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SUFFICIENT OPTIMALITY CONDITIONS AND MOND-

WEIR DUALITY FOR QUASIDIFFERENTIABLE 

OPTIMIZATION PROBLEMS WITH UNIVEX FUNCTIONS 

Tadeusz ANTCZAK1, Vinay SINGH2 

In the paper, a nonconvex quasidifferentiable optimization problem with the 

inequality constraints is considered. The concept of a univex function with respect to 

a convex compact set is introduced. Further, the sufficient optimality conditions and 

several duality results in the sense of Mond-Weir are established for the considered 

quasidifferentiable optimization problem under assumption that the functions 

constituting it are univex with respect to convex compact sets which are equal to 

Minkowski sum of their subdifferentials and superdifferentials. 

Keywords: quasidifferentiable optimization problem; optimality conditions; 

duality; quasidifferentiable univex function with respect to convex compact set. 

1. Introduction 

Quasidifferential calculus were developed by Demyanov and Rubinov [8] 

and have been studied in more detail in [9]. Since then it has been developed 

extensively. A survey of results concerning this class of functions is presented in 

[10]. This is also a consequence of the fact that quasidifferential calculus plays an 

important role in nonsmooth analysis and optimization. Indeed, the concept of 

quasidifferentiability can be employed to study a wide range of theoretical and 

practical issues in many fields, for instance, in economics, engineering, 

mechanics, optimal control theory, etc. (see, [11], [13], [24], and others). Further, 

the class of quasidifferentiable functions is fairly broad. It contains not only 

convex, concave, and differentiable functions but also convex-concave, D.C. (i.e., 

difference of two convex), maximum, and other functions. In addition, it even 

includes some functions which are not locally Lipschitz continuous. 

Optimality and duality results for quasidifferentiable optimization 

problems can be found in several works (see, for example, Eppler and Luderer 

[20], Demyanov and Rubinov [12], Gao [15], [16], Kuntz and Scholtes [18], 

Luderer and Rosiger [20], Polyakova [21], Shapiro [23], Uderzo [25], Ward [26], 

Xia et al. [28], and others). In most of the works mentioned above, the necessary 
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optimality conditions have been proved for quasidifferentiable optimization 

problems only. However, there are a few papers in the literature in which the 

sufficient optimality conditions and duality results have been established for some 

classes of nonconvex quasidifferentiable optimization problems. Namely, Craven 

[6] established the sufficient optimality conditions for directionally differentiable 

optimization problems under cone-invexity hypotheses. In [7], Craven presented 

the sufficient optimality conditions and Wolfe duality results for directionally 

differentiable optimization problems under directional invexity hypotheses. 

Glover [17] proved the sufficiency of the presented necessary optimality 

conditions under assumptions that the objective function is directionally 

differentiable pseudo-invex and the constraints are directionally differentiable 

quasi-invex. Yin and Zhang [27] established sufficient optimality conditions for 

the considered quasidifferentiable optimization problem under generalized 

convexity. Gao [16] proved the sufficient optimality conditions for 

quasidifferentiable optimization problems under assumption that the objective 

function is directionally differentiable pseudoconvex and the constraint functions 

are directionally differentiable quasiconvex.  

The aim of this paper is to prove the sufficient optimality conditions of the 

Lagrange multiplier type and several Mond-Weir duality results for a new class of 

nonconvex quasidifferentiable optimization problems with inequality constraints. 

However, our approach in proving the sufficiency of the Karush-Kuhn-Tucker 

necessary optimality conditions and Mond-Weir duality results for the considered 

quasidifferentiable optimization problem differs even from those ones mentioned 

above in which directionally differentiable generalized convex functions have 

been used. In this paper, we introduce a new concept of generalized convexity, 

namely, the notion of univexity with respect to a convex compact set. We use this 

notion in establishing the sufficient optimality conditions and duality theorems in 

the sense of Mond-Weir for the considered quasidifferentiable optimization 

problem involving univex functions with respect to convex compact sets which 

are equal to Minkowski sum of their subdifferentials and superdifferentials. The 

results established in the paper are illustrated by an example of a nonsmooth 

optimization problem with quasidifferentiable univex functions with respect to the 

same function  and with respect to convex compact sets which are equal to 

Minkowski sum of subdifferentials and superdifferentials functions constituting 

this extremum problem. 

