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REMOTE SENSING IMAGES CHANGE DETECTION USING 

THE SIAMESE NETWORK COMBINED WITH PURE SWIN 

TRANSFORMER 

Xu SONG1,2, Xinyu TONG*1, Asif Iqbal HAJAMYDEEN*2 

While Transformers have become prevalent in detecting changes in remote 

sensing imagery, several challenges hinder their broader adoption in the field, such 

as missing detection, low precision of contour boundary detection and the complexity 

of calculation in the data processing. Addressing these challenges, our research 

introduces the SiamFormer architecture, which employs a layered Swin Transformer 

encoder coupled with a cascaded decoder for feature fusion, specifically designed for 

change detection within remote sensing imagery. First, our approach integrates the 

Siamese network framework with a pure Swin Transformer, crafting a decoder with a 

hierarchical layout to bolster its capabilities for pixel-level change detection in 

remote sensing images. Second, we improve the interconnection status between 

decoder layers by top-down cascade paths and dense cascades to produce high-

quality high-resolution image semantic feature change outputs. Furthermore, to 

mitigate the loss of edge details in change objects caused by high-dimensional 

downsampling, we implement a convolutional decoding classifier. This classifier 

efficiently reduces the channel dimensions of the merged change feature map to the 

bare minimum. Our experimental analysis, conducted on the CDD and LEVIR-CD 

datasets, demonstrates that our proposed methodology outperforms existing change 

detection techniques for remote sensing imagery in terms of effectiveness. 

Key words: change detection; high-resolution remote sensing; Swin Transformer; 

Self-Attention mechanism; Siamese network 

1. Introduction 

Change detection (CD) is a distinct technological approach used to identify 

alterations in terrestrial objects by analyzing and juxtaposing multiple images of the 

same geographic area taken at various times. Currently, this technology has been 

extensively used in forest land cover, urban planning, and environmental 

monitoring. 

Recently, deep learning (DL) has exhibited strong feature extraction ability 

in various computer vision (CV) tasks. The DL-based CD can automatically extract 

the deep change features of remote sensing images for image segmentation, which 
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significantly reduces artificial feature engineering and help complete large-scale 

CD tasks more robustly. Daudt et al. [1] introduced the concepts of fully 

convolutional early fusion (FC-EF) and FC-Siam-Conc, incorporating jump 

connections akin to those found in UNet [2], to precisely identify regions of change. 

In a related development, Peng et al. [3] formulated the U-Net++MSOF network 

model for CD, which integrates deep supervision with a dense connection strategy 

to refine the edge delineation of areas undergoing change. Chen et al. [4] studied 

the same field and captured the spatiotemporal dependence of images at different 

scales through spatiotemporal attention mechanisms based on a multi-scale 

spatiotemporal attention CD model of Siamese structures (STA-Net). Inspired by 

the Transformer's design in NLP, researchers have developed a variety of deep 

neural network models for image-related tasks, such as object detection and 

segmentation. Notable examples include the Visual Transformer (ViT) [5], the shift 

window-based Swin Transformer [6], and SegFormer [7]. These Transformer-

based models offer an advantage over traditional deep convolutional methods by 

providing a broader effective receptive field (ERF) and a superior capability to 

understand the contextual relationships between any two pixels in an image. 

However, they are not immune to the challenges posed by variations in ground 

object shapes, scene complexity, imaging conditions, and alignment inaccuracies, 

which can lead to omissions and false positives. While, although the Transformer 

architecture excels in capturing global context, the multi-head self-attention (MSA) 

mechanism within it involves a vast number of tokens, resulting in extensive 

calculations for global self-attention. 

In response, we developed the SiamFormer, a network that combines 

Siamese configurations with hierarchical Swin Transformer encoding frameworks, 

aiming to streamline data processing and boost the capacity for modeling global 

receptive fields and distant context relationships. Furthermore, we devised an 

encoder for hierarchical feature extraction and a decoder for cascading feature 

fusion, both rooted in the Swin Transformer architecture. This design is intended to 

advance the extraction of global context and the modeling of extensive contextual 

dependencies for pixel-level CD in remote sensing imagery. Meanwhile we 

employed cascading fusion techniques to integrate features across scales and 

generate detailed maps predicting changes.  

2 Related Work 

2.1 Siamese Network. Siamese networks are also called twin networks as 

shown in Fig. 1, and their major characteristic is the ability to share weights. Using 

the process of CD as an illustration, when two akin images (Input1 and Input2) are 

fed into the identical network for training purposes, the calculation of loss hinges 

on their discrepancy. After backpropagation training, the output feature map of both 
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images can be predicted by the Siamese network. In this case, when feature maps 

are very similar, they would subsequently represent a smaller eigenvalue difference 

of the corresponding vector matrix. Building on this premise, the feature map 

produced by the Siamese network is applicable for tasks such as target detection 

and identification. 

