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EXISTENCE AND MULTIPLICITY RESULTS FOR A MIXED
STURM-LIOUVILLE TYPE BOUNDARY VALUE PROBLEM
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In this paper, existence results of positive solutions for a mized boundary
value problem with Sturm-Liouville equation are established. Multiplicity results
are also pointed out. The approach is based on variational methods.
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1. Introduction

In 1836-1837, the French mathematicians Jacques Charles Frangois Sturm
(1803-1855) and Joseph Liouville (1809-1882) published several papers that initi-
ated a new subtopic of mathematical analysis: the Sturm-Liouville theory. Sturm
and Liouville were concerned with the general linear, homogeneous second-order
differential equation of the form

(p(x)u) + q(x)u = Mw(z)u if x € [a, b, (1)

where the potentials are given functions. Under various boundary conditions, Sturm
and Liouville established that solutions of problem (1) can exist only for particular
values of the real parameter A, which is called an eigenvalue. Relevant examples of
linear Sturm-Liouville problems are the Bessel equation and the Legendre equation.

The classical Sturm-Liouville theory does not depend upon the calculus of
variations, but stems from the theory of ordinary linear or nonlinear differential
equations. Linear Sturm-Liouville equations can be also studied in the context of
functional analysis by means of self-adjoint operators or integral operators with a
continuous symmetric kernel (the Green’s function of the problem). Certain appli-
cations involving linear partial differential equations can be treated with the help
of the Sturm-Liouville theory, for instance the normal modes of vibration of a thin
membrane. We also refer to [20], where it is studied a perturbed nonlinear Sturm-
Liouville problem with superlinear convex nonlinearity. In the recent paper [16], the
authors study a class of discrete anisotropic Sturm-Liouville problems.

In the present paper, we are concerned with a class of nonlinear Sturm-
Liouville problems and we establish some qualitative properties of the eigenvalues
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by using variational principles. A feature of our work is the presence of a Lipschitz
continuous function, which creates further technical constraints.

Consider the following Sturm-Liouville problem with mixed conditions on a
bounded interval [a, b] in R:

—(pu') + qu = \f(z,u) + g(u) in (a,b),
{ u(f) _ u'(zq;) 0. ’ 2)

We assume that p, ¢ € L*([a, b]) are such that
po := essinf ¢ yp(z) >0 and qo := essinfy (g pq(r) >0,

A is a positive parameter, f : [a,b] x R — R is an L!-Carathéodory function and
g : R — R is a Lipschitz continuous function with the Lipschitz constant L > 0, i.e.,

lg(t1) — g(t2)| < Llt1 — ta|

for every t1,t € R, and ¢(0) = 0.

Mixed boundary value problems, as well as Dirichlet or Neumann problems,
have been widely studied because of their applications to various fields of applied
sciences, as mechanical engineering, control systems, computer science, economics,
artificial or biological neural networks and many others.

In this connection, several existence and multiplicity results for solutions to
second order ordinary differential nonlinear equations, with mixed conditions at the
ends, have been investigated making use of fixed point theorems, lower and upper
solutions and variational methods. We refer the reader to the papers [1, 2, 9, 22, 25]
and references therein.

In the present paper, first we obtain the existence of at least one solution
for problem (2). It is worth noticing that, usually, to obtain the existence of one
solution, asymptotic conditions both at zero and at infinity on the nonlinear term
are requested (see, for instance, [26, Theorem 1]), while, here, it is required only
a unique algebraic condition (see (Ag) in Theorem 3.3). As a consequence, by
combining with the classical Ambrosetti-Rabinowitz condition, the existence of two
solutions is obtained (see Theorem 4.1). Subsequently, an existence result of three
nonnegative solutions is obtained combining two algebraic conditions which guaran-
tee the existence of two local minima for the Euler-Lagrange functional and applying
the mountain pass theorem as given by Pucci and Serrin (see [17]) to ensure the ex-
istence of the third critical point (see Theorem 4.3).

Our approach is variational and the main tool is a local minimum theorem
established in [3], of whose two its consequences are here applied (see Theorems
2.1 and 2.2). These Theorems have been successfully employed in several works in
order to obtain existence results for different kinds of problems (see, for instance,
[4, 5,6, 7,8, 11, 12]).

