159/327/0.235 
76 313/628/403/2.305 358/696/448/2.429 10001/20701/80.686 
77 1174/2349/1177/0.882 1052/2105/1055/0.758 942/1886/0.76 
78 13/27/14/0.061 12/25/13/0.051 8/26/0.061
79 266/533/267/0.236 258/517/259/0.195 252/514/0.229 
   Table 2 continuous 
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N CMLS method CG_DESCENT method PRP+ method 
Iter/Nf/Ng/Time Iter/Nf/Ng/Time Iter/Nf(Ng)/Time 

80 1193/2416/1237/0.26 1259/2559/1309/0.255 1121/2269/0.277 
81 97/195/109/0.025 241/490/274/0.051 99/238/0.03
82 7/15/8/0.018 7/15/8/0.019 5/15/0.021
83 246/493/247/0.12 276/558/282/0.129 257/517/0.163 
84 119/231/162/0.711 116/208/150/0.64 -/-/-
85 30/61/31/0.115 36/74/39/0.141 26/66/0.161
86 4/9/6/0.004 4/9/6/0.004 -/-/-
87 30/54/41/0.04 33/61/43/0.041 -/-/-
88 21/51/33/0.141 25/60/41/0.162 15/46/0.131
89 366/733/367/1.519 359/719/360/1.378 361/727/1.71 
90 217/441/226/1.509 225/457/234/1.498 217/440/1.829 
91 4/9/8/0.003 5/11/11/0.005 -/-/-
92 9/19/10/0.028 9/19/10/0.031 10/24/0.038
93 10/21/11/0.015 9/19/10/0.014 6/23/0.016
94 97/195/109/0.123 162/332/187/0.176 148/346/0.201 
95 269/539/270/1.122 240/481/241/0.932 336/680/1.586 
96 84/179/132/0.432 46/111/108/0.311 -/-/-
97 25/46/33/0.071 26/46/37/0.073 -/-/-
98 12/29/23/0.01 12/28/24/0.01 9/29/0.01
99 31/59/38/0.001 32/61/41/0 29/60/0.001
100 1/3/2/0.002 1/3/2/0.002 1/4/0.002
101 442/885/443/1.424 492/985/493/1.502 471/949/2.033 
102 228/457/229/0.29 225/451/226/0.263 228/462/0.329 
103 13/27/14/0.018 12/25/13/0.015 7/25/0.018
104 8/17/9/0.012 9/19/10/0.015 7/20/0.019
105 210/421/211/0.108 236/474/238/0.116 226/455/0.151 
106 4/9/5/0.047 4/9/5/0.047 4/20/0.108
107 37/78/44/0.133 21/43/22/0.065 24/76/0.168
108 197/395/198/0.248 167/335/168/0.195 257/523/0.375 

 
We used the profiles by [29] to compare the performance of those methods. 

Figures 1-4 show the performance of the above methods related to the CPU time 
(in second), the total number of iterations, the total number of function 
evaluations, and the total number of gradient evaluations, respectively. The curves 
in the figures have the following meanings: 

 “CG\_DESCENT” stands for the performance of the CG_DESCENT 
method with the approximate Wolfe line search proposed in [11].  we used 
the Fortran77 (version 1.4) code and the default parameters there. 

 “PRP+” means the PRP+ method with Wolfe line search proposed in [17]. 
 CMLS" stands for the performance of the CMLS method with 

15
12.55, 10t ε −= =  and the same line search as “CG_DESCENT” method. 

We see from figures 1-4 that the performance of the CMLS method and 
the CG_DESCENT method are much better than the performance of the PRP+ 
method. The curves “CG_DESCENT” and “CMLS” are very close. We also noted  
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Fig. 1.  Performance profiles relative to the CPU time. 

 
 
 

 
Fig. 2. Performance profiles relative to the number of iterations. 

 
 
 

 
Fig. 3. Performance profiles relative to the number of function evaluated. 
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Fig. 4. Performance profiles relative to the number of gradient evaluated. 
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