2. Preliminaries 

Definition 2.1 A mapping f : ℝⁿ → ℝ is said to be directionally 

differentiable at u  ℝⁿ into a direction d if the limit 
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t

)u(f)tdu(f
lim)d;u(f

0t





exists finite. It is said that f is directionally 

differentiable or semi-differentiable at u if its directional derivative f(u;d) exists 

finite for all d  ℝn. 

Definition 2.2 A real-valued function f : ℝn  ℝ is said to be 

quasidifferentiable at u  ℝn if f is directionally differentiable and there exists a 

ordered pair of convex compact sets )]u(f),u(f[)u(Df   such that 

,dwmindvmax)d;u(f T

)u(fw

T

)u(fv 
  (1) 

where )u(f  and )u(f  are called subdifferential and superdifferential of f at u, 

respectively. Further, the ordered par of sets )]u(f),u(f[)u(Df   is called 

quasidifferential of the function f at u. 

Let us note that the pair of sets constituting the quasidifferential to a 

function f at a certain point u is not unique, because if )]u(f),u(f[)u(D   is a 

quasidifferential of f at x , then, for any convex compact set V, the ordered pair of 

sets ]V)u(f,V)u(f[   is also its quasidifferential. 

Now, we introduce the definition of a univex function with respect to a 

convex compact subset of ℝn. The concept of a univex function with respect to a 

convex compact set generalizes the notion of a differentiable univex function, 

earlier given in the literature by Bector et al. [4].  

Definition 2.3 Let f : ℝn → ℝ, u  ℝn and Sf(u) be an arbitrary convex 

compact subset of ℝn. If there exist functions b : ℝn × ℝn → ℝ with b(x,u)  0 for 

all x  ℝn,  : ℝ → ℝ and  : ℝn × ℝn → ℝⁿ such that the inequality 

 ),u,x(w))u(f)x(f()u,x(b T  w  Sf(u) (2) 

holds for all x  ℝn (x  u), then f is said to be a (strictly) univex function at u on 

ℝn with respect to the convex compact set Sf(u) and with respect to , b and . 

If f is defined on a nonempty set X  ℝn, u  X and inequality (2) is 

satisfied for all x  X, then f is to be a (strictly) univex function at u on X with 

respect to convex compact set Sf(u) and with respect to , b and . 

If inequality (2) is satisfied for all u  ℝn with respect to a convex 

compact set Sf, then f is said to be a (strictly) univex function on ℝn with respect 

to Sf and with respect to , b and . 

Remark 2.1. In order to define an analogous class of (strictly) unicave 

functions, the direction of inequality (2) should be reversed. 
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Remark 2.2. Note that, in the case when f is a locally Lipschitz function 

and Sf(u) is equal to the Clarke generalized gradient of f at u (see [5]), then we 

obtain the definition of a locally Lipschitz univex function. 

Remark 2.3. Note that the definition of a locally Lipschitz univex 

function generalizes and extends many other definitions of nondifferentiable 

generalized convex functions. Indeed, if we assume that Sf(u) is equal to the Clarke 

generalized gradient [5] of f at u, then, from Definition 2.3, there are the following 

special cases: 

i) If (a)  a and b(x,u) = 1 for all x  X and (x,u) = x – u, then we obtain the 

definition of a nonsmooth convex function. 

ii) If (a)  a and bi(x,u) = 1 for all x  X, then we obtain the definition of a 

locally Lipschitz invex function (with respect to ) given by Reiland [22]. 

iii) If (a)  a and (x,u) = x – u, then we obtain the definition of a locally 

Lipschitz b-convex function. 

iv) If (a)  a, then we obtain the definition of a locally Lipschitz b-invex 

function (with respect to ) (see Li et al. [19]). 

v) If )1e()a( a

r
1   for a certain scalar r  0 and (x,u) = x – u and b(x,u) = 1 

for all x  X, then we obtain the definition of a locally Lipschitz r-convex 

function (see Avriel [3], in the differentiable case). 

vi) If )1e()a( a

r
1   for a certain scalar r  0 and b(x,u) = 1, then we obtain the 

definition of a locally Lipschitz r-invex function (with respect to ) 

introduced by Antczak [1]. 

vii) If )1e()a( a

r
1   for a certain scalar r  0, then we obtain the definition of a 

locally Lipschitz B-r-invex function (with respect to ) (see Antczak [2], in 

the differentiable case). 

