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MODELLING BREAST CANCER GENE EXPRESSION USING 

BAYESIAN NETWORKS 

Irina-Oana LIXANDRU-PETRE1, Catalin BUIU2 

This paper addresses microarray analysis, through an integrated technique 

of interpreting gene expressions from modified breast tissue in order to identify 

genes whose expression is correlated with a certain phenotypic trait, in our case, 

breast cancer and which can be used as tools for the realization of possible 

pathways through which mutations of differentially expressed genes lead to the 

appearance of this neoplasm. The approach described in this paper is helpful in 

discovering and understanding as fully as possible the causal relationships between 

genes identified as being differentially expressed from a biological data set. 
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1. Introduction 

Cancer is and will remain a global problem of altering the health of 

individuals. Although a high level of knowledge of information has been reached, 

specialists have not yet been able to find an answer to all the processes and modes 

of communication that take place before a cell undergoes so many different 

mutations that it gives rise to clones that promote the formation of neoplastic 

tissues. The motivation for choosing this topic is, therefore, the major implication 

that cancer has in the public health system and how it acts from a micro level, of a 

cell mutation, to a macro level, of the formation of metastases, managing to it 

successfully overcomes the barriers that the body raises in order to maintain 

cellular stability.  

The main objective of this article was to identify genes whose expression 

is correlated with a specific phenotypic trait, in our case, breast cancer and which 

can be used as tools for the realization of possible pathways through which 

mutations of differentially expressed genes lead at the onset of this neoplasm. The 

approach described in this paper is helpful in discovering and understanding as 

fully as possible the causal relationships between genes identified as being 

differentially expressed from a biological data set. 
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2. Gene expression profiling techniques 

 

Microarray-based gene expression has propelled our knowledge of 

molecular biology [1]. First of all, they have become a widely used technique to 

study the dynamics of biological processes, being miniaturized laboratories for 

studying gene expression [2]. Gene matrices measure the level of molecular RNA 

expression for thousands of genes simultaneously, the technique being a much-

needed data collection method for obtaining information related to understanding 

the complexity of living organisms [3]. We can obtain responses to biological 

components that interact with each other, microarray analysis having various 

applications in the medical field, starting from the characterization of tumours to 

the evolution or changes of diseases or symptoms over time or response to drugs 

and identification of new treatments [4]. The normal cellular transcriptome can be 

compared to the transcriptome of a specific disease to try to elucidate disease-

specific changes. Another application may be the analysis of physiological 

changes over a lifetime, such as comparing a young transcriptome with an old one 

[5], revealing changes in molecular pathways. Even a partial understanding of the 

information available can provide value and clues. For example, co-expression of 

new genes may provide functions for many genes for which information is 

unavailable. 

Basically, a DNA microarray is a collection of microscopic dots attached 

to a solid surface needed to measure gene expression levels. This technology 

allows researchers to study many genes (approximately 21,000 genes in the 

human genome) [6]. Microarray experiments and information sequence analysis 

processes are designed to achieve one or more goals, such as: 

➔ identification of genes whose expression is correlated with a particular 

phenotypic trait; 

➔ identification of genes involved in regulatory and mediating networks for 

certain biological phenomena; 

➔ identification of molecular markers that can be used as tools for 

diagnosing and predicting diseases or as predictors of clinical outcomes; 

➔ discovering possible molecular targets for drug development; 

Compared to other biology tools, genomic microarrays are platforms that 

allow easier access to the internal biological mechanisms of cell cultures. 

However, while large data sets generated by microarrays are a potential goldmine 

of biological information, their size makes data processing a cumbersome task. 

This task can be further complicated by the inevitable batch effects generated 

when combining different data sets or the noise present in all-time series 

expression experiments. Moreover, gene expression profiles are dependent on 

combinations of complex intracellular events, and as such, identifying signals 

related primarily to the phenotype of interest is a substantial challenge. 
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3. Approach  

A. Microarray analysis in R software 

Data from gene expressions can lead to complex applications such as 

discovering new genes, the diagnosis of various diseases, the discovery of drugs 

or toxicological research. With such a large amount of data available to the 

general public, a bioinformatics analyst needs to have the specific knowledge and 

skills to understand, analyze and interpret this data in the most accurate way 

possible. 

