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OBJECT DETECTION IN SECURITY SCENE BASED ON 

IMPROVED YOLOv5 

Kunwei LV1, Ruobing WU2, Zhiren XIAO3, Ping LAN4,* 

In this study, traditional manual security detection methods suffer from 

significant drawbacks, especially low efficiency and high cost. To overcome these 

challenges, this paper introduces a new approach: First, a parallel convolutional 

module is designed and enhanced by a hybrid attention mechanism, which 

significantly improves the network's ability to process complex image data. Second, a 

decoupled detection header is devised, aiming to enhance the neural network's 

performance in classification tasks and regressions. Lastly, a hybrid data 

enhancement strategy and an anchor frame adaptive matching technique are 

integrated, enhancing the network's robustness. These innovations aim to 

significantly boost object detection efficiency and capability, improve detection 

accuracy, and extend method applicability to diverse scenarios. The approach 

surpasses the benchmark YOLOv5m by 6.10%, demonstrating its effectiveness. 

Keywords: anchored frame matching approach, decoupled header, hybrid 

attention, target identification, and data augmentation  

1. Introduction 

Air terminals, rapid transit train depots, swift courier hubs, and additional 

mass transit junctions extensively utilize radiographic safety inspection systems to 

ensure the security of passengers by examining bags and parcels. Nevertheless, the 

conventional manual scrutiny approaches are becoming increasingly impractical 

due to their high subjectivity, low efficiency, substantial expenses, and 

susceptibility to inaccuracies and misdirections. With the swift progression of 

machine vision technology, deep learning-based item recognition has gained 

prominence in various domains, including video monitoring, healthcare imagery 

evaluation, smart manufacturing, self-driving vehicles, and human-machine 

interaction. Item recognition, a fundamental and challenging undertaking in 
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machine vision, underpins advanced applications like instance segmentation, image 

analysis, and video tracking. These tasks not only necessitate locating items within 

an image but also categorizing them. In the context of security screening, item 

recognition technology can revolutionize the process by enabling real-time 

identification of prohibited items. This application can significantly decrease 

inspector workloads and boost operational efficacy, playing a pivotal role in the 

realms of intelligent transportation, logistics, and public safety. 

The study of deep convolutional neural networks (DCNN) underwent a 

paradigm shift following the seminal work of Hinton et al. [1], who utilized 

AlexNet, a profound convolutional neural network, for extensive image 

categorization, clinching victory in the 2012 ImageNet competition. This milestone 

marked a new direction in DCNN research, particularly within the realm of object 

detection, where models with one and two phases are now dominant. 

The two-stage detection models involve three primary steps: (1) Girshick et 

al.'s method combines semantic segmentation with object detection, significantly 

enhancing detection accuracy through a comprehensive, multilevel feature 

representation [2]. (2) The introduction of ROI pooling layers and RPN by 

Shaoqing Ren et al. led to the development of Faster R-CNN [3]. (3) Kaiming He 

et al. proposed a groundbreaking neural network architecture, the Residual Network 

(ResNet), introducing the concept of residual learning [4]. 

In contrast, models with one phase in detection, exemplified by the YOLO 

[5] and SSD [6] families, are based on regression analysis. These models, along 

with the R-CNN family, represent a candidate region-based approach to object 

detection. 

Originally, deep convolutional neural networks were employed by R-CNN 

as an alternative to traditional object detection methods. This adoption has since 

spurred a substantial increase in the use of DCNNs for target identification, leading 

to the development of numerous effective models that leverage DCNNs to address 

various challenges in object detection. 

The YOLO (You Only Look Once) object detection framework, introduced 

by Redmon et al. [5], represented a significant breakthrough as the inaugural neural 

network framework capable of real-time object detection. To achieve an optimal 

trade-off between detection accuracy and processing speed, subsequent versions 

and improvements were developed, drawing inspiration from related research. 

These include YOLOv4 [7], YOLOX [8], and YOLOv7 [9], each integrating 

additional modular structures and enhancement techniques. 

