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GLOBAL CONVERGENCE OF A MODIFIED LIU-STOREY
CONJUGATE GRADIENT METHOD

Min LI, Yu CHEN?, Ai-Ping QU?

In this paper®, we make a modification to the LS conjugate gradient method
and propose a descent LS method. The method can generates sufficient descent
direction for the objective function. We prove that the method is globally convergent
with an Armijo-type line search. Moreover, under mild conditions, we show that the
method is globally convergent if the Armijo line search or the Wolfe line search is
used. The numerical results show that the proposed methods are efficient

Keywords: LS conjugate gradient method; Sufficient descent property;
Global convergence.

1. Introduction

In this paper, we consider the unconstrained problem
min f(x),xeR" Q)
where f:R" — R is continuously differentiable. Nonlinear conjugate gradient
methods are efficient for problem (1). The nonlinear conjugate gradient methods
generate iterates by letting
Xes1 = X+ y,
with

K=

{_gk’ k = O,
—Oy + B, k=1
where ¢ is the step-length, g, = g(x,) denotes the gradient of f at x,, and f

is a suitable scalar. Well-known conjugate methods include the HS, FR, PRP, CD,
LS and DY methods [1-7]. In the survey paper [10], Hager and Zhang reviewed
the development of different versions of nonlinear gradient methods, with special
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attention given to global convergence properties. We refer to [10] for more
details.

Recently, there is a growing interest in the development of descent
conjugate gradient methods. The first one was due to the CG_DESCENT method
proposed by Hager and Zhang [11]. They calculated g, by

N _ Ok Yica ol Yka I* ge dic s 2
ﬁk T 2 T 2 ' ( )
Ay 1Yk (dy_1Yk-1)
here and throughout this paper, ||¢| stands for the Euclidean norm of a vector and
Vi = Ok — Oy_1- An attractive property of the CG_DESCENT method is that the

directions d, generated by the CG_DESCENT method satisfy the sufficient

descent condition g[dk <=7l 9y I>. The method is globally convergent if the

Wolfe line search is used [11].

Zhang and Zhou [12] made a modification to the CG_DESCENT method
and propose a so-called cautious CG_DESCENT method. It was proved that the
cautious CG_DESCENT method with the standard Armijo line search is also
globally convergent.

However, just as Hager and Zhang [10] pointed out that the research about
the LS method [6] is very few. The purpose of this paper is to develop a descent
LS method and establish its global convergence.

In the next section, we propose the method. In section 3, we prove the
global convergence of the proposed method with an Armijo-type line search. In
section 4, we establish the global convergence of the proposed method with
Armijo line search and Wolfe line search. In section 5, we do some numerical
experiments to test the proposed methods and compare their performance with
some existing methods.

2. The algorithms

The standard LS method [6] specifies the S-° by

Ok Vit
ﬂLS = =kZkd
‘ gz—ldk—l
Inspired by the CG_DESCENT method, we give the following modified formula
to A

ML — _ Ok Vi —t” Vi IF gk di (3)
k T T 2
Oxadk 1 (9k-10k1)
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where t > ¥, is a constant. Obviously, if exact line search is used, then A5 will

reduce to ﬁkLS. The theorem below shows an attractive property of the modified
LS method that the search directions d, will always be sufficiently descent if

G101 # 0.
Theorem 2.1. Let {d,} be generated by
dy ==k + A" Ay, do=-0q , (4)
If g ,d,, =0, then the following inequality holds
O de <(H-1)ll ok I? (5)
In other words, the directions d, are sufficiently descent directions for function f
ift>%.

Proof. It is clear that (5) holds for k =0. Suppose that (5) holds for some
k > 0. We are going to show that it holds for k +1. Multiplying both sides of the
first equation in (4) by g, , we get

gedy =1l gy 1P +4" ged 4

T 2 T
d
=g I _( Ok Yk +,[|| Vi [l 9k lig;dkl

gg—ldk—l (g;——ldk—l)z
_ Il 9k ||2 (gl—ldk—l)z - (glyk—l)(gl—ldk—l)(gldk—l) -t Y ||2 (gldk—l)z
2
(gg—ldk—l)
~ 11 9k IP (Ikadi)® + 2211 9y IP (9510 )®
T 2
(gk—ldk—l)
L 220V 117 (98 de_0)® —t Il Viea 1P (95 d1)?
2
(g-kr—ldk—l)

IN

=(&-Ylal?.
The proof is complete.
The above theorem shows that the directions generated by (4) are sufficient
descent directions. This feature is independent of the line search used. Based on

the above process, we present concrete MLS method with an Armijo-type line
search as follows
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Algorithm 2.1. ( MLS Method with an Armijo-type line search.)