As an example, we state here the following special case of Theorem 4.3.

Theorem 1.1. Let h: R — R be a nonnegative continuous function such that

lim —= = 400, lim — =0,
t—+oo t
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and

1 2
48/ h(a:)da:</ h(z)dx.
0 0
Then, for each

32 2
AE | — S| )
Jo h(z)dz 3 [y h(zx)dz
the problem

u(0) =4/'(1) =0
admats at least three nonnegative classical solutions.

{ —3u” = Mh(u) + u in (0,1),

2. Preliminaries

Our main tools are Theorems 2.1 and 2.2, consequences of the existence re-
sult of a local minimum theorem [3, Theorem 3.1] which is inspired by the Ricceri
Variational Principle [21].

For a given non-empty set X, and two functionals ®, ¥ : X — R, we define
the following functions

) SUPyed—1 (jry,rof) Y (1) — ¥ (v)
5 = f )
,3(7'1 7'2) UE<I>*III(1]7"1,7"2[) ro — (I)(’U)

pa(r1,7a) = sup W (v) = SUPyea—1(]—oo,m]) \If(u)’
ve®=1(r1,r2() ®(v) —rq
for all 1,72 € R, with r; < ry, and
p(r) = sup (V) ~ SUPuea-1(-oor) ‘IJ(U)’
veE®d—1(]r,+o00]) O(v) —r

for all » € R.

Theorem 2.1 ([3, Theorem 5.1]). Let X be a reflexive real Banach space; ® : X — R
be a sequentially weakly lower semicontinuous, coercive and continuously Gateaux
differentiable function whose Gateaux derivative admits a continuous inverse on X*;
P : X — R be a continuously Gateaux differentiable function whose Gateaux deriv-
ative is compact. Put Iy := ® — AU and assume that there are ri,ro € R, with
r1 < 19, such that

B(ri,m2) < pa(ri,r2). (3)
Then, for each \ € } m, m there isugy € ®1(Jr1, ra[) such that Iy(ug ) <

Iy(u) for allu € @ 1(Jr1,r2) and I (up ) = 0.

Theorem 2.2 ([3, Theorem 5.3]). Let X be a real Banach space; ® : X — R
be a continuously Gateaux differentiable function whose Gateauzr derivative admits
a continuous inverse on X; ¥ : X — R be a continuously Gateauz differentiable
function whose Géteauz derivative is compact. Fizinfx ® < r < supy ¢ and assume
that

p(r) >0, (4)
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and for each A > ﬁ the function Iy := ® — AV is coercive. Then, for each A\ > ﬁ
there is ugx € ®1(Jr, +00[) such that Iy(ug) < In(u) for allu € ®1(]r, +00]) and
IS\(UO,)\) = 0.

Let f : [a,b] x R — R be an L'-Carathéodory function, g : R — R be a
Lipschitz continuous function with the Lipschitz constant L > 0, i.e.,

lg(t1) — g(t2)| < Llt1 — ta|

for every ti,t2 € R, and ¢(0) = 0.
We recall that f : [a,b] x R — R is an L!-Carathéodory function if

(a) x — f(x,§) is measurable for every & € R;
(b) &€ — f(x,&) is continuous for almost every x € [a, b];
(c) for every p > 0 there is a function [, € L'([a,b]) such that

sup |f(z,8)] < ly(z)
1€1<p

for almost every x € [a, b].

Corresponding to f and g we introduce the functions F : [a,b] x R — R and
G : R — R, respectively, as follows

F(at) = / f (. €)de
and .
G(t) = /0 9(€)de

for all z € [a,b] and t € R.
We define a convenient function space (for details see Brezis [10]):

X = {u e Wh2([a,b]) : u(a) = o}.

Then, X is a subspace of Sobolev space W'?([a, b]). The usual norm in X is defined

by
b b
Jullx = ( [ e+ / <u’<m>>2dx>

For every u,v € X, we define

1/2

b b
(u,v) ::/ p(a:)u/(x)v’(x)d:z—i—/ q(z)u(x)v(z)dz. (5)

Clearly, (5) defines an inner product on X whose corresponding norm is

b b 1/2
Jul = ( / pla)(ud (2))2d + / q<x><u<x>>2dx> .