Xu et al. [10] proposed an attention mechanism grounded in cognitive 

science theory, presenting a novel approach to managing computational resources 

in deep learning. This deep learning attention mechanism addresses the challenge 

of information overload by focusing limited computational capacity on select 

critical tasks. Selvaraju et al. [11] developed Grad-CAM, a technique employing a 
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heatmap to visualize the network's prediction process, thus providing partial 

insights into the functioning of neural networks. 

Sun et al. [12] contributed to this field by developing a multiscale self-

attention module. This module, which synthesizes self-attention in both spatial and 

channel dimensions, enables the network to extract information across multiple 

scales by grouping convolved feature data. However, a specific challenge in object 

detection within security screening scenarios is the prevalence of mutual occlusion 

and overlapping among targets. In such contexts, the channel information of feature 

maps assumes greater importance than spatial data. 

In object detection networks, the detection head plays a crucial role in 

processing fused feature maps to generate final detection frames and labels. 

Originally, the YOLO family adopted a coupled detection head, where both 

localization and classification branches were integrated and shared. However, this 

approach can lead to conflicts between localization and classification tasks due to 

their differing feature representation requirements, potentially impeding network 

performance [13]. 

Song et al. [14] conducted experimental research on the localization and 

classification subtasks within object detection tasks. Their findings suggest that a 

convolutional head is better suited for localization, whereas a dense head (dense-

head) is more suitable for classification tasks. This insight underscores the 

importance of designing detection heads that align with the specific demands of 

each subtask. 

Furthermore, the design of a priori frames significantly influences model 

performance. Anchor frames, or sets of predefined a priori frames, are employed in 

object detection models to fine-tune the network’s final output and provide a more 

nuanced detection mechanism. Literature reveals the emergence of object detection 

models that employ an anchor frame-free strategy [15]. Comparative analyses 

between anchor frame-free and anchor frame-based methods, under identical 

network structures, reveal that anchor frame-free approaches exhibit superior 

performance in hazardous material detection tasks. 

Nevertheless, a middle ground between anchor frame-free and anchor frame 

methods can be achieved by generating dataset-specific groups of anchor frames 

using clustering-based methods [16, 17]. However, it is crucial to consider that for 

tasks with potential targets exhibiting varied aspect ratios, the anchor frame-free 

approach may negatively impact the model's performance. This emphasizes the 

importance of customizing anchor frame strategies to cater to the unique needs of 

each object detection task. A range of routine changes to the training samples is 

known as data augmentation, and it assists in teaching the model more fundamental 

characteristics of the dataset and improves its ability to adjust to small changes in 

the samples (thereby decreasing sensitivity to change). Two popular techniques for 

enhancing data are mosaic [17] and mix up [16]. 
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In choosing YOLOv5[18] as the base model, we consider its excellent 

performance in various target detection tasks. YOLOv5 achieves a good balance 

between accuracy and speed and is especially suitable for security scenario 

detection with high real-time requirements. In addition, YOLOv5 has relatively low 

computational resource requirements compared to other models, making it more 

suitable for deployment in resource-limited environments. Specifically, the 

performance of the YOLOv5m version on multiple benchmark datasets shows that 

it possesses high detection accuracy and robustness, making it an ideal choice for 

this study. 

 
Fig. 1. YOLOv5 model performance 

 

In this study, YOLOv5 serves as the benchmark model, and our primary 

contributions include: 

(1) In this paper, a parallel convolution module that integrates hybrid 

attention mechanisms is introduced. This module leverages the synergistic effects 

of various attention mechanisms to enhance the network's focus on specific tasks, 

particularly in security screening scenarios. The parallel structure facilitates the 

acquisition of richer gradient flow information, thereby enhancing the network's 

analytical capabilities. 

(2) To resolve the discrepancy between classification and regression tasks 

in object detection, this paper introduces a decoupled detection head as a 

replacement for the coupled detection head employed in the original model. This 

alteration seeks to enhance the network's performance tailored to specific tasks. 

(3) In this paper, two new strategies are introduced to enhance the efficacy 

of networks in security screening: hybrid data enhancement methods and anchor 

frame adaptive matching techniques. 