Example 2.1. Let f : ℝ2 → ℝ be a function defined by 

  1xxexp)x(f 21  . First, we show that f is a quasidifferentiable function at 

x  = (0,0). Indeed, we have .dd)d;x(f 21   Hence, it can be proved that 

dwmindvmax)d;x(f T

)}1,1(),1,1{(cow

T

)}2,2(),2,2(),0,0{(cov 
 , )}2,2(),2,2(),0,0{(co)x(f   

and )}1,1(),1,1{(co)x(f  . Hence, by Definition 2.2, it follows that f is a 

quasidifferentiable function at x  = (0,0). Further, we have  )x(f)x(fS )x(f  

)}1,1(),3,1(),1,1(),3,1(),1,1(),1,1{(co  . Now, let b : ℝ2  ℝ2  ℝ+ be defined by 

b(x, x ) = 4 for all x  ℝ,  : ℝ → ℝ be a function defined by (a) = ln(a + 1) and 
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 : ℝ2 × ℝ2 → ℝ2 be a vector-valued function 



















21

21

xx

xx
)x,x( . Hence, by 

Definition 2.3, it can be proved that f is a quasidifferentiable univex function at x  

= (0,0) on ℝ2 with respect to the convex compact set )x(fS  and with respect to 

functions , b and  defined above. 

3. Optimality 

In the paper, consider the following nonsmooth optimization problem: 
min)x(f   

 s.t.    gj(x)  0,  j  J = {1,…,m}, (P) 

x  ℝn, 

where f: ℝn  ℝ, gj : ℝn  ℝ, j  J, are quasidifferentiable functions on ℝn. 

Thus, problem (P) may be referred as a quasidifferentiable optimization problem.  

Let X:= { x  ℝn: gj  0, j  J} be the set of all feasible solutions in 

problem (P). Further, we denote by J( x ) the set of inequality constraint indexes 

that are active at point x   X, that is, }0)x(g:Jj{:)x(J j  . 

In [16], Gao presented the following necessary optimality conditions for 

nonsmooth optimization problems with inequality constraints in which the 

functions involved are quasidifferentiable. 

Theorem 3.1. (Karush-Kuhn-Tucker type necessary optimality conditions). Let x  

 X be an optimal solution for the considered quasidifferentiable optimization 

problem (P). Further, assume that f is quasidifferentiable at x , with the 

quasidifferential )]x(f),x(f[)x(Df  , each gj, j  J, is quasidifferentiable at x , 

with the quasidifferential )]x(g),x(g[)x(D jjg j
 . If the constraint qualification 

[20] is satisfied at x  for problem (P), then, for any sets of )x(fw0   and 

)x(gw jj  , j  J, there exist the scalars 0)w(j  , j  J, not all zero, such that 






m

1j

jjj0 )w)x(g)(w(w)x(f0 , (3) 

,Jj,0)x(g)w( jj   (4) 

Jj,0)w(j  , (5) 

where )w(),...,w( m1   are dependent on the specific choice of w = (w0, w1,…,wm). 

Theorem 3.2. (Sufficient optimality conditions). Let x  be a feasible 

solution in the considered optimization problem (P) and the Karush-Kuhn-Tucker 

type necessary optimality conditions (3) – (5) be satisfied at x  with the 
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quasidifferentials )]x(f),x(f[)x(Df  , )]x(g),x(g[)x(D jjg j
 , j  J. Further, 

assume that f is quasidifferentiable univex function at x  on X with respect to 

0)x(f w)x(fS   (for any )x(fw0  ) and with respect to f, bf and , where 

bf(x, x ) > 0 for all x  X, a < 0  f(a) < 0 and, moreover, each gj, j  J( x ), is 

quasidifferentiable univex function at x  on X with respect to jj)x(g w)x(gS
j

  

(for any )x(gw jj  , j  J,) and with respect to 
jg , 

jgb  and , where a  0  

0)a(
jg  , j  J( x ). Then x  is an optimal solution in the considered 

optimization problem (P). 

Proof Assume that x  is such a feasible point in problem (P) at which the 

Karush-Kuhn-Tucker type necessary optimality conditions (3) – (5) are satisfied 

with the quasidifferentials )]x(f),x(f[)x(Df  , )]x(g),x(g[)x(D jjg j
 , j  J. 