 
Fig. 1. Siamese network 

 

2.2 Transformers in CD. Initially introduced for sequence processing tasks 

in machine translation within NLP [8], the Transformer architecture has garnered 

attention for its success in recent years in image feature extraction methods within 

CV tasks.  Notably, the pioneering ViT network has achieved a favorable balance 

between speed and precision in image recognition. Several researchers have 

explored the integration of CD with CV tasks and put forward a novel hierarchical 

visual Transformer named Swin Transformer, which has demonstrated remarkable 

efficacy and efficiency. Serving as a visual backbone, the Swin Transformer has 

showcased superior performance across various visual tasks such as image 

classification, target detection, and semantic segmentation, owing to its innovative 

Multi-Scale Attention (MSA) mechanism involving shifted windows [9]. 

2.3 Relations between our work and existing models. Bandara [10] 

introduced a multi-layer Siamese encoder empowered by self-attention mechanisms 

to extract features related to changes in dual phases. This framework incorporates 

four modules with distinct characteristics to compute feature disparities across 

multiple scales. Finally, a lightweight MLP decoder is employed to amalgamate 

previous features and generate CD predictions. Bandara's research findings served 

as a significant source of inspiration for our study. In contrast, we adopted MSA 

mechanisms based on shifted windows in the coding stage to avoid the heavy 

calculation load of global attention during feature extraction. This reduced the 

calculation complexity of our model. Additionally, it provided favorable conditions 

for the extraction and output of high-resolution images. Moreover, a cascade feature 

fusion decoder was introduced in the decoding stage. Compared with the 

lightweight MLP-based decoder, we improved the interconnection between 

decoding layers through top-down cascade paths and dense cascades. The feature 
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classification head was used to process the fused images, thus achieving the 

semantic feature change output of high-quality and high-resolution images. 

3. Proposed Approach 

3.1 Architecture. The present research introduces a CD model tailored for 

high-resolution remote sensing images, utilizing the Siamese network as its 

overarching architecture. The detailed model configuration is illustrated in Fig. 2. 

SiamFormer is a standard model based on encoding and decoding architectures, 

mainly including three components: 

·Input(H×W×3) & Output(H×W×1) 

·Hierarchical Swin Transformer Encoder 

·Cascading Feature-Fused Decoder 

 
Fig. 2. SiamFormer model structure 

 

As depicted in Fig. 2, the dual-temporal images (1st-tp T1 and 2nd-tp T2) 

are initially fed into a multi-layer Siamese encoder. This encoder comprises two 

parallel sub-networks featuring identical structures and shared weights. Each sub-

network is composed of four stages, with each stage comprising Patch Merging and 

Swin Transformer layers. In addition, the convolution-free down-sampling 

technique is adopted in each coding stage. Compared with the ViT, the most 

significant difference lies in the construction of hierarchical feature maps. During 

feature extraction, the feature mapping with hierarchical structures was generated 

by merging and down-sampling in each layer. Subsequently, a cascaded feature 

fusion decoder was employed to progressively integrate the multi-scale high-

resolution features obtained from the multi-layer Swin Transformer encoder. 
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Finally, a predicted CD mask code was generated by the classification head and up-

sampling. 

3.2 Hierarchical Swin Transformer Encoder. As mentioned previously, 

the model adopts a hierarchical Swin Transformer encoder. For a given dual-phase 

image, the process can generate high-resolution coarse features and low-resolution 

fine features akin to those required for convolution in CD tasks. Specifically, the 

dimension size of the dual-phase image is H×W×3. The feature map 𝐹𝑖 

(𝑖, 𝑗={1,2,3,4} and C𝑖,𝑗+1>C𝑖,𝑗) with the output size of (
H

2𝑗+1
×

W

2𝑗+1
) × C𝑖𝑗 generated 

through the hierarchical Transformer encoder was hierarchically fused to the 

cascade feature fusion decoder for further processing to obtain the change map. 

3.2.1 Patch Partition & Patch Embedding. Patch Partition: Patch Partition: 

The RGB images, sized H×W×C, are partitioned into non-overlapping, equally-

sized N×(P2×C) patches (or 4×4 blocks), where N denotes the number of tokens 

and P represents the image size. Each P2×C patch is treated as a patch token, 

resulting in a total of N patch tokens (the effective input sequence length of the 

Transformer). Specifically, in patches with a dimension of P2 and C channels, the 

feature dimension size of each patch after flattening is P×P×C. There are N=
𝐻

𝑃
× 
𝐻

𝑃
 

patch tokens in total. In other words, each image with a size of H×W×C is processed 

into  
𝐻

𝑃
 patches. Each patch is flattened to a token vector with P×P×C dimensions. 

Similar to flattened patches in ViT, a flattened 2D patch sequence with N×(P2×C) 

dimensions can be obtained. 

Linear Embedding: The tensor with a dimension size of N×(P2×C) is 

projected to any dimension (C) so a linear embedding with a dimension size of 

(
𝐻

𝑃
×
𝐻

𝑃
)×C can be obtained. 