Due to the positivity of p and non-negativity of g, it is easily seen that the norm
| - || on X is equivalent to || - || x. In the following, we will use || - || instead of || - || x
on X. Note that X is a reflexive real Banach space.
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Definition 2.1. We say that a function u € X is a weak solution of problem (2) if

b b
wmzx/f@mmmmm+/gwmmmm (6)
forallv e X.

Remark 2.1. Definition 2.1 is quite natural, as it agrees with an intuitive notion of
“classical solution” provided the involved functions are sufficiently smooth. Indeed,
let f be a continuous function, p € C*([a,b]), ¢ € C°([a,b]), and u € X N C?%([a, b))
be a weak solution of (2). By (6) and integration by parts, we have for all v € X

b
/[—@@mwmw@»umwwmwuw+qumww@ﬂm

b b
— ) / o, ul))o(@)ds + / g(u(z))o()dz.
Taking an arbitrary v € VVO1 2([a, b]) we see that
—(pu')' +qu= Af(l'a u) + g(u) in (av b)a

which in turn implies for any v € X

hence u/(b) = 0. Thus, u solves (2) in a pointwise sense.

It is well known that (X, | - ||) is compactly embedded in (C%([a,b]), || - ||lso)

b—a
Ulloo < U 7
lelloo < 4/ ==l (7)
for all u € X (see, e.g., [23]).

Also, we use the following notations:

and

[plloo = esssup,e(q 4p(@), llqllcc := esssupgepq 5a(z)-

For other basic notations and definitions, we refer the reader to [14, 15, 24].

3. Main results

In this section we present our main results. To be precise, we establish an
existence result of at least one solution, Theorem 3.1, which is based on Theorem
2.1, and we point out some consequences, Theorems 3.2, 3.3 and 3.4. Finally, we
present another existence result of at least one solution, Theorem 3.5, which is based
in turn on Theorem 2.2.
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Suppose that the Lipschitz constant L > 0 of the function ¢ satisfies the
condition L(b— a)? < pg. Now, put

I 3(b—a)
! 6po +2(b — a)?qo’
3(b—a)
kQ B )
6|plloc +2(b — a)?|lqllo
A . Do —L(b—@)2’
2po
B - p0+L(b—a)2’
2po

and suppose that % < A
Given a nonnegative constant c¢; and two positive constants co and d with
kic? < d? < koc3, put

ff max|y|<., F(z,t)dx — f(l;er)/z F(z,d)dx

Bc3 — Bd?/ky

a(cg, ka) :=

and
b b
B f(a+b)/2 F(z,d)dx — [, max|y|<., F(z,t)dx

b(cy, ko) :=
(c1, k2) Bd?[ky — A2

Theorem 3.1. Assume that there exist a mnonnegative constant c1 and two positive
constants co, d, with k:lc% <d? < k:gc%, such that

(A1) F(z,t) >0 for all (x,t) € [a, (a+b)/2] x [0,d];

(Ag) (l(CQ, k‘g) < b(Cl, k‘Q)

Then, for each A\ € % % , problem (2) admits at least one non-trivial

(c1,k2) a(ca;k2
weak solution u € X, such that

A B B
EC% < ||U||2 < ZC%'

Proof. Our aim is to apply Theorem 2.1 to our problem. To this end, for each u € X,
let the functionals ®, ¥ : X — R be defined by

b
ww:QWW—/Gmex
and )
U (u) ::/ F(z,u(x))dz,

and put

I(u) := ®(u) — AV (u) VueX.
First, we show that ® is a Gateaux differentiable sequentially weakly lower semicon-
tinuous functional on X. Indeed, put ®(u) := Y (u) — ©(u), where

b b
nm:iwwzi</mwmew+/q@wmwm>
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/ G(u(z))dx = /b (/Oum g(f)dﬁ) dx
for every u € X.

If u, — uin X then compactness of embedding X < C%([a, b]) implies u,, — u
in C%([a,b]) i.e. u, — u uniformly on [a,b] (see Proposition 2.2.4 of [13]). Hence,
for some constant M > 0 and any n € N we have |lu,|o < M, and so

and

Glun(e)) = Glua)lde <L [ et < 5 (@) + @) < 5

u(x

(M? 4 |ullZ,)

for every n € N and z € [a,b]. Furthermore, G(uy(z)) — G(u(z)) at any = € [a, b]
and therefore, the Lebesgue Convergence Theorem yields

b b
O(uy) :/ G(un(z))dz —>/ G(u(z))dx = O(u).

