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FLEXIBLE WEIBULL GENERATED FAMILY OF DISTRIBUTIONS:

CHARACTERIZATIONS, MATHEMATICAL PROPERTIES AND

APPLICATIONS

by Morad Alizadeh1, Farrukh Jamal2, Haitham M. Yousof3, Maryam Khanahmadi4 and G. G. Hamedani5

We introduce a new class of distributions called the flexible Weibull gener-

ated family. We obtain some of its mathematical properties. The special models of this

family provide bathtub-shaped, decreasing-increasing, increasing-decreasing-increasing,
decreasing-increasing-decreasing, monotone, unimodal and bimodal hazard functions.

Some useful characterizations are presented. The maximum likelihood method is adopted

for estimating the model parameters. We assess the performance of the maximum likeli-
hood estimators by means of a graphical simulation study. The flexibility and importance

of the proposed model are illustrated by means of its application to three real data sets.
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1. Introduction

Fitting densities to data sets has a long history. Traditionally, families of curves
have been developed to aid in fitting densities. Statistical distributions are very useful in
describing and predicting real world phenomena. Numerous classical distributions have been
extensively used over the past decades for modeling data in several areas, in particular, in
reliability engineering, survival analysis, demography, actuarial study and others. Recent
developments address introduction of new families that extend well-known distributions and,
at the same time, provide great flexibility in modeling real data.

[1] introduced the flexible Weibull (FW) distribution having two parameters α > 0
and β > 0. A random variable (RV) T is said to have the FW(α, β) distribution if its

cumulative distribution function (CDF) is given by Πα,β (t) = 1−exp
[
− exp

(
αt− β

t

)]
, t ≥

0. We define the flexible Weibull generated (FW-G) family of distribution by replacing t with
Gψ(x)

Ḡψ(x)
in Πα,β (t) to obtain

Fα,β,ψ(x) = 1− exp

{
− exp

[
αGψ(x)

Ḡψ(x)
− β Ḡψ(x)

Gψ(x)

]}
, x ∈ R, (1.1)

where α, β > 0 are two shape parameters, Ḡψ(x) = 1 − Gψ(x) and is the vector of
parameters for the baseline CDF G(.). Probability density function (PDF) is given by

1Department of Statistics, Faculty of Sciences, Persian Gulf University, Bushehr, 75169, Iran,
2Department of Statistics Govt S.A.P.G College Dera Nawab Sahib Pakistan, e-mail:

drfarrukh1982@gmail.com
3Department of Statistics, Mathematics and Insurance, Benha University, Egypt
4Department of Statistics, Shahrood University of Technology, Shahrood, Iran
5Department of Mathematics, Statistics and Computer Science, Marquette University, USA

145



146 Morad Alizadeh, Farrukh Jamal, Haitham M. Yousof, Maryam Khanahmadi and G. G. Hamedani

fα,β,ψ(x) = gψ(x)

[
α

Ḡψ(x)2
+

β

Gψ(x)2

]
exp


αGψ(x)

Ḡψ(x)
− β Ḡψ(x)

Gψ(x)

− exp
[
αGψ(x)

Ḡψ(x)
− β Ḡψ(x)

Gψ(x)

]  , (1.2)

This paper is organized as follows. In Section 2, some useful characterizations are presented.
Two special models are given in Section 3. Section 4 provides useful linear representations for
the CDF and PDF of the new family. In Section 5, we assess the performance of the different
estimators by the least-squares estimators, weighted least-squares estimators, Cramer-von-
Mises Estimators and Anderson-Darling estimators. In Section 6, the potentiality of the
proposed model is introduced empirically by means of three real data sets. In Section 7, we
offer some concluding remarks.

2. Characterizations results

This section is devoted to the characterizations of the FW-G distribution based on
the ratio of two truncated moments. Note that our characterizations can be employed also
when the CDF does not have a closed form. We would also like to mention that due to the
nature of FW-G distribution, our characterizations may be the only possible ones. We are
concerned with the characterizations of FW-G distribution based on a simple relationship
between two truncated moments. Our first characterization employs a theorem due to [2],
see Theorem 1 of [5] and [4]. The result, however, holds also when the interval H is not
closed, since the condition of the Theorem is on the interior of H.

Proposition 2.1. Let X : Ω→ R be a continuous random variable and let

q (x) = exp

−


2αGψ(x)

Gψ(x)
− 2βGψ(x)

Gψ(x)

− exp
(
αGψ(x)

Gψ(x)
− βGψ(x)

Gψ(x)

) 
 , and

q2 (x) = q1 (x) exp

(
−αGψ (x)

Gψ (x)
+
βGψ (x)

Gψ (x)

)
for x ∈ R.

The random variable X has PDF (2) if and only if the function η defined in Theorem 1 is
of the form

η (x) =
1

2
exp

(
−αGψ (x)

Gψ (x)
+
βGψ (x)

Gψ (x)

)
, x ∈ R.