The structure of the paper unfolds as follows: Section 2 outlines the 

methodology and enhancements introduced in this study. Section 3 encompasses 
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the experimental setup, dataset description, model assessment metrics, analysis of 

experimental results, ablation studies, and comparative experiments. Finally, 

Section 4 presents the conclusions drawn from this research.  

2. Techniques 

2.1 Module RCES 

The RCES (Residual Convolutional Efficient Squeeze-and-Excitation) 

module in our study is specifically designed to amplify salient features while 

concurrently suppressing less relevant ones. This is achieved by learning the 

significance of each feature channel and accordingly assigning variable weights 

across different regions of the feature map. A key component of this mechanism is 

the ECA-SENet hybrid attention module, as illustrated in Fig.. 2. This module 

integrates two distinct networks: the Efficient Channel Attention (ECA) and the 

Squeeze-and-Excitation (SE) networks [19, 20]. 

The ECA-SENet module enhances the ability of the convolutional neural 

network to prioritize specific channels by assigning them greater weights. This 

selective weighting of feature maps is contingent upon the nature of the task at hand. 

In the context of security screening scenarios, such a mechanism significantly 

boosts the network’s performance by focusing on the most pertinent features for 

analysis. 

 

 
Fig. 2. ECA-SENet 

 

Fig. 1 in the paper illustrates the dimensions of the feature map, indicating 

'H', 'W', and 'C' as the height, width, and channel count, respectively. The Efficient 
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Channel Attention (ECA) module, a critical component of our model, effectively 

reduces computational complexity compared to a dense layer. This reduction is 

achieved by integrating a 1 × 1 convolutional layer subsequent to the global 

average pooling layer, thereby facilitating efficient cross-channel interaction. 

To maximize the utilization of channel information, this paper introduces 

equation (1). This equation is pivotal in enabling the network to adaptively select 

the extent of the convolutional kernel, which is contingent on the channel count 

present. This adaptability allows for more effective processing and integration of 

channel-specific information, thereby enhancing the overall efficacy of the network 

in handling diverse channel quantities: 

𝜑(𝐶) = |
𝑙𝑜𝑔2(𝐶)

𝛾
+

𝑏

𝛾
|

𝑜𝑑𝑑 
                                    (1) 

In the context of the equation, 'C' denotes the channel count in the feature 

map. The parameters 'γ' and 'b' are constants, assigned values of 2 and 1, 

respectively. These constants are pivotal in determining the extent of the 

convolution kernel, denoted as φ(C). An important aspect of this formula is the 

condition |t| odd, which signifies that if the computed value of t is not an odd 

number, it should be rounded to the closest odd number. This adjustment is critical 

to ensure the symmetry and effectiveness of the convolution kernel, enabling it to 

adapt to the varying channel dimensions more effectively. 

To construct a channel descriptor, the Squeeze Excitation (SE) module 

initially executes a compression operation on the feature maps, which are spatially 

dimensioned as H×W. This operation consolidates the feature mappings across 

these spatial dimensions to transform a feature map of dimensions H×W×C into 

a channel descriptor of dimensions 1×1×C. This transformation effectively 

condenses the global spatial information of the feature maps into the channel 

descriptors, ensuring that the input layer can utilize this condensed form of data 

effectively. Equation (2) in the paper mathematically delineates this compression 

operation, providing a clear representation of how the channel descriptors are 

derived from the feature maps. 

                      𝐹𝑠𝑞(𝑢𝑐) =
1

𝐻×𝑊
∑ ∑ 𝑢𝑐(𝑖, 𝑗)𝑊

𝑗=1
𝐻
𝑖=1

                             

 (2) 

The global spatial information within the network is encapsulated in a 

collection of local descriptors, denoted as uc. Following this, a channel-dependent 

self-selecting gate mechanism is employed. This mechanism is pivotal in enabling 

each channel to selectively highlight informative features while attenuating less 

significant ones, a process guided by learning sample-specific activations. 

To empower the network with the capability to extract finer features from 

complex images, this paper innovatively designed a parallel convolution module. 