Step 0. Given constant & >0. Given x, € R" . Set k =0.

Step 1. Stop if || g, |l.<¢.

Step 2. Compute d, by (4).

Step 3. Determine the steplength «, by the following Armijo-type search.
Namely determines ¢ = max{p!, j=0,1,2,--} satisfying

f O+ i) = f (%) < —de [y I1* (6)

where 6, >0 and 0< p <1.

Step 4. Let X4 =X+ dy. If | g |l.< &, then stop.

Step 5. Set k =k +1, go to Step 2.
As we have shown in Theorem 2.1 that d, is a descent of f at x,, it is not

difficult to see that the above algorithm is well defined. Moreover, if f is
bounded from below, we have from (6) that

Y lldell*.
k=0
This implies
limeaZ | d |*=0 and  lim e, | d, |[*=0. 7)
k—o0 k—o0

3. The global convergence of Algorithm 2.1

In this section, we will focus on the global convergence of the Algorithm
2.1. We first make the following assumptions.

Assumption 3.1

I.  The level set Q={x| f(x) < f(Xy), x e R"} is bounded.

Il. In some neighborhood N of Q , function f is continuously
differentiable and its gradient g(x) is Lipschitz continuous, namely,
there exists a constant L such that

g —agW I <Llix=yl, VX yeN. (8)
From now on, throughout this paper, we always suppose that the conditions in this
assumption hold. It follows directly from the Assumption 3.1 that there exist two
positive constants B and y; such that

[x[<B and  Jlg()ll<y, VxeQ. 9)

In the later part of this section, we will prove the global convergence of
Algorithm 2.1. At first, we give the following lemma about the boundness of the
directions d, .
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Lemma 3.1. Let the conditions in Assumption 3.1 hold, and {d,}
generated by Algorithm 2.1. If there exists a constant » > 0 such that

lowll>»,  Vvk=0, (10)
then there exists a constant M > 0 such that
|d, [<M, vk > 0. (12)

Proof. We get from (4) , (9) and (10) that
e <l gy N1+ 1 A" {1l dyy I

d, P dy_
9 MY T I Yiea 1T 9ic 11T 1||||dk_1||

<lg I+

| gl—ldk—l| | gg—ldk—l §
+ 4t7/lLak—l ” dk—l ”2 + t(4t)22}/12|-ak—1 ” dk—l ”2 ” d ”
2 2 4 k-1
(4t-1)y (4t-1D)y
4ty L , 3232 2
<py+———a |d I +—=—a ]| d,_ d.. |l
N (4,[_1)72 ket [l i I (4t—1)274 ke [ Ay (Il g |l
(7) implies that for any constant b € (0,1), there exists a index k, such that
32321
ﬁam ldiq IP<b, Vk>k,
Then
4t -1)y°b
la <+ B2 bjd = +bd I

N
where C =y, + (4t —1)yb / (8t%y;) is a constant. For any k >k, , we have

ldy [SCA+b+b? 4+ +0* ™) + b* |1 d ||s%+ lldy, 1I.
So, we can let
M = max{[l d [lIldy [I,--ll dy [l,355+11di 11}

to get (11). The proof is completed.

Based on Lemma 3.1, we give the next global convergence theorem for
Algorithm 2.1 with the Armijo-type line search.