In this paper, we will analyze and model gene data from oligonucleotide 

matrices from faces called Affymetrix GeneChip [7] in the R programming 

language [8]. The data are implemented in Affy matrices, the expression of each 

gene being measured by comparing the hybridization of the molecular RNA of the 

sample with a set of PM and MM probes. The first sample type in each pair is 

called the perfect match (PM) and is taken from the gene sequence. The second 

type of sample is called mismatch (MM), which measures background noise and 

is created by changing the 13th gene in PM. 

Initially, the biological data was downloaded from the Omnibus Gene 

Expression (GEO) database, hosted by the National Center for Biotechnology 

Information (NCBI) [9]. From this public repository of biological files, the 

GSE48391 file of gene expressions on the Affymetrix microarray faces of breast 

cancer was selected.  

The first steps used in our approach were fully explained in [10]. After 

microarray data normalization, solving the issue of high dimensionality and 

hierarchical grouping, we used the R Weighted Correlation Network Analysis 

(WGCNA) package [11], which forms groups of genes correlated with each other 

resulting in relational modules (Figure 1).  
 

 
Fig. 1. Gene co-expression modules grouped according to Euclidean distance 

 

From 13 modules, and according to the theory of the hclust function [12], 

the group with the most correlated gene (in our case the greenyellow module) was 

chosen for further analysis.  

Using the igraph package from the R programming language, the 

adjacency matrice was used to generate correlation scores between nodes (hub 
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genes). By sorting the genes according to the weight value, we selected the first 

30 correlations in the order of the decreasing weight values, resulting in a 

particular graph for the chosen module.  

Using the gene co-expression network (GCN) of the module with the most 

correlated genes, an undirected graph with a single directional path was created to 

exemplify the possible alteration pathways leading to the formation of cancer cells 

(Figure 2). 
 

 
Fig. 2. Schematic reproduction of the gene system within the module chosen to be modeled 

 

According to the schematic representation above, the modelled network 

starts from the CSF2RB, RAC2 and ARHGAP9 genes to TASL and ADAM28. 

The main idea of this modelling was to find possible pathways of the mutations of 

the mentioned genes in order to give rise to uncontrolled cell proliferation and 

later, to an invasion in the neighbouring cells. 

Next, with the help of Bayesian networks and inference, we analyzed the 

effects that possible mutations or polymorphisms in each gene alter or not the role 

of the ADAM28 gene in the module chosen as representative of the tumour 

progression of breast cancer. 

 

B. Analysis of gene expressions based on Bayesian networks 

 

Bayesian networks can be an approach to the analysis of gene expressions 

and their patterns by statistical examination of dependencies and conditional (in) 

dependencies of data, becoming an essential part in the genetic analysis of data, 

being used to deduce causal relationships [13, 14]. These are a class of 

probabilistic models used to model reasoning under uncertainty. Each Bayesian 

network has two components: 
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➔ Qualitative component, which uses the language of graphs, suggests a set 

of (in) dependency relationships between domain variables (parent-child 

dependencies); 

➔ Quantitative component, corresponding to the probabilistic modelling of 

uncertainties, using probability theory (we attribute to dependency 

relations - marginal probabilities of all nodes without parents and 

conditional probability distributions to the other nodes giving the parent 

nodes);  

In our case, the Bayesian network was created exclusively from genes 

susceptible to breast cancer, identified by R analysis and validated by databases 

containing information about human cancers [15]. Compared to the diagram in 

Figure 3, the SELL gene with the related offspring was eliminated. According to 

research and studies conducted so far, the rest of the genes were actively involved 

(together or separately) in breast cancer neoplasms. Thus, the process in Figure 3. 

begins with three genes, of which RAC2 is part of the Ras family, being a proto-

oncogene with a role in regulating cellular responses, such as apoptotic and 

epithelial cell processes, CSF2RB - receptor for a growth factor that induces 

differentiation and proliferation in the spinal cord bone, and ARHGAP9 a 

suppressor gene, which if mutated, leads to deletion of the p53 gene, thus 

promoting the invasion of fibroblast cells into cells and tissues [16]. CLEC12A 

encodes essential proteins involved in cell signaling and immune response (some 

of which are part of the 'killer genes' region), STK17A is a suppressor gene, a 

member of cell apoptosis and a target of the p53 gene in case of mutations [17], 

and ADAM28 an oncogene with immune cell binding, overregulated in specific 

cancer cells [18], mutations in gene expression being linked to metastatic 

dissemination [19]. 
 