This design draws inspiration from the deep residual network and innovates upon 



Object detection in security scene based on improved YOLOv5                     229 

the original C3 module of YOLOv5 by introducing parallel branching. This 

addition allows the network to access a more comprehensive gradient flow 

information, while maintaining its lightweight architecture. 

Building upon this foundation, we integrate the ECA-SENet module, as 

previously discussed. The resultant module, combining the parallel branching 

strategy with ECA-SENet, is designated as the RCES module. Fig. 3 in our paper 

visually contrasts this newly developed RCES module (b) with the original C3 

module (a), illustrating the enhancements and modifications made for this research. 

 

 
Fig. 3. Comparing Modules 

2.2 Decoupled Head for Detection 

To mitigate conflicts between localization and classification tasks in object 

recognition, our recognition head comprises two distinct components: a 

convolutional network dedicated to regression tasks for the target frame, and a 

dense network focusing on classification tasks. Fig. 4 in our paper illustrates the 

structures of both the coupled and decoupled recognition heads. 

In the decoupled head, feature maps are bifurcated into two branching 

networks. The first branch, a convolutional network, is tasked with the localization 

job. It extracts features using a 3×3 downsampled convolutional layer, specifically 

tuned for this purpose. The second branch, a dense network, is designed for the 

classification task. It adjusts the channel dimensions of the feature map to 

correspond with the count of classes of the predicted target. 

Subsequently, the feature maps are processed by two separate networks. The 

first network is responsible for predicting the anchor frame’s dimensions – its 

height, width, and center coordinates. The second network focuses on calculating 

the intersection between the predicted and actual frames. This bifurcated approach 

enhances the robustness of the model and its generalization ability. The overarching 

objective of this network structure design is to independently extract and learn the 
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target location and category information through different network branches, before 

eventually fusing these features for final output. 

 

 
Fig. 4. Decoupling header and header 

2.3 Mix up data enhancement 

The mix-up data enhancement method, although simple in concept, has 

proven to be a highly effective technique for data augmentation. This method 

involves selecting two random samples from the training dataset and performing a 

basic random weighted summation of these samples. Essentially, this process 

blends two images together, creating a new composite image that retains elements 

from both original images. This technique is particularly beneficial in scenarios 

where diversity in training data can lead to more robust models. 

As illustrated in Fig. 5 of our paper, the mix-up data enhancement method 

has been determined to be particularly well-suited for the task scenario addressed 

in this research. By employing this approach, the training dataset can be augmented 

in a way that introduces variability and complexity, thereby enhancing the 

network's capability to generalize from the training dataset to new, unseen samples. 
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Fig. 5. Mix up data enhancement 

2.4 Anchor frame alignment technique 

This study develops a method to generate a customized set of anchor 

framesets specifically for a given dataset. This process involves analyzing and 

computing the characteristics of the anchor frames within the dataset. To achieve 

this, a new combination of K-means clustering and genetic algorithms is used in 

this paper. This methodology allows for the efficient identification and selection of 

the most representative anchor frames, ensuring optimal compatibility with the 

specific features of the dataset. 

The algorithm's workflow is comprehensively depicted in Fig. 6 of our 

paper. This illustration provides a step-by-step visual representation of the process, 

from the initial data input through to the final generation of the anchor frame 

groups. By combining K-means clustering with genetic algorithms, the accuracy 

and effectiveness of the anchor frame selection process are improved, thus 

enhancing the overall effectiveness of the target detection model. 

Our method starts with initializing the {k} cluster centroids, which are 

chosen empirically to best fit the features of the dataset, to represent the initial 

positions of the anchor frames in K-means clustering. After that, each bounding box 

in the dataset is grouped with other comparable bounding boxes by assigning it to 

the closest cluster centroid using the Euclidean distance. Iteratively averaging the 

bounding boxes allocated to each cluster, the centroids are recalculated until they 

stabilize. 