Theorem 3.2. Let the conditions in Assumption 3.1 hold, {x,} and {d,}

be generated by Algorithm 2.1, then either || g, ||=0 for some k or
liminf || g, ||=0. (12)
k—o0
Proof. We suppose for contradiction that neither || g, |=0 nor
liminf, || g, [|=0, then there exists a constant >0 such that (10) holds. We
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consider the case that liminf,_,_ o, >0. (7) implies that liminf,__ ||d, |[=0 .
This together with (5) implies liminf,_,_ | g, |[=0, which contradicts (10).
Suppose that liminf,_,_ o, =0, then there exists a infinite index set K such that

liminf ¢,=0. 1
=0 (13)

From the Step 3 of the Algorithm 2.1, p‘lak does not satisfy (6), which implies
F (0 + o dy) = F(4) > =60 o Nl dy |1 (14)

By the Lipschitz condition (8) and the mean value theorem, there is a & <[0,1],
such that

f (X + p o d) = F (%) = p g 9 (X + & p e Ay ) dy
1T 1 1 U
=p U +p ak(g(xk + kP akdk)_gk) dy

< p g dy + Lo e 1 I
This together with (5), (11) and (14) gives

4t -1 -
a9 P <= gy dy <aqo (G Nl dy II* +LITdy )

<a p H (MY +LM?),
This together with limy . ., o =0 implies lim, . ., [1 9 |[=0, which
yields a contradiction and completes the proof.

4. The global convergence of MLS method with Armijo line search
and Wolfe line search

In this section, we will prove the global convergence of the MLS method
with the Armijo line search and the Wolfe line search. The Armijo line search
condition is

F O + i) = (%) < Ser g di (15)
where ¢ € (0, 1). We determine the steplength ¢, by letting it be the largest scale
in the set {p!, j=0,1,2,--}, where pe(0,1).

The Wolfe line search conditions are the following two inequalities

{ f (% + e dy) = f (%) < S gy dy,

dy 9(X + ad) 2 o9 dy,
where 0< 6 <o <1. However, it seems not easy to establish the global

convergence of the relative method. So, we introduce a cautious update rule to (4)
and let d, be determined by the following cautious rule

(16)
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MLS (17)
—Ok + B Ay, else,

q {—gw if |9I—1dk—1 <& [[dall,
k =
where g >0 is a constant. Such a cautious update rule was proposed by D. Li and

M. Fukushima in [13] and was used to CG_DESCENT method by Zhang and
Zhou in [12]. Now we present the cautious MLS method with the Armijo line or
the Wolfe line search as follows:

Algorithm 4.1 (The cautious MLS method.)

Step 0. Given constants & >0, & >0. Given x, € R" . Set k =0.
Step 1. Stop if || g, |l.<¢€.
Step 2. Compute d, by (17).
Step 3. Determine the steplength «, by Armijo line search or Wolfe line
search.
Step 4. Let X, =X+ dy. If | gy |l.< &, then stop.
Step 5. Set k =k +1, go to Step 2.
From Theorem 2.1 we have that d, is a descent direction of f at x, . Itis easy to

see that the above algorithm is well defined. We simply call the algorithm CMLS
method in the later part of this paper.

To prove the global convergence of CMLS method, we first show the
following useful lemma, which was essentially proved by Zoutendijk [14] and
Wolfe [15,16]

Lemma 4.1. Let the conditions in Assumption 3.1 hold. and {x} be

generated by the CMLS method with Armijo line search or Wolfe line search.
Then we have

lo I _ 5
Z ST =

Proof. Consider the case Where the Armijo line search is used. We first
show that there is a constant ¢ such that

> 9 [
”dk [

2(1_1j||gk I
a))a, |

This implies (19) with ¢ = (1-£)%.

If o, 21, we get from (4) that
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If o, <1, by the line search rule, p_lak will not satisfy (15). This means
f (4 +p i) = £ () > Sp ey gy - (20)
By the Lipschitz condition (8) and the mean value theorem, there is a &, €[0,1],
such that
f(x + p_lakdk) - f(x)
= p o 9% + &p ey dy)" dy

.
= Pl Gy + p ey (Q(Xk + &P dy) - gk) dy

< p e gedi + Lo a1 dy |17
The last inequality together with inequality (20) implies (19) with

o3 (i)

On the other hand, we get from the Armijo condition (15) and the boundness of
{x} < Q that

k=0
This together with (5) and (19) implies

Z” Ok ||

oll di ||
Consider the case where the Wolfe line search is used. From the second
inequality of (16), we have
gk+1dk o0y dk
This together with the Lipschtiz condition implies
(0 -1 gedy < (Ges1— ) dy <Ley [1d, [P
Consequently, we get

(O' 1) gkdk (1_0')|9Idk|.

oy 2 3
L lldg | Lo [ldg |l
Comparing this with the sufficient descent condition (5) we have
” gk ” c= (1_ O-)(4t _1) t> l ) (22)
TN a4

In a way similar to the proof for the case of Armijo line search, we can get (18).
The proof is complete.