 
Fig. 3. Targeted acyclic graph with genes susceptible to breast cancer  

 

The qualitative component of the Bayesian network includes all six nodes 

and the (in) dependence relations between them, meeting in this graph all three 
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types of connections: serial, convergent and divergent. Each gene is, in fact, a 

node in the Bayesian network created, so to model the network, one needs the 

quantitative component, i.e. both the marginal probabilities of the variables 

attached to the nodes and the conditional probability tables associated with the 

nodes. In the first phase, we assumed that each gene had equal marginal 

probabilities, after which we modelled the network for different probabilities to 

analyze which are the primary mutations in genes that can lead to changes in the 

structure of the ADAM28 gene. ADAM28, referring to all the other genes in the 

process. 

Starting from the compound probability formula [14], the Markov 

causality condition states that a Bayesian network uniquely defines a factorization 

of the compound probability distribution (where "children" depend only on 

"parents"). In our case, the formula is: 

 

 
 

     (1) 

 

The probability of mutations in the ADAM28 gene, given the other genes, 

can be written mathematically using the Markov causality condition: 

 

                        (2) 

 

Thus, the last part of the gene analysis assumed the modelling of the genes 

in the chosen module to have the most significant relevance to the established 

condition, with the help of a Bayesian network that uniquely defines a composite 

probability distribution over all variables in the network. Knowing the composite 

probability of the network, it is easy to calculate the marginal or composite 

probability of any variables in the network. This has also been done in this case 

with the help of the Bayesian inference, which is very flexible, allowing the 

introduction of records on any node and updating the trusts for any of the other 

nodes.  

Depending on the existence of a particular type of evidence or information 

(diagnostic tests, ultrasounds, blood sampling) on the genes, we can provide 

additional information about their changes in the chosen biological process. Thus, 
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if there is no reliable information from the physician or expert, Bayesian network 

modelling is performed relative to previously known a priori probabilities (usually 

calculated using the total probability formula), resulting in new marginal a priori 

probabilities. If this specific information is known, the a posteriori probabilities of 

the nodes are calculated. 

In the analysis of the influence of specific information on each node in the 

system, some 7 cases of probabilistic inference of causal or predictive reasoning 

resulted: 

a. If the information about the ARHGAP9 "parent" gene is true, then: 

➔ the probabilities of the other two parent genes do not change; 

➔ the probability of the CLEC12A gene changes; 

➔ the change suffered by the CLEC12A gene leads to changes in the 

STK17A and ADAM28 genes; 

➔ the probabilities of the other two parent genes do not change; 

b. If the information related to the CSF2RB "parent" gene is true, then: 

➔ the probabilities of the other two parent genes do not change; 

➔ the probability of the CLEC12A gene changes; 

➔ the change suffered by the CLEC12A gene leads to changes in the 

STK17A and ADAM28 genes; 

c. If the information about the RAC2 "parent" gene is true, then: 

➔ the probabilities of the other two parent genes do not change; 

➔ the probability of the CLEC12A gene changes; 

➔ the change suffered by the CLEC12A gene leads to changes in the 

STK17A and ADAM28 genes; 

d. If the information related to two or all of the "parent" RAC2, CSF2RB, 

ARHGAP9 genes is true, then: 

➔ the probability of the CLEC12A gene changes and increases significantly 

compared to the cases a., b., c. (P (CLEC12A | RAC2 = yes, CSF2RB = 

yes, ARHGAP9 = yes)); 