We use a genetic approach to refine these clusters after the K-means 

initialization to make sure they are best suited to the dataset. Each member of the 

population is represented by a set of anchor frames in this algorithm, and the 
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average Intersection over Union (IoU) between the anchor frames and the ground 

truth bounding boxes is used to determine each member's fitness. Based on their 

fitness scores, a roulette wheel selection mechanism chooses people for 

reproduction in a probabilistic manner. To introduce diversity, a single-point 

crossover method permits parent individuals to trade portions of their anchor frame 

sets to form offspring. To avoid premature convergence, mutation is administered 

with a probability of 0.1 and modifies randomly chosen anchor frames. Until a 

predetermined number of generations or a plateau in fitness improvement is 

reached, this process iterates across several generations, possibly creating better-

suited anchor frames through selection, crossover, and mutation. In order to ensure 

well-matched anchor frames for more accurate and dependable object detection, 

this integrated technique handles the issue of various aspect ratios and scales within 

the dataset. It is especially well-suited to the intricate requirements of security scene 

analysis. 

3. Investigation and evaluation 

3.1 Setting for experimentation and metrics for assessment 

Table 1 provides a comprehensive overview of the experimental 

environment configuration employed in this research. Our study utilized the EDS 

dataset [21], which encompasses a total of 31,655 instances of target objects. This 

dataset is composed of 14,219 images captured using three different scanning 

devices, featuring 10 different categories of objects. Each image within the dataset 

is meticulously annotated by professionals. 

For training the model, this paper constructs the training and test sets by 

aggregating and randomly dividing the data collection. The training set comprises 

1743 samples, while the test set comprises 12476 samples. This partitioning 

resulted in a training-to-test ratio of approximately 7:1, guaranteeing a thorough 

assessment of the model's effectiveness. 
 

Table 1 
Experimental environment configuration 

parameters configure 

CPU Intel(R) Xeon(R) Platinum 8255C 

GPU NVIDIA GeForce RTX 3090 

system environment Ubuntu 18.04 

multilingualism Python 3.8 

Accelerated environment Cuda 11.1 

PyTorch version 1.8.0 
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Fig. 6. Matching strategy for anchor boxes. 

 

The evaluation of our model is based on key metrics, including mean 

average precision (mAP), recall (Recall), and precision (Precision). These metrics 

offer crucial perspectives on the model's performance, ensuring a comprehensive 

assessment of its capabilities.  
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The computation of these metrics is formally illustrated by the following 

equation:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                              (9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                               (10) 

𝐴𝑃 = ∑ (𝑟𝑖+1 − 𝑟𝑖)𝑃𝑖𝑛𝑡𝑒𝑟(𝑟𝑖 + 1) 𝑛−1
𝑖=1                               (11) 

𝑚𝐴𝑃 =
∑ 𝐴𝑃𝑖

𝑘
𝑖=1

𝑘
                                              (12) 

Precisely, the model's precision is quantified as the percentage of correctly 

identified positive categories out of all positively labeled samples. This calculation 

involves considering false positives (FP), which represent negatively assessed 

samples that the model erroneously classified as positive. 

On the other hand, recall evaluates the effectiveness of the model in 

accurately detecting positive categories. This metric is determined by comparing 

the true positives (TP), which are the accurately classified positive samples by the 

model, to the false negatives (FN), which are samples incorrectly classified as 

negative. 

To thoroughly evaluate the performance of the model, this paper employs 

the mean accuracy (mAP) metric. The mAP metric combines precision and recall, 

offering a holistic measure of the model's efficiency. 

Notably, the mAP was calculated for different intersections over the union 

(IoU) threshold. The metric was denoted as mAP 0.5 when a threshold of 0.5 was 

assumed. Additionally, model performance was evaluated for a series of IoU 

thresholds between 0.5 and 0.95, increasing by 0.05, denoted as mAP 0.5:0.95.3.2. 

experimental analysis. 

Table 2 presents the experimental results pertaining to the RCES module. 

In our dataset, compared to the benchmark model, the introduction of the RCES 

module resulted in notable improvements across various metrics. Specifically, there 

was a substantial increase in mean average precision at an IoU of 0.5 (mAP 0.5) by 

1.40%, a significant enhancement in mean average precision across the range of 

IoU thresholds from 0.5 to 0.95 (mAP 0.5:0.95) by 2.50%, a marginal increase in 

accuracy by 0.10%, and a substantial boost in checking completeness by 2.00%. 