Therefore O is a sequentially weakly continuous functional on X. Since the norm ||-||

on X is a weakly sequentially lower semi-continuous functional in X (see Proposition

2.1.22(iii) in [13]), the functional ® is sequentially weakly lower semicontinuous.
At this point, we have

b
T = 5o ( [ [ (s 00(@) + at) (- 00)0))°) da:>

6=0

b
= (/ [p(2) (' (2)0' (x) + 0" (2))?) + q(z) (u(z)v(z) + Ov())] dﬂ?) o
b b
= / p(z)u (z)v' (z)dx +/ q(z)u(z)v(z)dz.

For proving Géateaux differentiability of ©, suppose u,v € X. Then for ¢ # 0, by
the Mean Value Theorem

u+tv) — O(u b "|Gluttv) — Glu
|@( O gttty < [ EEZE gua)ote) as
- /\g ) + t¢(x)v(x)) — g(u(x))||v(z)|dz
< LIl I - o).

where 0 < ((z) < 1 for every = € [a,b]. Therefore, © : X — R is a Gateaux
differentiable at every u € X with derivative

b
@ww:/gwmmmm

for every v € X. Thus, we have that ® is Gateaux differentiable and its Gateaux
derivative is the functional ®'(u) € X*, given by

b b b
www:/pwwwmwm+/«mmwmm—/gwmmww (8)
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for every v € X. Furthermore, the differential ® : X — X* is a Lipschitzian
operator. Indeed, for any u,v € X, there holds

() ~ ¥ @)l = sup (@) @), )
< s ftm vl s [ loGuGa) - oo (o)
< sup [u=of Ju]

w]<1

b 1/2 b 1/2
su u\xr — v\ 2 wl\x 2
+w21</a 9(u(z)) g<<>>\> (/ <>|)

Recalling that g is Lipschitz continuous and the embedding X < L?([a,b]) is com-
pact, the claim is true. In particular, we derive that ® is continuously differentiable.
Since |g(t)| < L|t| for every ¢t € R, the inequality (7) yields for any u,v € X the
estimate

b
(®'(u) = ' (v),u—v) = (u—v,u—’v)—/ (9(u(z)) = g(v(2))) (u(z) - v(z))dz

b
> ||u—v||2—L/ (u(z) — v(z)) dz

po— L(b— a)?
Po

By the assumption L(b — a)? < pog, it turns out that @ is a strongly monotone
operator. So, by applying Minty-Browder theorem (Theorem 26.A of [24]), & :

X — X* admits a Lipschitz continuous inverse.
For proving the Gateaux differentiability of ¥, let u,v € X with ||ul| <

2 M and |lv]| < /#M, where M > 0 is a constant. Then, for ¢ # 0 by
the Mean Value Theorem

‘\Il( +tv /fxu

> lu— ]

IA

/ |f (@, u(z) + t¢(x)v(x)) — f (2, u(x))| |v(z)|dz

IN

b
o]loc / | (0 u() + ¢ (@)o(2)) — f(z, ulz))|de

where 0 < ((z) < 1 for every x € [a,b] for which F(z,t) is differentiable with
respect to t. Since the assumption (b) on f(z,&) implies

}LH(l) f(z,u(z) + t{(z)v(x)) = f(x,u(x)) for almost every = € [a,b]

and by (7) we have ||v]|ooc < M and |Jullcc < M, then by the assumption (c) on
f(z,&) we have

f (@, u(z) + tC(z)v(x)) — [z, u(x))| < lanr(2) + I ()

for any |t| < 1. Therefore, the Lebesgue Convergence Theorem implies

lim\IJ(u+tU /fxu (z)dx.

t—0
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Since for every u,v € X, some constant M > 0 can be found so that both of in-
equalities ||ul| < /£~ M and [jv|| < /£ M hold, thus ¥ is Gateaux differentiable

at every u € X, whose Gateaux derivative is given by

b
W (u)(v) = / £, u(z)o(z)da (9)

for every v € X.

We deduce from (8), (9) and the above discussion that the weak solutions of
(2) are exactly the critical points of .