Proof. Suppose the random variable X hasPDF (2), then

(1− F (x))E [q1 (X) | X ≥ x] = exp

(
−αGψ (x)

Gψ (x)
+
βGψ (x)

Gψ (x)

)
, x ∈ R,

(1− F (x))E [q2 (X) | X ≥ x] =
1

2
exp

(
−2αGψ (x)

Gψ (x)
+

2βGψ (x)

Gψ (x)

)
, x ∈ R,

η (x) q1 (x)− q2 (x) = −q1 (x)

2
exp

(
−αGψ (x)

Gψ (x)
+
βGψ (x)

Gψ (x)

)
< 0 ∀ x ∈ R.

Conversely, if η is of the above form, then

s′ (x) =
η′ (x) q1 (x)

η (x) q1 (x)− q2 (x)
= gψ (x)

[
α

Gψ (x)
2 +

β

Gψ (x)
2

]
, x ∈ R.

Now, according to Theorem 2, X has density (2) . �
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Corollary 2.1. Let X : Ω→ R be a continuous random variable and let q1 (x) be as in 2.1
The random variable X hasPDF (2) if and only if there exist functions q2 and η defined
in Theorem 2 satisfying the following differential equation

η′ (x) q1 (x)

η (x) q1 (x)− q2 (x)
= gψ (x)

[
α

Gψ (x)
2 +

β

Gψ (x)
2

]
, x ∈ R.

Corollary 2.2. The general solution of the differential equation in Corollary 2.1 is

η (x) = exp

(
αGψ (x)

Gψ (x)
− βGψ (x)

Gψ (x)

)

×

 −
∫
g (x;ψ)

[
α

Gψ(x)2
+ β

Gψ(x)2

]
×

exp
(
−αGψ(x)

Gψ(x)
+

βGψ(x)
Gψ(x)

)
(q1 (x))

−1
q2 (x) dx+D

 ,
where D is a constant. We like to point out that one set of functions satisfying the above
differential equation is given in Proposition 2.1 with D = 0. Clearly, there are other triplets
(q1, q2, η) which satisfy conditions of Theorem1.

3. Linear representation

Firstly, using taylor expansion, the CDF of the FW-G family in (1.1) can be expressed
as

Fα,β,ψ(x) =

∞∑
i=1

(−1)i+1

i!
exp

[
αGψ(x)

Ḡψ(x)
− β Ḡψ(x)

Gψ(x)

]
.

Secondly, we can prove that exp
[
− i β Ḡψ(x)

Gψ(x)

]
=
∑∞
j=0 bj Gψ(x)j , where

bj = exp ( iα)

∞∑
k=0

∞∑
l=k

(−1)k+l+j (i α)k

k!

(
−k
l

)(
l

j

)
,

since

exp

[
−i α Ḡψ(x)

Gψ(x)

]
= exp {i α} exp

[
−i α
Gψ(x)

]
=

∞∑
j=0

bj Gψ(x)j .

Note that exp
[
i αGψ(x)

Ḡψ(x)

]
=
∑∞
j=0 aj Gψ(x)j , where

aj =
∑

(l,k)∈Ij

(i α)k (−1)l

k!

(
−k
l

)
|(Ij={(l,k)∈0,1,2,···|j=k+l}),

then the CDF of the FW-G family can be expressed as

Fα,β,ψ(x) =

∞∑
j=0

dj Gψ(x)j =

∞∑
j=0

dj Hj(x;ψ), (3.1)

whereHγ(x) is the CDF of the exp-G family with power parameter γ and cj =
∑j
m=0 am bj−m,

for any j ≥ 0 and dj =
∑∞
i=1

[
(−1)i+1 cj/i!

]
.Upon diffrentiating (3.1), the density function

of the FW-G family can be expressed as

fα,β,ψ(x) =

∞∑
j=0

dj+1 hj+1(x;ψ), (3.2)
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Figure 1. Simulation results of the special FWL distribution

where hγ+1(x) = (γ + 1) g (x)G (x)
γ

is the PDF of the exp-G family with power parameter
γ. Equations (3.1) and (3.2) are the main results of this section. Many mathematical prop-
erties can be derived using (3.2) such as moments, moment generating function, incomplete
moments, moment of the residual life and moment of the reversed residual life.

4. Simulation study

In this section a graphical Monte Carlo simulation study is conducted to compare the
performance of the different estimators of the unknown parameters for the FWL(α, β, λ)
distribution. All the computations in this section are done by R program. We generate N =
700 samples samples of size n = 20, 25, ..., 700 from FWL distribution with true parameters
values α = 2, β = 1.5 and λ = 1.2. We also calculate the bias and mean square error
(MSE) of the MLEs empirically. We give results of this simulation study in Figure 1.
Figure 1 indicates that the biases and MSEs appear reasonably small when n ≥ 500. So,
statistical inferences based on the proposed distribution can be considered accurate enough
for n ≥ 500. For smaller samples sizes, inferences based on the the proposed distribution
may not be accurate.