These findings underscore the efficacy of the RCES module in enhancing the 

model's performance across multiple evaluation criteria. 
 

Table 2 

Experimental results of RCES module 

Model mAP 0.5 mAP 0.5:0.95 accurate recall rate 

YOLOv5m 0.781 0.559 0.836 0.706 

YOLOv5m_RCES module 0.795 0.584 0.837 0.726 
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To enhance accuracy and provide some insight into the neural network's 

functionality, this paper employs a Grad-CAM [22] heatmap visualization to gain 

a clearer understanding of the attentional mechanisms of the network. In this 

visualization, the network's focus is represented through a color gradient, with 

warmer colors indicating higher attention or 'heat' at specific locations within the 

image. 

Fig. 7 in our paper showcases the detection results on the original image, 

which initially contained four items. Grad-CAM visualization allows us to compare 

the outcomes of the YOLOv5s network before and after the integration of the 

ECA_SE hybrid attention module. Fig. 8 provides this comparison, with (a) 

depicting the focus of the enhanced network and (b) showing the focus of the pre-

enhanced network. Upon examination, it becomes evident that the improved 

network exhibits more focused attention on the objects of interest, while the pre-

improved network demonstrates a more dispersed attention pattern. 

 
Fig. 7. Detection result of original image 

 

 
(a) Improved Model Concerns 

 
(b) Pre-improvement model concerns 

Fig. 8. Grad-CAM heat map visualization 
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Table 3 provides a comprehensive presentation of the experimental 

outcomes concerning the anchor frame adaptive matching strategy. After 

implementing this strategy in our dataset, significant improvements were observed 

in several key metrics. Specifically, there was a notable increase in mean average 

precision at an IoU of 0.5 (mAP 0.5) by 0.7%, a substantial enhancement in mean 

average precision across the range of IoU thresholds from 0.5 to 0.95 (mAP 

0.5:0.95) by 0.8%, and a significant boost in recall by 1.1%. These findings 

underscore the effectiveness of the anchor frame adaptive matching strategy in 

enhancing the model's performance across various evaluation criteria. 

However, it is worth noting that there was a marginal decrease in precision 

by 0.7% when comparing the results to the baseline model. This trade-off between 

recall and precision warrants further consideration in the context of specific 

application requirements. 
 

Table 3 

Experimental results of the anchor frame adaptive matching strategy 

Model mAP 0.5 mAP 0.5:0.95 accurate recall rate 

YOLOv5m 0.781 0.559 0.836 0.706 

YOLOv5m_autoanchor 0.788 0.567 0.829 0.717 

 

Table 4 presents the outcomes of the Mix up data enhancement technique 

experiment. With the introduction of this technique, our dataset experienced 

significant improvements in multiple key metrics. Specifically, there was a 

substantial increase in mean average precision at an IoU of 0.5 (mAP 0.5) by 1.60%, 

a noteworthy enhancement in mean average precision across the range of IoU 

thresholds from 0.5 to 0.95 (mAP 0.5:0.95) by 1.60%, a substantial boost in 

accuracy by 1.70%, and a notable improvement in checking completeness by 

1.00%. These findings demonstrate the efficacy of the Mix up data enhancement 

technique in enhancing the model's performance across various evaluation criteria 

when compared to the baseline model. 
 

Table 4 

Experimental results of hybrid data enhancement strategies 

Model mAP 0.5 mAP 0.5:0.95 accurate recall rate 

YOLOv5m 0.781 0.559 0.836 0.706 

YOLOv5m-mixup 0.797 0.575 0.853 0.716 

 

Table 5 provides a comprehensive display of the experimental findings 

associated with the decoupled detection head. The integration of this approach 

yielded notable improvements in several key metrics. Specifically, there was a 
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significant increase in mean average precision at an IoU of 0.5 (mAP 0.5) by 0.5%, 

a substantial enhancement in mean average precision across the range of IoU 

thresholds from 0.5 to 0.95 (mAP 0.5:0.95) by 1.3%, and a notable improvement in 

checking completeness by 1.2%. These findings highlight the effectiveness of the 

decoupled detection head in improving the model's performance across various 

evaluation criteria. 