Now, we show that ¥/ : X — X* is compact. Indeed, if u, — u in X
then compactness of embedding X — C°([a, b]) implies u,, — u uniformly on [a, b],
and the assumption (b) on f(z,&) yields f(x,un(z)) — f(z,u(z)) for almost every
x € [a,b]. Also, for some constant M > 0 and any n € N we have |up|| < M. By
the assumption (c) on f(z,&) we have |f(z,u,(x))| < lp(x) for any n € N and for
almost every x € [a, b]. Therefore, the Lebesgue Convergence Theorem yields

/abf(x,un(x))dx — /abf(w,U(x))dg;

and so, for every w € X, we have

b
(¥’ (un) = ¥'(u) (w) = /((x,un(ﬂf))—f(%U(JU)))w(fE)dﬂc

f
b—a b
\/pTHwH/a (f(z,un(z)) — f(z,u(x))) dz.
' , b—a [P
107 (un) — U (u) || x+ < \/pT/a (f (z,un(z)) — f(z,u(x))) dz,

and so U'(u,) — U'(u). Therefore, by Proposition 26.2 in [24], ¥’ is compact.
Since ¢ is Lipschitz continuous and ¢(0) = 0, we have from (7) that

IN

Thus,

Alju||* < ®(u) < Bl|u)? for all u € X. (10)
Now, put
r = A, ry := Bcs
and y
27 _ .
w(z) = ez —a), ¥f z € [a,(a+0)/2],
d, ifx €(a+b)/2,b].
It is easy to verify that w € X and, in particular, one has
d? d?
<l < .
k1 ko
So, from (10), we have
Ad? Bd?
d < P(w) < —d

2
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From the condition kjc? < d? < koc2, we obtain 71 < ®(w) < ro. Since % < &,

for all w € X such that ®(u) < 7o, taking (7) into account, one has |u(x)| < ¢z for
all x € [a,b], from which it follows

b
sup U(u) = sup /F(a:,u(a:))da:
u€P~1(]—o0,ra)) u€®1(]—oo,r2[) Ja
b
< max F'(x,t)dz.
a ItI<e

Arguing as before, since A < B, we obtain
b
sup U(u) < max F'(x,t)dz.
ued—1(]—oo,r1]) a ltISe
Since 0 < w(x) < d for each x € [a, b], the assumption (A1) ensures that
b
U(w) > / F(z,d)dz.
(a+b)/2

Therefore, one has

SUDyed1(]—o0,r)) ¥ (1) — ¥(w)

B(ri,m2) pa— Y
b b
[, maxy <., F(x,t)dr — f(a+b)/2 F(x,d)dx B .
< BE& — Bd&/k = a(cz, k2).
On the other hand, one has
(W) — SUPyep—1(]—oo,m)) ¥ (1)
> k)
p2(r1,m2) > Bw) =
b b
u F(z,d)dr — |, maxy <., F(z,t)dx
f( +b)/2 J [t|<c1 — b(er, o).

- Bd? [ky — Ac?
Hence, from the assumption (As), one has [(r1,7r2) < pa(ri,72). Therefore, from
Theorem 2.1, for each A € }b(ciid), m [, the functional I, admits at least one
critical point % such that
r1 < ®(a) < ro,

that is

A, 92 B,
—c7 < ||lu||” < —c
and the conclusion is achieved. O

Now, we point out an immediate consequence of Theorem 3.1.

Theorem 3.2. Assume that there exist two positive constants ¢, d, with d*> < kac?,
such that the assumption (A1) in Theorem 3.1 holds. Furthermore, suppose that

b
f: max|¢ <e F(x,t)dz fa+b 2 F(x,d)d:):
(Ag) Lot Sy GO
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Then, for each
Bd? Bc?

AE ko [° F(z. d)dz [° F(z, t)de |
2f(a+b)/z (z,d)dx [, maxjy<. F(z,t)dx

problem (2) admits at least one non-trivial weak solution u € X, such that |a(z)| < ¢
for all x € [a,b].