5. Applications

In this Section, we provide two applications to show empirically the potentiality of
the new family. We compare the flexible Weibull-Logistic (FWL) distribution with those of
the Logistic (L), beta Logistic (BL), exponentiated Logistic (EL), Kumaraswamy Logistic
(KwL) and Transmuted Weibull Logistic (TWL).

Data set I: consists of 63 observations of the strengths of 1.5 cm glass fibers which
obtained by workers at the UK National Physical Laboratory (see ), the MLEs and some
statistics of the models for data set I are presented in Tables 1, 2 respectively.

Data set II: (see Murthy et al (2004)), the MLEs and some statistics of the models
for data set II are presented in Tables 3, 4 respectively.
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Table 1: The MLEs for data set I.

Distribution Estimates with standard error in parenthesis

α̂ β̂ λ̂ t̂
FWL 3.5416214 9.8500825 0.3092401 -

(4.9771815) (4.5962141) (0.2857689)

BL 119.6737781 57.2125339 0.4927973 -

(90.0040120) (63.06649 ) (0.2413815)

KL 21.021409 38.783896 1.018039 -

(2.6093964) (23.98600 ) (0.1458867)

GL 99.9432295 86.0386434 0.5188749 -

(96.3688437) (107.04687) (0.3155779)

TWL 0.003845322 1.642500707 2.067838533 0.00015

(0.002212) (4.2344) (5.26034) (0.001344)

EL 2.699803 37.607975 - -

(0.221463) (10.366132)

Table 2: Some statistics for the models fitted to data set I.

Distribution Goodness of fit criteria

A∗ W ∗ L KS P-value AIC

FWL 0.8520827 0.1454573 14.88532 0.12483 0.2801 35.47065

BL 2.037812 0.3706532 18.43717 0.18529 0.02644 42.87434

KL 1.360935 0.2477292 15.39133 0.15498 0.09696 36.78266

GL 2.005401 0.3647971 18.28275 0.18448 0.02746 42.5655

TWL 0.8766299 0.1499408 15.32979 0.15782 0.08671 38.65958

EL 3.990389 0.7279398 29.86841 0.21813 0.004982 63.73681

Table 3: The MLEs for data set II.

Distribution Estimates with standard error in parenthesis

α̂ β̂ λ̂ t̂
FWL 0.01093515 3.47742271 0.21194267 -

(0.01068807) (0.71522996) (0.04253401)

BL 11.57323809 5.37909832 0.07832496 -

(34.16601) (23.48995) (0.16440 )

KL 4.7030798 1.2654707 0.1648382 -

(1.8357255) (2.1653108) (0.1487055)

GL 1.6043781 0.1068959 1.4165800 -

(0.328170332) (0.025619065) (0.006375468)

TWL 0.08365499 0.36385403 0.44447994 0.38157711

(0.041832 ) (0.08339) (0.028223) (0.44411300)

EL 0.1872034 4.4803852 - -

(0.0217403) (0.8167213)

Table 4: Some statistics for the models fitted to data set II.

Distribution Goodness of fit criteria

A∗ W ∗ L KS P-value AIC

FWL 0.1884926 0.02281417 128.7806 0.071504 0.9776 263.5613

BL 0.6569334 0.09324409 134.0233 0.11815 0.5904 274.0465

KL 0.632201 0.08504553 134.1713 0.1126 0.6497 274.3427

GL 0.7216431 0.1004488 133.372 0.10035 0.7783 272.7441

TWL 1.048186 0.1726038 136.3169 0.12789 0.4903 280.6338

EL 0.6301666 0.08408219 134.181 0.10906 0.6875 272.3621
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Figure 2. Estimated PDF for data set I, II

Based on Tables 2 and 4 the FWL lifetime model provides adequate fits as compared
to other L models with small values for A∗, W ∗, KS and largest P-values among all fitted
models . The FWL lifetime model is better than the BL, KL, GL, TML and EL models in
modeling the data sets I and II. The estimated PDFs plots are displayed in Figures 2. It is
clear from Figures 2 that the FWL distribution provides the best fits to all data sets.

6. Conclusions

We introduce a new class of distributions called the flexible Weibull generated fam-
ily. We obtain some of its mathematical properties. The special models of this family
provide bathtub-shaped, decreasing-increasing, increasing-decreasing-increasing, decreasing-
increasing-decreasing, monotone, unimodal and bimodal hazar functions. Some useful char-
acterizations are presented. The maximum likelihood method is adopted for estimating
the model parameters. We assess the performance of the maximum likelihood estimators
by means of a graphical simulation study. The flexibility and importance of the proposed
model are illustrated by means of three real data sets.
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