This means that, for given sets of )x(fw0   and )x(gw jj  , j  J, there exist 

R)w(0   and mR)w(   such that the conditions (3)  (5) are satisfied. Hence, 

by the Karush-Kuhn-Tucker type necessary optimality condition (3), it follows 

that there exist )x(fv0   and )x(gv jj  , j  J, such that 

.)wv)(w(wv0

m

1j

jjj00 


  (6) 

By hypotheses, f is a quasidifferentiable univex function at x  on ℝn with respect 

to 0)x(f w)x(fS   and with respect to f, bf and , gj, j  J( x ), is 

quasidifferentiable univex function at x  on X with respect to jj)x(g w)x(gS
j

  

and with respect to 
jg , 

jgb  and . Hence, by Definition 2.3, the inequalities 

),x,x())x(f)x(f()x,x(b T
0ff     )x(f0 S , (7) 

),x,x())x(g)x(g()x,x(b T

jjjgg jj
   )x(gj j

S ,  j  J( x ) (8) 

hold for all x  X. Since (7) and (8) are fulfilled for any sets )x(f0 S  and 

)x(gj j
S , j  J( x ), respectively, by the definitions of )x(fS  and )x(g j

S , they are 

also fulfilled for )x(f000 Swv   and )x(gjjj j
Swv  . Thus, (7) and (8) 

yield   

 ),x,x()wv())x(f)x(f()x,x(b T

0

T

0ff      (9) 

 ),x,x()wv())x(g)x(g()x,x(b T

j

T

jjjgg jj
    j  J( x ). (10) 

Using x  X and x   X together with the definition of J( x ), we get gj(x)  gj( x ), 

j  J( x ). By assumption, it follows that 
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0))x(g)x(g( jjg j
 ,  j  J( x ). (11) 

By definition, ,0)x,x(b
jg   j  J( x ), for all x  X. Thus, (11) gives 

,0))x(g)x(g()x,x(b jjgg jj
    j  J( x ). (12) 

Combining (10) and (12), we obtain 

.0)x,x()wv( T

j

T

j     j  J( x ). (13) 

Since 0)w(j  , j  J( x ), and 0)w(j  , j  J( x ), therefore, (13) yields 

.0)x,x()wv)(w(

m

1j

T
j

T
jj 



 (14) 

By (6) and (14), it follows that  

.0)x,x()wv( T
0

T
0   (15) 

Combining (9) and (15), we obtain 

.0))x(f)x(f()x,x(b ff   (16) 

By assumption, bf(x, x ) > 0 for all x  X and a < 0  f(a) < 0. Thus, (16) 

implies that the inequality f(x)  f( x ) holds for all x  X. This means that x  is 

optimal in problem (P). Hence, the proof of this theorem is complete. 

Example 3.1. Consider the following nonsmooth optimization problem: 

  min1xxxxln)x(f 21
2
2

2
1   

 s.t.      ,0xxarctg)x(g 211   (P1) 

x  ℝ2. 

Note that X = { x  ℝ2 : 0)xx(arctg 21   } and x  = (0,0) is a feasible solution 

in problem (P1). Further, it can be proved that f and g1 are quasidifferentiable at 

x . Indeed, we have 211 dd)d;x(f   and, therefore, 

)}1,0(),1,0{(w

T

)}2,0(),0,2(),2,0{(cov

T dwmindvmax)d);0,0((f


 , 

where )}2,0(),0,2(),2,0{(co)0,0(f  , )}1,0(),1,0{()0,0(f  . Hence, by Definition 

2.2, f is a quasidifferentiable function at x  = (0,0). Further, by Definition 2.1, we 

have 211 dd)d;x(g   and, therefore, 

,dwmindvmax)d;x(g T

)}1,1(),1,1{(cow

T

)}2,2(),2,2(),0,0{(cov
1


  

where )}2,2(),2,2(),0,0{(co)x(g1   and  )}1,1(),1,1{(co)x(g1  . Hence, by 

Definition 2.2, g1 is a quasidifferentiable function at x  = (0,0).  