The following theorem establishes the convergence of the CMLS method
with Armijo line search.
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Theorem 4.2. Let {x,} be generated by the CMLS method with Armijo

line search. If the conditions in Assumption 3.1 hold, then we have either
| 9, lI=0 for some k, or liminf,_,_ || g, [I=0.

Proof. We suppose for the sake of contradiction that || g, ||#0,vk >0,

and liminf,__ || 9, ||> 0. Denote y =inf{|| g, ||:k > O}. Itis clear that » >0 and
gkl 2y, vk>0. (23)

Define the index set K={i|d;=-g;}. It is not difficult to see from the

Zoutendijk condition (18) that the index set K must be finite. By (3), (9), (17)
and (23), we derive

‘ﬂkMLS‘ _l Ok Via —t” Yia IP ggdk—1|
Ok-10k 1 (9k1dy-1)°

|9y |+‘|| Yia I” 0Ldis|

g-kr—ldk—l‘ (gz—ldk—l)z ‘
NN+ Gaa D, UGN+ 1 s 1D 1 G M
alld |l (el diy 12
o2y 4 lgl
alld gl e lldey |l
o[ 2, 2og | lol
& e Jlde_ |l
This together with (17) implies
2y,  Aty?
ENES N ES kMLS|||dk_1||s{1+ﬂ+ Zl]ngkn.
& &

Therefore, we get from the Zoutendijik condition (18)

S 2
2 llgi lF<+o.
k=0

which yields a contradiction. The proof is completed.
In a way similar to Theorem 4.2, it is not difficult to establish the following
convergence for the CMLS method with the Wolfe line search.

Theorem 4.3. Let {x,} be generated by the CMLS method with Wolfe

line search. If the conditions in Assumption 3.1 hold, then we have either
| g, lI=0 for some k, or liminf,_, || g, [|=0.
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4. Numerical results

In this section, we do some numerical experiments to test the CMLS
method. We compare the performance with some existing conjugate gradient
methods including the PRP+ method developed by Nocedal [9] and the
CG_DESCENT method [11] . The PRP+ code was obtained from Nocedal's web
page at http:// www.ece.northwestern.edu.nocedalsoftware.htmil
and the CG_DESCENT code from Hager's web page at

http://www. math.ufl.edu/hager/papers/CG.
Table 1
Melting points and elemental analyses

N Prob Dim N Prob Dim N Prob Dim
1 PENALTY1 1000 37 GENHUMPS 1000 73 BROYDN7D 5000
2 NONDQUAR 10000 | 38 MSQRTBLS 1024 74 DIXMAANF 9000
3 SENSORS 100 39 WOODS 10000 | 75 DIXMAANG 3000
4 VARDIM 200 40 QUARTC 5000 76 CHAINWOO 10000
5 FMINSRF2 5625 41 CURLY?20 1000 77 FLETCBV2 1000
6 TQUARTIC 5000 42 WOODS 4000 78 DIXMAAND 9000
7 BRYBND 10000 | 43 DIXMAANI 9000 79 POWER 5000
8 VAREIGVL 1000 44 SPMSRTLS 4999 80 GENROSE 500

9 COSINE 10000 | 45 DIXMAANG 9000 81 POWELLSG 1000

10 FREUROTH 5000 46 SCHMVETT 10000 | 82 DQDRTIC 5000
11 DIXMAANJ 9000 47 SROSENBR 10000 | 83 FMINSRF2 1024
12 GENROSE 100 48 PENALTY2 200 84 CRAGGLVY 5000

13 TOINTPSP 50 49 ERRINROS 50 85 BRYBND 5000
14 VAREIGVL 50 50 NONDQUAR 5000 86 EG2 1000
15 CURLY30 1000 51 DIXMAANA 9000 87 EDENSCH 2000
16 GENHUMPS 5000 52 CHNROSNB 50 88 LIARWHD 10000