Proof. The conclusion follows from Theorem 3.1, by taking ¢; = 0 and ¢3 = c.
Indeed, owing to the assumption (As), one has

fab maxy|<. F(z,t)dr — f(Zer)/Q F(z,d)dx

a(c, k) = BBy
< (1 B cgllig) f; max|y|<. (v, t)dx
B(Cz - d2/k‘2)
1 b

= — F(zx,t)dx.
B J, 0w

On the other hand, one has
b
b(0, ka) = Jiasvy 2 F(@, d)da
T B2 ks
Hence, taking the assumption (A3) and (7) into account, Theorem 3.1 ensures the
conclusion. n

Now, we point out a special situation of our main result when the nonlinear
term has separable variables. To be precise, let a € L([a,b]) such that a(x) > 0
almost every = € [a,b], a #Z 0, and let h : R — R be a nonnegative continuous
function. Consider the following mixed boundary value problem
—(pu') + qu = Aa(x)h(u) + g(u)  in (a,b),
/ (11)
u(a) = u'(b) = 0.

Put H(t) := fg h(€)dE for all t € R, and set ||y := fab a(z)dz.

Theorem 3.3. Assume that there exist two positive constants ¢, d, with d*> < kac?,
such that

c k ba a(z)dz
() 240 < (2 lesppot )t

Then, for each
B #? B

A€ ] : ,
o [y o () H(@) [l H ()

problem (11) admits at least one positive weak solution u € X, such that u(z) < ¢
for all x € [a,b].

Proof. Put f(x,&) = a(x)h() for all (x,€) € [a,b] x R. Clearly, one has F(x,t) =
a(x)H(t) for all (x,t) € [a,b] x R. Therefore, taking into account that H is a non-
decreasing function, Theorem 3.2 ensures the existence of a non-zero weak solution
. We claim that it is nonnegative. In fact, arguing by contradiction and setting
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C = {z € [a,b] : u(x) < 0}, one has C' # @. Put v := min{w,0}, one has v € X.
So, taking into account that u is a weak solution and by choosing v = ¥, from our
sign assumptions on the data, one has

z)|@ (z)|?dx z)|u(z)|?de— u(x))u(xr)dr = a(z)h(u(x))u(x)ax .
| r@li@pdet [ a@litPde— [ g@)ais =2 [ a@ha)aeds <o
On the other hand,

2

20 L iy < [ ol @t | atwia(oPde— [ gtate)acads,
DPo C C C

where m(C) is the Lebesgue measure of the set C. So, ||t[[y1.2(cy = 0 which is

absurd. Hence, our claim is proved. Now, owing to the strong maximum principle

(see, e.g., [18, Theorem 11.1]) the weak solution @, being non-zero, is positive and

the conclusion is achieved. O

We now give a special case of our main result as follows.

Theorem 3.4. Assume that

(A7) lim; o+ @ = +0o0,

and put \* = ﬁ SUP .~ % Then, for each A € 10, X*[, problem (11) admits at
least one positive weak solution.

Proof. For fixed A € ]0, \*[, there exists ¢ > 0 such that
B ¢

A< — .
e[ H{(c)
Moreover, the assumption (A7) follows that lim; o+ % = 0. Therefore, we can

choose positive constant d satisfying d < v/ksc such that
b
ka2 f(a+b)/2 a(z)dz H(d) - 1
B d? A
Hence, by applying Theorem 3.3 we arrive at the desired conclusion. g

Remark 3.1. Taking into account (A7), fix v > 0 such that h(t) > 0 for all t €]0, 7[.
Then, put Ay := ﬁsnpce]oﬁ[ % Clearly, A, < A*. Now, fixed A €]0, \,[ and
arguing as in the proof of Theorem 3.4, there are ¢ €]0,v[ and d < y/kac such that
B d? B
5 <A< .
o 0y e @)~ Tl (O

Hence, Theorem 3.3 ensures that, for each A €]0, A,[, problem (11) admits at least
one positive weak solution @y such that @y (x) <« for all z € [a, b].

Finally, we present an application of Theorem 2.2 which we will use in next
section to obtain multiple solutions.

Theorem 3.5. Assume that there exist two constants ¢, d, with 0 < k1 < d?, such
that

b b _
(As) fa maXMSEF(‘Tvt)dx < f(a+b)/2 F(z,d)dx;
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(Ag) limsupyy ;o0 F(t:g’t) < 0 uniformly in x.