➔ the change suffered by the CLEC12A gene leads to changes in the 

STK17A (probabilities decrease compared to the initial values) and 

ADAM28 (probabilities increase compared to the initial values) genes; 

e. If the information about the CLEC12A gene is accurate, then: 

➔ the probabilities of the parent genes increase compared to the initial 

values; 

➔ STK17A gene changes depending on P (STK17A | CLEC12A = yes); 

➔ ADAM28 gene changes depending on P (ADAM28 | STK17A, CLEC12A 

= yes); 

➔ any (certain) information brought about the “parent” genes RAC2, 

CSF2RB, ARHGAP9 does not change the trust in the CLEC12A gene; 



48                                             Irina-Oana Lixandru-Petre, Catalin Buiu 

 

 

➔ any information on the “parent” genes RAC2, CSF2RB, ARHGAP9 does 

not change the marginal probability of the STK17A gene (the initial genes 

and the STK17A gene are conditionally independent). 

➔ any information on the “parent” genes RAC2, CSF2RB, ARHGAP9 does 

not change the confidence (marginal probability) in the ADAM28 gene, so 

we can say that the initial genes and the final gene are conditionally 

independent. 

f. If the information about the STK17A gene is true, then: 

➔ the probabilities of the initial genes decrease compared to the initial 

values; 

➔ the probability of the CLEC12A gene decreases compared to the initial 

value P (CLEC12A); 

➔ ADAM28 gene changes depending on P (ADAM28 | STK17A = yes, 

CLEC12A); 

➔ any (certain) information brought about one or more “parent” genes 

(RAC2, CSF2RB, ARHGAP9) changes the confidence in the CLEC12A 

gene, and the probability increases compared to the initial one; 

➔ the change suffered by the CLEC12A gene also leads to changes in the 

ADAM28 gene (increased probabilities); 

g. If the information related to both CLEC12A and STK17A genes is true, 

then: 

➔ ADAM28 gene changes depending on P (ADAM28 | STK17A = yes, 

CLEC12A = yes); 

➔ any (certain) information provided on the “parent” genes RAC2, CSF2RB, 

ARHGAP9 does not change the confidence in the CLEC12A and STK17A 

genes; 

➔ any (certain) information provided on the “parent” genes RAC2, CSF2RB, 

ARHGAP9 does not change the confidence in the ADAM28 gene, so we 

can state that the initial genes and the final gene are conditionally 

independent. 

 

4. Verification elements and limitations. Discussions 

 

The main object of the paper was to identify genes whose expression is 

correlated with a specific phenotypic trait, in our case, breast cancer and which 

can be used as tools for possible pathways through which mutations of 

differentially expressed genes lead to the appearance of this neoplasm. Thus, 

Bayesian networks were chosen for modelling the gene co-expression network, 

which was helpful in modelling reasoning under uncertainty. In addition, they 

have an intuitive and flexible language for representing the dependencies and 

independence between the variables of the chosen module. Both components of 
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the Bayesian network, quantitative and qualitative, are transparent in the sense of 

having complete information on probability values and continuous observation of 

dependencies between nodes, making the gene scheme very suggestive. Valuable 

information can be extracted through it, and the values applied to analyze (inter) 

dependencies between nodes. In addition to these characteristics, Bayesian 

networks allow the introduction of several types of reasoning, compared to other 

types of systems that allow only one. The reasoning analyzed in this paper is 

causal or predictive, in which predictive inference takes place in a causal sense, 

namely, we were able to answer questions such as: giving the cause (s), what is 

the chance of producing the effect? In our case, what is the probability that a 

patient will have mutations in the ADAM28 gene knowing that the level of 

mutations in the upper genes is high?  

For our analysis, clinical information on breast cancer from the Catalog of 

Somatic Mutations in Cancer (COSMIC) [20] was used to validate genes we 

identified and analyzed as related to the phenotype of interest in the module 

chosen to be modelled. 

One independent data set was used to validate the primary gene in our 

analysis. To do this, we downloaded the GSE102907 file [21], a file containing 

messenger RNA extracted from the primary tumour of breast cancer patients, 

hybridized and scanned with the Affymetrix Human Genome matrix GeneChip 

U133 Plus 2.0, the ADAM28 gene being found as a differentially expressed gene. 