17 DQDRTIC 1000 53 DIXMAANK 1500 89 DIXMAANE 9000
18 MANCINO 100 54 DIXON3DQ 1000 90 SPMSRTLS 10000
19 TQUARTIC 1000 55 SCHMVETT 5000 91  ARGLINC 100
20 DIXMAANC 9000 56 LIARWHD 5000 92 MANCINO 50

21 ENGVALL1 1000 57 FLETCBV2 5000 93 DIXMAANB 3000
22 DQRTIC 5000 58 MOREBV 5000 94 POWELLSG 5000
23 MSQRTALS 1024 59 CURLY20 100 95 DIXMAANL 9000
24 SINQUAD 1000 60 DIXMAANB 9000 96 SINQUAD 5000

25 CURLY10 100 61  TOINTGOR 50 97 ENGVAL1 5000
26 FLETCHCR 1000 62 QUARTC 10000 | 98  COSINE 1000
27 MOREBV 1000 63 FREUROTH 1000 99  TOINTQOR 50
28 POWER 10000 | 64 FLETCHCR 100 100 ARGLINA 100

29 BDQRTIC 1000 65 DECONVU 61 101 FMINSURF 5625
30 ARGLINB 100 66 SROSENBR 5000 102 DIXMAANE 3000
31 ARWHEAD 5000 67 CURLY10 1000 103 DIXMAAND 3000
32  TESTQUAD 5000 68 CURLY30 100 104 DIXMAANA 3000
33 NONDIA 10000 | 69 PENALTY1 500 105 FMINSURF 1024
34 NONDIA 5000 70 DIXMAANJ 3000 106 TOINTGSS 10000
35 TRIDIA 10000 | 71 DIXMAANI 3000 107 SPARSQUR 5000
36 DIXON3DQ 10000 | 72 DIXMAANH 9000 108 DIXMAANH 3000
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All the test problems are the unconstrained problems in the CUTEr [19] library
with dimensions varying from 50 to 10000. We stop the iteration if

Il 9k Il..<10®is satisfied. All codes were written in Fortran and run on a PC with

2.8 GHZ CPU processor and 2GB RAM memory and Linux operation system.
Table 1 lists all the problems (Prob) and their dimensions (Dim). All the result are
listed in Table 2, which include the total number of iterations (lter), the total
number of function evaluations (Nf), the total number of gradient evaluations
(Ng), the CPU time (Time) in seconds, respectively. In Table 2, “—" means the
method failed.

Melting points and elemental analyses

Table 2

N CMLS method CG_DESCENT method PRP+ method
Iter/Nf/Ng/Time Iter/Nf/Ng/Time Iter/Nf(Ng)/Time