Then, for each A > \, where
5\ o BJZ/]CQ — Aé?
.— b — b Y
f(a+b)/2 F(z,d)dx — fa max|y|<z F(z,t)dx

problem (2) admits at least one non-trivial weak solution @ such that ||@||* > %62.
Proof. The functionals ® and ¥ defined in the proof of Theorem 3.1 satisfy all
regularity assumptions requested in Theorem 2.2. Moreover, the assumption (Ag)
implies that Iy, A > 0, is coercive. So, our aim is to verify condition (4) of Theorem
2.2. To this end, put r = Aé and

w(z) = %(m—a), ifx €la,(a+0)/2],
d, if 2 € [(a+b)/2,b].
Arguing as in the proof of Theorem 3.1 we obtain that
(r) > Jwryyo Fla, d)dx — [ maxy<; F(x, t)dx
P = Bd?/ky — A2 '

So, from our assumption it follows that p(r) > 0.
Hence, from Theorem 2.2 for each A > A, the functional I, admits at least one
local minimum % such that ||@|? > %62 and the conclusion is achieved. O

4. Multiplicity results

The main aim of this section is to present multiplicity results. First, as con-
sequence of Theorem 3.1, taking into account the classical theorem of Ambrosetti
and Rabinowitz, we have the following multiplicity result.

Definition 4.1. We say that a functional I : X — R satisfies the Palais-Smale
condition if any sequence {u,} C X satisfying

sup I (un) < 400, I'(un) — 0,
n

contains a convergent subsequence.

Theorem 4.1. Let the assumptions of Theorem 3.1 be satisfied. Assume also that
f(-,0) #0 in (a,b), and
(A10) there exist constants v > 2 and R > 0 such that, for all |t| > R and for all
x € [a,b], one has
0 <vF(x,t) <tf(x,t).

Then, for each \ € }m, m [, problem (2) admits at least two non-trivial
weak solutions Uy, uo, such that

A B

& < m|? < = (12)

B A
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Proof. Fix X as in the conclusion. So, Theorem 3.1 ensures that problem (2) admits
at least one non-trivial weak solution u; satisfying the condition (12) which is a local
minimum of the functional Iy.

Now, we prove the existence of the second local minimum distinct from the
first one. To this end, we must show that the functional Iy satisfies the hypotheses
of the mountain pass theorem.

Clearly, the functional I, is of class C' and I,(0) = 0.

We can assume that u; is a strict local minimum for I in X. Therefore, there
is p > 0 such that infy,_z, =, Ix(u) > Ix(%1), so condition (I;) in Theorem 2.2 in
[19] is verified.

From (Ajp), there is a positive constant C' such that

F(z,t) = CJt|” (13)
for all x € [a,b] and [t| > R. In fact, setting a(x) := minj¢_g F'(z,§) and
ot(s) := F(x,st), Vs>0, (14)

by (A1p), for every x € [a,b] and |t| > R one has

0 < vyy(s) = vF(x,st) < st f(x,st) = spi(s), Vs> \IZ

Therefore,

1 / 1
/ gpt(s)ds > / st.
R/l Pt(8) R/t S

Then

Taking into account of (14), we obtain
1"

Pla.t) > Pz, Rt)HV > a(a)

') R = =,

where C' > 0 is a constant. Thus, (13) is proved.
Now, choosing any v € X \ {0}, one has

Iy(tu) = ((I) AU (

= Htu”2 /Gtu ))dx — A /Fa: tu(z

< 7”@&"2 - )\t”C'/ |u(z)|"dx — —o0

as t — 400, so condition (Iz) in Theorem 2.2 in [19] is verified. So, the functional
I, satisfies the geometry of mountain pass.
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Now, to verify the Palais-Smale condition it is sufficient to prove that any
sequence of Palais-Smale is bounded. To this end, taking into account (Ajg) one has

vI(un) = I3 (un) | xflunll > vlx(un) = Ix(un)(un)
= v®(un) — AW (un) — & (un)(un) + AU (un) (un)

b
(VA = 2A4)||un|* A/ WE(z, un(2)) = (2, un(z))un(2)] dz

(VA = 24)||un|’. (15)

Y]

Y

If {up} is not bounded, from (15) we have a contradiction. Thus, I satisfies the
Palais-Smale condition.