It can be proved that the Karush-Kuhn-Tucker necessary optimality 

conditions are fulfilled at x . Indeed, it can be shown that, for any sets of 
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)x(fw0   and )x(gw 11  , there exists 0)w(1   such that the conditions (3)  (5) 

are satisfied. Since the Karush-Kuhn-Tucker necessary optimality conditions are 

fulfilled at x , in order to prove optimality of x  by Theorem 3.2, we have to show 

that f and g1 are quasidifferentiable univex functions at x  on X with respect to 

convex compact sets which are equal to Minkowski sum of their subdifferentials 

and superdifferentials and with respect to the same function , but not necessarily 

with respect to the same functions b and . We set 3)x,x(bf  , f(a) = exp(a)  

1,  0)x(f w)x(fS   (for any )x(fw0  ), 4)x,x(b
1g  , )a(tg)a(

1g  , 

11)x(g w)x(gS
1

  (for any )x(gw 11  ),  : X × X → ℝ2 be a vector-valued 

function defined by 



















21

21

xx

xx
)x,x( . Then, by Definition 2.3, f is a 

quasidifferentiable function at x  on X with respect to )x(fS  and with respect to f, 

bf,  and g1 is a quasidifferentiable function at x  on X with respect to )x(g1
S  and 

with respect to 
11 gg b, , . Further, note that functions f and 

1g  satisfy 

conditions given in Theorem 3.2. Hence, since all hypotheses of Theorem 3.2 are 

fulfilled, x  is an optimal solution in the considered nonsmooth optimization 

problem (P1). 

3. Mond-Weir duality 

In this section, for the considered quasidifferentiable optimization problem (P), 

we define its dual problem in the sense of Mond-Weir as follows: 

f(y)  max 






m

1j

jjj0 )w)y(g)(w(w)y(f0 ,  

 for any sets of )y(fw0   and )y(gw jj  , j  J, (D) (17) 

j(w)gj(y)  0,  j  J, (18) 

y  Rn, j(w)  0,  j  J, (19) 

where ))w(),...,w(()w( m1   are dependent on the specific choice of w = 

(w0,w1,…,wk).  

We denote by Z the set of all feasible solutions in Mond-Weir dual 

problem (D), that is, the set of (y, (w)) satisfying constraints (17)  (19). Further, 

we denote by Y = prℝnZ the projection of the set Z on ℝn. 

Theorem 4.1. (Weak duality). Let x and (y,(w)) be any feasible solutions 

in the considered optimization problem (P) and its Mond-Weir dual problem (D), 

respectively. Further, assume that f is a quasidifferentiable univex function at y on 
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XY with respect to 0)y(f w)y(fS   and with respect to f, bf and , where 

bf(x,y) > 0, a < 0  0)a(f  , each j(w)gj, j  J(y), is a quasidifferentiable 

univex function at y on XY with respect to 
jjg w)y(g)y(S

j
  and with respect 

to 
jg , 

jgb  and , where a < 0  0)a(
jg  , j  J. Then f(x)  f(y). 

Proof Let x and (y,(w)) be any feasible solutions in problem (P) and its 

Mond-Weir dual problem (D), respectively. This means that, for given sets of 

)y(fw 0   and )y(gw jj  , j  J, there exist (w)  ℝ and (w)  ℝm such that 

the constraints (17)  (19) are fulfilled. Suppose, contrary to the result, that 

f(x) < f(y). (20) 

By hypotheses, f is a quasidifferentiable univex function at y on XY with 

respect to 0)y(f w)y(fS   and with respect to f, bf and , each gj, j  J(y), is a 

quasidifferentiable univex function at y on XY with respect to 

jj)y(g w)y(gS
j

  and with respect to 
jg , 

jgb  and . Hence, by Definition 2.3, 

the following inequalities 

),y,x())y(f)x(f()y,x(b T

0ff     )y(f0 S ,  (21) 

),y,x()w())y(g)w()x(g)w(()y,x(b T

jjjjjjgg jj
 )y(gj j

S ,jJ(y) (22) 

hold. By assumption, 0)y,x(bf  and a < 0  0)a(f  . Hence, (20) yields 

0))y(f)x(f()y,x(b ff  . (23) 

Combining (21) and (23), by the definition of Sf, we get 

,0)y,x(T

0     00 w)y(f  .  (24) 

By x  X, y  Y and the constraint (18) of dual problem (D), it follows that 

0)y(g)w()x(g)w( jjjj  ,  j  J. (25) 

By assumption, a  0  0)a(
jg  , j  J. Since 0)y,x(b

jg  , j  J, therefore, 

by (25), we have  

0))y(g)w()x(g)w(()y,x(b jjjjgg jj
 ,  j  J(y). (26) 

Combining (22) and (26), by the definition of )y(g j
S , j  J, we obtain 

,0)y,x()w(

m

1j

T

jj 


  jjj v)y(g  ,  j  J. (27) 

Thus, (22) and (30), we get 

,0)y,x()w()w(

m

1j

T
jj

T
00 














 



   00 w)y(f  , jjj w)y(g  . 