1 55/133/86/0.021 50/121/77/0.018 42/173/0.025

2 10007/20027/10089/27.5 10007/20025/10429/23.9 -I-/-

3 21/61/45/0.522 25/57/44/0.506 27/66/0.491

4 28/57/29/0.002 28/57/29/0.002 8/44/0.001

5 323/647/324/0.992 363/729/366/1.07 350/707/1.446

6 18/46/33/0.044 21/52/38/0.049 9/32/0.03

7 31/64/34/0.261 29/60/32/0.234 69/154/0.773

8 76/207/131/0.087 93/243/150/0.097 30/65/0.031

9 14/32/26/0.12 12/32/28/0.12 9/28/0.104

10 43/86/77/0.198 65/126/95/0.25 -I-/-

11 356/713/357/1.485 295/591/296/1.152 293/593/1.381

12 293/613/333/0.014 305/641/347/0.013 288/603/0.015

13 128/262/180/0.003 155/327/211/0.004 -I-/-

14 64/175/111/0.004 60/164/104/0.005 25/57/0.001

15 10740/17083/16943/11.02 | 9765/15713/15122/9.3 -I-/-

16 6832/13923/7135/41.858 9412/18948/9575/54.02 7442/15241/46.93

17 6/13/7/0.006 7/15/8/0.004 5/15/0.004

18 12/25/13/0.148 11/23/12/0.136 11/27/0.172

19 13/47/40/0.01 24/64/46/0.012 11/37/0.007

20 11/23/12/0.052 10/21/11/0.043 6/25/0.058

21 26/48/32/0.013 26/49/33/0.013 -I-/-

22 50/101/51/0.057 33/67/34/0.033 17/66/0.034

23 3629/7265/3638/18.25 3393/6793/3402/16.73 2934/5873/20.98

24 89/188/144/0.082 84/184/151/0.08 -I-/-

25 918/1677/1259/0.043 1013/1797/1508/0.046 -I-/-

26 4741/9599/4881/2.069 6828/14236/7479/2.90 4371/8767/2.173

27 425/851/426/0.157 425/851/426/0.143 425/851/0.18

28 371/743/372/0.685 369/739/370/0.565 355/719/0.669

29 479/991/699/0.325 628/1296/1025/0.434 -I-1-

30 4/9/8/0.004 6/12/13/0.005 -I-1-

31 10/23/16/0.036 3763/6992/8726/18.26 -I-/-

32 1718/3437/1719/1.583 1715/3431/1716/1.301 1590/3183/1.409

33 9/20/12/0.05 9/22/16/0.057 6/26/0.065

Table 2 continuous
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N CMLS method CG_DESCENT method PRP+ method
Iter/Nf/Ng/Time Iter/Nf/Ng/Time Iter/Nf(Ng)/Time