Using the Kaplan Meier plotter [22], all genes analyzed in the chosen gene 

network were identified in this application as biological biomarkers (which can 

provide information about a person's health such as the presence or stage of a 

disease, a physiological change in the body, a reaction to a treatment, a 

psychological state). 

Many papers state that the ADAM28 gene is overexpressed in several 

cancers, including breast cancer [23], but none of the microarrays analysed in 

publicly available works identified the ADAM28 gene as a possible target gene in 

breast cancer. Instead, our analysis, in addition to selecting as a primary cause of 

the chosen module, a prognostic marker (whose presence and change in 

concentration is correlated with the development of tumours), namely the RAC2 

gene, also identified the gene effect as a communicator with the body's immune 

cells - ADAM28 and possible ways of transmitting mutations between several 

genes involved in the processes of cell growth and proliferation in the human 

body. 

As a limitation of the analysis and identification of possible pathways of 

mutations in genes susceptible to control and regulate cell cycle progression and 

apoptosis, we can specify that the probabilities of nodes were chosen randomly, 

real data about these genes has a much more substantial and more conclusive 

impact on those determined by us, but from our searches, they could not be found 
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on public platforms or databases, for a more realistic analysis. Moreover, the 

availability of papers attesting to the links between the genes analyzed in this 

paper could not be identified, our results being validated by identifying those 

genes whose values are statistically significant, with biological relevance in cell 

growth, whose mutations lead to multiple transformations in various types of 

cancer, but especially in breast cancer. The observations and information inside 

the paper, confirmed by the literature, are separated for each gene and help a 

better understanding of the system. 

5. Conclusions 

The originality of this paper is an integrated R-language analysis of gene 

expressions in the GSE48391 file, which is different from the existing ones. The 

analysis begins with double filtering of the gene set with the help of two statistical 

tests: Chi-square and Welch t-test, the end of which resulted in a small number of 

differentially expressed genes of statistical significance. Based on these genes, 

using the WGCNA correlation analysis, thirteen gene modules were identified. 

Based on the correlation link of the top 30 genes in each module, gene co-

expression networks were created using the igraph package. The most biologically 

relevant gene co-expression module (of all the ones we identified) in breast cancer 

was selected from all the resulting networks. Multiple databases, such as 

COSMIC, UniProt, canSAR or Protein Atlas, have been used to analyze the 

characteristics of each gene and see how they relate to the proliferation of altered 

cells in the body. The schematic reproduction of the chosen module was 

performed with the help of Bayesian networks in the Netica development 

environment. Developed by Norsys [24], the environment has the advantage of an 

intuitive user interface, offering flexibility in defining the relationships between 

variables and displaying the results of inference. With the help of Bayesian 

inference, the effects that any mutations in one or more genes in a module chosen 

as having biological relevance in breast tissue neoplasia may have on the gene 

chosen as representative of breast cancer progression have been analyzed, namely 

ADAM28, the overexpressed gene in human breast carcinomas, its expression 

being linked to tumor progression and metastatic dissemination. 

As future prospects, the first thing we set out to test is the possibility of 

intervening in the causal process. For example, in the case of the current Bayesian 

network, a new “parent” node of the CLEC12A node can be introduced, in the 

form of a “treatment” type node and based on it, to analyze its influence on the 

ADAM28 effect node and the other nodes. 

This methodology can be applied to several types of cancer as a general 

framework, so another idea would be the comparison of genes specific to various 

types of cancer, to see what are the similarities and differences between them. 
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Moreover, another future perspective would be the identification of 

differentially expressed genes from an altered material compared to a genetically 

healthy one and their comparison to identify the differences between the two 

genetic materials.  

Of great interest would also be the exact finding of amino acids in the 

differentially expressed genes that change when mutations occur. In which areas 

they occur, what types of areas are (critical or not), if those mutations are 

expressed or remain silent, or what is the rate of their mutation, all these are other 

key questions whose answers would help a better understanding of how genes 

communicate in the human body. 
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