Hence, the classical theorem of Ambrosetti and Rabinowitz ensures a critical
point @y of Iy such that I)(ug) > I)(u1). So, u; and uy are two distinct weak
solutions of (2) and the proof is complete. O

Corollary 4.1. Assume that there exist two positive constants c,d, with d*> < koc?,
such that (Ag) holds. Assume also that

(A11) there exist constants v > 2 and R > 0 such that, for all [t| > R, one has
0 < vH(t) < th(t).
Then, for each
B d? B ¢

k2 f(i+b)/2 a(z)dx H(d)7 i H(e) J

problem (11) admits at least two nonnegative weak solutions a1, Uz, such that ui(x) <
¢ for all x € [a,b)].

Corollary 4.2. Assume that (A7) and (A1) are satisfied.
Then, for each X\ €]0,\*[, problem (11) admits at least two nonnegative weak
solutions.

Next, as a consequence of Theorems 3.5 and 3.2, the following theorem of the
existence of three solutions is obtained and its consequence for the nonlinearity with
separable variables is presented.

Theorem 4.2. Assume that (Ag) holds. Moreover, assume that there exist four
positive constants c,d, ¢, d, with d* < kac? < k1% < d?, such that (A3), (Ag) and

b F d fb + ($ _) fb c ( t)
MAaX|¢| < eF(z.t)da a F(z,d)dz— |, max|s <z F(z,t)dz
( A 1 ) fa [t|<cF(x,t) < (a+b)/2 Il

Be2 B2 /ky— A2
are satisfied. Then, for each
~ Bd? B2
AEA:= max{)\, 7 }, 5 c )
ko f(a+b)/2 F(x,d)dz ) [ maxy <. F(z,t)dx

problem (2) admits at least three weak solutions.

Proof. First, we observe that A # & owing to (Aj12). Next, fix A € A. Theorem
3.2 ensures a non-trivial weak solution u such that ||u||? < %cQ which is a local
minimum for the associated functional Iy, as well as Theorem 3.5 guarantees a non-

trivial weak solution @ such that ||@||? > 42 which is a local minimum for I,.
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Hence, the mountain pass theorem as given by Pucci and Serrin (see [17]) ensures
the conclusion. O

Theorem 4.3. Assume that

; H
(A1s) limsup, o+ % = 400;

im H
(A14) i SUP¢t—+00 % =0.
Further, assume that there exist two positive constants ¢,d, with kié> < d?, such
that

b —

(A15) H(e) < (kQ f(“+b>/2 a(x)dx) H(d)

c lleells a2 -

Then, for each
B #? B &

: ] ko f(l;+b)/2 afz)dz H(d) |l H(e) |

problem (11) admits at least three nonnegative weak solutions.

Proof. Clearly, (A14) implies (Ag). Moreover, by choosing d small enough and ¢ = ¢,
simple computations show that (Aj3) implies (As). Finally, from (Aj5) we get (Ag)
and also (A12). Hence, Theorem 4.2 ensures the conclusion. O

Remark 4.1. If h(0) # 0, Corollaries 4.1 and 4.2 ensure two positive weak solutions
while Theorem 4.3 ensures three positive weak solutions (see proof of Theorem 3.3).

Finally, we present the following example to illustrate our results.

Example 4.1. Consider the problem

—(2e"u/) + e*u = Xe® (£ + |ul*u) + Fu in (0,1), (16)
u(0) = /(1) = 0.

Let p(z) = 2¢” and ¢(z) = a(z) = € for every z € [0,1]. Also, let h(t) = & + [t|*
and g(t) = 1t for all t € R. Clearly, h(0) # 0. Since

-2
h(t 1
fim PO _ (7 + |t|2> = +oo,
t—0t+ ¢ t—0+ \6¢

condition (A7) holds true. Choose v =3 and R = 1, we have
0 < 3H(t) <th(t),
for all |¢| > 1. Moreover, one has

B ? L 15
= sup > .
ledls >0 H(e) — 8(e—1)
Then, owing to Corollary 4.2 and Remark 4.1, for each A € |0, % [, problem (16)
admits at least two positive classical solutions. In particular, the problem
—(2e™u) + e%u = (% + [u|?u) + 2u in (0,1),
u(0) =4/(1) =0,

admits at least two positive classical solutions.

A*
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