However, it is worth noting that there was a marginal decrease in accuracy 

by 0.3% when comparing the results to the benchmark model. This trade-off 

between accuracy and other metrics warrants further consideration in the context of 

specific application requirements. 
Table 5 

Experimental results of decoupled detection head 

Model mAP 0.5 mAP 0.5:0.95 accurate recall rate 

YOLOv5m 0.781 0.559 0.836 0.706 

YOLOv5m_decoupled head 0.786 0.572 0.833 0.718 

3.3 Ablation experiment 

Table 6 

Ablation experiments 

 
RCES 

module 

Auto 

anchor 
mixup 

Decouple 

head 
mAP 0.5 mAP 0.5:0.95 P R 

1     0.781 0.559 0.836 0.706 

2 √    0.791 0.574 0.842 0.724 

3 √ √   0.801 0.582 0.834 0.742 

4 √ √ √  0.811 0.603 0.847 0.745 

5 √ √ √ √ 0.823 0.620 0.859 0.753 

 

After implementing all the enhanced strategies, our model demonstrated 

significant overall improvements in key performance metrics. Notably, there was a 

substantial increase in mean average precision at an IoU of 0.5 (mAP 0.5) by 4.20%, 

a remarkable enhancement in mean average precision across the range of IoU 

thresholds from 0.5 to 0.95 (mAP 0.5:0.95) by 6.10%, a notable improvement in 

precision by 2.30%, and a substantial boost in recall by 4.70%. These 

comprehensive improvements underscore the effectiveness of our combined 

strategies in enhancing the model's overall performance. The results of the ablation 

experiment are shown in Table 6.. 

Recognizing that while the introduction of some strategies led to slight 

performance degradation in specific aspects, the net gain in overall performance 

demonstrates the successful integration and synergy of these strategies. 3.4 

comparative experiment. 
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In the comparative experimental section, several prominent target detection 

models underwent comprehensive evaluation. The results, as presented in Table 7, 

unequivocally demonstrate the distinct advantages of our enhanced model over the 

other network models in every aspect assessed. Our model exhibits superior 

performance across a range of metrics, reaffirming its effectiveness and 

competitiveness. 
 

Table 7 

Performance of different models on EDS dataset 

Model mAP 0.5 mAP 0.5:0.95 P R 

SSD 0.794 0.561 0.845 0.731 

Faster R-CNN 0.819 0.618 0.853 0.751 

YOLOv5m 0.781 0.559 0.836 0.706 

YOLOv7 0.787 0.569 0.851 0.742 

YOLOv8m 0.797 0.605 0.828 0.724 

YOLOv5m-improved 0.823 0.620 0.859 0.753 

 

For a more intuitive evaluation, this paper provides a direct comparison of 

the actual detection results achieved by YOLOv5m before and after the 

implementation of our improvement strategies. As depicted in Fig. 9, our strategies 

effectively address the challenges associated with error detection and missing 

detection, particularly in the case of small targets and occlusions within complex 

backgrounds. These visual results provide compelling evidence of the significant 

enhancements brought about by our strategies in real-world detection scenarios. 

 

 
Fig. 9. Comparison of detection effect 
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4. Conclusions 

Traditional manual security detection is not only slow but also less accurate. 

To address these issues, a parallel convolutional module, RCES, is proposed in this 

paper, utilizing a hybrid attention mechanism. Built upon YOLOv5m as a baseline 

model, the design aims to improve the network's detection performance in complex 

scenes. To enhance the network's performance in classification and regression 

tasks, a decoupled detection head tailored to our design is introduced, surpassing 

the effectiveness of the original decoupled detection head. The incorporation of a 

hybrid data enhancement strategy and an anchor frame adaptive matching strategy 

significantly contributes to the network's robustness. When compared to other 

mainstream target detection models, the method presented in this paper 

demonstrates notable advantages across various aspects. 
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