This means that there exist )y(fv0   and )y(gv jj  , j  J, such that 
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.0)y,x()wv)(w(wv

m

1j

T

j

T

jj

T

0

T

0 













 



 (28) 

By the constraint (17) of dual problem (D), it follows that the following inequality 

0)y,x()wv)(w(wv

m

1j

T

j

T

jj

T

0

T

0 













 



 

holds, which is a contradiction to (28). This completes the proof of this theorem. 

It turns out that, under stronger univexity hypothesis imposed on the objective 

function, it is possible to prove the stronger result. 

Theorem 4.2. (Weak duality). Let x and (y,(w)) be any feasible solutions 

in the considered optimization problem (P) and its Mond-Weir dual problem (D), 

respectively. Further, assume that f is a quasidifferentiable strictly univex function 

at y on XY with respect to 0)y(f w)y(fS   and with respect to f, bf and , 

where bf(x,y) > 0, a < 0  0)a(f  , each gj, j  J(y), is a quasidifferentiable 

univex function at y on XY with respect to jj)y(g w)y(gS
j

  and with respect to 

jg , 
jgb  and , where a < 0  0)a(

jg  , j  J. Then f(x) > f(y). 

Theorem 4.3. (Direct duality). Let x  be an optimal solution in the 

considered optimization problem (P) and the constraint qualification [20] be 

satisfied at x . Further, assume that, for any sets of )x(fw0  , )x(gw jj  , j  J, 

there exists ))w(),...,w(()w( m1    ℝm depending on the specific choice of w 

= (w0,w1,…,wm), such that ( )w(,x  ) is feasible in its Mond-Weir dual problem 

(D). Further, if all hypotheses of the weak duality theorem (Theorem 4.1) are 

fulfilled, then ( )w(,x  ) is optimal in Mond-Weir dual problem (D). 

Proof By assumption, x  is an optimal solution in the considered 

optimization problem (P) and the constraint qualification [20] is satisfied at x . 

Further, we assume that, for any sets of )x(fw 0   and )x(gw jj  , j  J, there 

exist scalars 0)w(j  , j  J, not all zero, such that the Karush-Kuhn-Tucker 

necessary optimality conditions (3)  (5) are fulfilled at x . Further, we assume 

that ( )w(,x  ) is feasible in Mond-Weir dual problem (D). If all hypotheses of the 

weak duality theorem (Theorem 4.1) are fulfilled, then ( )w(,x  ) is optimal in 

Mond-Weir dual problem (D). 

Theorem 4.4. (Converse duality). Let ( )w(,y  ) be an optimal solution in 

Mond-Weir dual problem (D) and Xy . Further, assume that f is a 

quasidifferentiable univex function at y  on XY with respect to 
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0)y(f w)y(fS   and with respect to f, bf, , where )y,x(bf  > 0 for all x  X, a 

< 0  0)a(f  , each jj g)w( , j  J( y ), is a quasidifferentiable univex 

function at y  on XY with respect to 
jj)y(g w)y(gS

j
  and with respect to 

jg , 

jgb , , where a < 0  0)a(
jg  , j  J. Then y  is optimal in problem (P). 

Proof Proof of this theorem follows directly from the weak duality 

theorem (Theorem 4.1). 

5. Conclusions 

In this paper, we have introduced a new concept of generalized convexity, 

namely the definition of a univex function with respect to a convex compact set. It 

turned out that it generalizes many other concepts of generalized convexity, 

previously defined in the literature. Further, in the paper, a nonconvex 

quasidifferentiable optimization problem with inequality constraints has been 

considered in which all functions constituting it are quasidifferentiable univex 

with respect to convex compact sets. Under the introduced concept generalized 

convexity, the sufficient optimality conditions and several duality results have 

been proved for such nonsmooth optimization problems. Namely, to prove the 

results mentioned above, the functions constituting the considered 

nondifferentiable optimization problems have been assumed to be 

quasidifferentiable univex with respect to convex compact sets which are 

Minkowski sum of their subdifferentials and superdifferentials. 
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