34 12/29/21/0.037 8/27/22/0.035 5/26/0.03

35 1115/2231/1116/2.714 1115/2231/1116/2.37 1112/2227/2.78

36 10000/20001/10002/24.0 10000/20001/10002/21.0 10000/20006/24.673

37 2471/5094/2658/3.047 2697/5568/2908/3.233 2116/5025/2.909

38 2208/4423/2217/11.102 2318/4642/2325/11.391 2396/4797/17.161

39 227/1491/294/0.983 187/426/257/0.787 232/487/1.04

40 50/101/51/0.056 33/67/34/0.032 17/66/0.034

41 9775/15435/15148/7.415 9757/15481/15084/7.111 -I-/-

42 226/491/286/0.359 148/342/214/0.236 190/393/0.316

43 3627/7255/3628/15.258 2687/5375/2688/10.343 3542/7091/16.534

44 202/411/211/0.676 218/443/227/0.698 212/430/0.872

45 261/523/262/1.098 266/533/267/1.026 404/816/1.905

46 47/80/63/0.94 39/65/54/0.783 44/102/0.982

47 9/20/13/0.033 12/26/17/0.039 8/26/0.04

48 190/225/347/0.122 199/234/365/0.126 -I-/-

49 1505/2978/2161/0.037 1013/2023/1444/0.024 -I-/-

50 5008/10029/5131/6.486 5014/10053/5154/5.636 -I-/-

51 8/17/9/0.043 9/19/10/0.04 7/23/0.054

52 252/506/255/0.006 272/545/273/0.005 314/636/0.008

53 1399/2799/1400/0.879 1434/2869/1435/0.835 1404/2818/1.017

54 1000/2001/1002/0.23 1000/2001/1002/0.199 1000/2005/0.235

55 44/75/59/0.437 39/66/53/0.38 41/91/0.439

56 25/56/41/0.079 21/48/32/0.062 16/46/0.062

57 0/1/1/0.004 0/1/1/0.004 4101/8203/17.226

58 167/335/169/0.328 147/295/149/0.264 161/323/0.369

59 910/1664/1350/0.067 899/1670/1310/0.063 -I-/-

60 10/21/11/0.045 9/19/10/0.04 7/26/0.063

61 119/218/147/0.006 122/224/154/0.006 -I-/-

62 53/107/54/0.125 35/71/36/0.073 16/69/0.073

63 98/201/128/0.068 85/173/113/0.058 -I-/-

64 796/1670/895/0.036 782/1664/895/0.035 798/1610/0.041

65 306/613/308/0.022 457/916/462/0.03 696/1398/0.062

66 9/20/13/0.016 12/26/16/0.018 10/29/0.022

67 8887/13894/13325/4.241 9431/14475/14406/4.18 -I-/-

68 927/1750/1323/0.084 982/1843/1441/0.088 -I-/-

69 49/114/72/0.01 45/107/69/0.008 29/113/0.009

70 1239/2479/1240/1.56 297/595/298/0.349 360/728/0.531

71 3193/6387/3194/3.988 2552/5105/2553/2.996 2399/4804/3.437

72 261/523/262/1.1 263/527/264/1.016 530/1069/2.497

73 1426/2840/1443/13.54 1502/2988/1524/14.05 6007/12369/83.27

74 270/541/271/1.156 269/539/270/1.054 242/491/1.141

75 167/335/168/0.211 170/341/171/0.199 159/327/0.235

76 313/628/403/2.305 358/696/448/2.429 10001/20701/80.686

77 1174/2349/1177/0.882 1052/2105/1055/0.758 942/1886/0.76

78 13/27/14/0.061 12/25/13/0.051 8/26/0.061

79 266/533/267/0.236 258/517/259/0.195 252/514/0.229

Table 2 continuous
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N CMLS method CG_DESCENT method PRP+ method
Iter/Nf/Ng/Time Iter/Nf/Ng/Time Iter/Nf(Ng)/Time

80 1193/2416/1237/0.26 1259/2559/1309/0.255 1121/2269/0.277

81 97/195/109/0.025 241/490/274/0.051 99/238/0.03

82 7/15/8/0.018 7/15/8/0.019 5/15/0.021

83 246/493/247/0.12 276/558/282/0.129 257/517/0.163

84 119/231/162/0.711 116/208/150/0.64 -I-/-

85 30/61/31/0.115 36/74/39/0.141 26/66/0.161

86 4/9/6/0.004 4/9/6/0.004 -I-/-

87 30/54/41/0.04 33/61/43/0.041 -I-/-

88 21/51/33/0.141 25/60/41/0.162 15/46/0.131

89 366/733/367/1.519 359/719/360/1.378 361/727/1.71

90 217/441/226/1.509 225/457/234/1.498 217/440/1.829

91 4/9/8/0.003 5/11/11/0.005 -I-/-

92 9/19/10/0.028 9/19/10/0.031 10/24/0.038

93 10/21/11/0.015 9/19/10/0.014 6/23/0.016

94 97/195/109/0.123 162/332/187/0.176 148/346/0.201

95 269/539/270/1.122 240/481/241/0.932 336/680/1.586

96 84/179/132/0.432 46/111/108/0.311 -I-/-

97 25/46/33/0.071 26/46/37/0.073 -I-/-

98 12/29/23/0.01 12/28/24/0.01 9/29/0.01

99 31/59/38/0.001 32/61/41/0 29/60/0.001

100 | 1/3/2/0.002 1/3/2/0.002 1/4/0.002

101 | 442/885/443/1.424 492/985/493/1.502 471/949/2.033

102 | 228/457/229/0.29 225/451/226/0.263 228/462/0.329

103 | 13/27/14/0.018 12/25/13/0.015 7/25/0.018

104 | 8/17/9/0.012 9/19/10/0.015 7/20/0.019

105 | 210/421/211/0.108 236/474/238/0.116 226/455/0.151

106 | 4/9/5/0.047 4/9/5/0.047 4/20/0.108

107 | 37/78/44/0.133 21/43/22/0.065 24/76/0.168

108 | 197/395/198/0.248 167/335/168/0.195 257/523/0.375

We used the profiles by [29] to compare the performance of those methods.
Figures 1-4 show the performance of the above methods related to the CPU time
(in second), the total number of iterations, the total number of function
evaluations, and the total number of gradient evaluations, respectively. The curves
in the figures have the following meanings:
“CG\_DESCENT” stands for the performance of the CG_DESCENT
method with the approximate Wolfe line search proposed in [11]. we used

the Fortran77 (version 1.4) code and the default parameters there.

“PRP+” means the PRP+ method with Wolfe line search proposed in [17].
CMLS" stands for the performance of the CMLS method with

t=2.55, & =107" and the same line search as “CG_DESCENT” method.

We see from figures 1-4 that the performance of the CMLS method and
the CG_DESCENT method are much better than the performance of the PRP+
method. The curves “CG_DESCENT” and “CMLS” are very close. We also noted
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Fig. 1. Performance profiles relative to the CPU time.
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Fig. 3. Performance profiles relative to the number of function evaluated.



Global convergence of a modified Liu-Storey conjugate gradient method 25

P
1of —
P
osf LS
é( [ CC_DESCENT
06l
4} PRP+
naf
ol . . . - . o
10 13 20 23 0 33 40

Fig. 4. Performance profiles relative to the number of gradient evaluated.
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