3.2.2 Patch Merging. In most convolution neural networks, down-sampling 

through feature mapping is accomplished by convolution. In the Swin Transformer, 

Patch is the smallest unit in the feature map. So, Patch merging can be used for 

convolution-free down-sampling. For example, in a 10×10 feature map, there will 

be 10×10 = 100 patches. In this case, patch merging is performed by the grouping 

of n×n adjacent patches and the splicing based on depth. This can successfully 

promote n times of effective down-sampling for the input. The input is converted 

from H×W×C to (
𝐻

𝑛
×
𝑊

𝑛
)×(2nC), where H, W, and C represent the height, width, 

and depth of the channel, respectively. 

3.2.3 Swin Transformer Block. The conventional MSA mechanism utilized 

in ViT enables global self-attention computations as illustrated in Fig. 3(b). At the 

beginning, 16 times downsampling is done through convolution, and then the size 

of the feature map remains unchanged throughout the entire process. Therefore, the 

calculation of Attention is performed on the entire feature map, resulting in a large 

computational load which makes it unsuitable for high-resolution image processing.  
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To eliminate these issues, the Swin Transformer incorporated a W-MSA 

approach, adopting multi-scale features, initially downsampling by 4 times, then 

halving the feature map after each stage, and finally downsampling by 16 times as 

illustrated in Fig. 3(a). Divide windows within each feature map and perform 

attention calculation on the elements inside each window instand of calculation the 

entire feature map, thus greatly reducing computational complexity. However, the 

W-MSA module is not able to interact with the information due to the segmentation 

of the window, therefore, the SW-MSA module is proposed as shown in Fig. 3(c). 

 

Fig. 3. (a). Based on Swin Tranformer feature processing module (b). Based on ViT feature 

processing module (c) The shifted window-based multi-head self-attention mechanism 

 

The orange border area represents a window, and the black border area 

represents a patch as shown in Fig. 3. The input image can be split into non-

overlapping windows via the W-MSA mechanism. Based on that, the self-attention 

of all tokens inside the window can be calculated. In this scheme, the patch 

represents a subset of these windows. Given that the window size remains constant 

across the network, the computational complexity of the window-based MSA scales 

linearly with respect to the number of patches in the image. The calculation burden 

can be significantly reduced during processing, and it is effective for feature 

extraction of high-resolution images. 

If an image has the dimension size of H×W×C and includes H×W patches, 

where each window contains M×M patches, the complexity of MSA and W-MSA 

can be computed as follows.  

Firstly, the operational formula of the MSA module proposed in 

Transformer can be expressed as: 

( ) V
d

QK
SoftVKQAttention

T









= max,,  (1) 

s           

           

   

  

  

   ss            ss         
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where, 𝑄,𝐾, 𝑉 ∈ 𝑅𝑀
2×𝑑 represent the query, key, and value matrices, 

respectively, M2 and d denote the number of patches in a window and the dimension 

size of the query or key. 

Subsequently, the computational complexity can be determined using the 

subsequent attention formula: 

( ) 231,, HWCxWVxWKxWQ VKQ ====   ( ) 

( ) ( ) CHWQK T 2
2 =      ( ) 

( ) ( ) CHWVQKZ T 2
3 ==     ( ) 

( ) 24 HWCZW Z =      (5) 

( ) ( ) ( ) CM
M

W

M

H
WindowscountQK T 225 =   (6) 

After the integration of the above results, new formulas are obtained: 

( ) ( )CHWHWCMSA 22 24 +=     (7) 

( ) ( ) HWCMHWCCM
M

W

M

H
HWCMSAW 22222 2424 +=+=−   (8) 

Although the calculation amount based on Windows can be reduced, the 

visual field of each window is restricted. Only the token inside the current window 

can be exhibited, but the global information cannot be presented. Moreover, the 

information cannot be exchanged between windows. Based on that, we increased 

the receptive field and strengthened the interaction between windows through 

hierarchical structures and SW-MSA mechanisms. 

Fig. 4 depicts a pair of consecutive Swin Transformer blocks. Each block 

encompasses a normalization layer (LayerNorm), an MSA module, a residual 

connection, and a two-layer MLP featuring GELU nonlinearity. These two 

consecutive Transformer blocks incorporate both a W-MSA module and an SW-

MSA module. 

Based on the design mechanism of this sliding partition window, the 

consecutive Swin Transformer blocks can be represented as follows: 

( )( ) 11 −−


+−= lll zzLNWSAWz     (9) 



+




















= lll zzLNMLPz     (10) 

( )( ) lll zzLNMSASWz +−=

+1     (11) 


+


++ +





















= 111 lll zzLNMLPz     (12) 
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Here, ẑl and zl denote the output features of the (S) W-MSA module and the 

MLP module of the lth block, respectively. 

 
Fig. 4. Swin Transformer blocks 

 

3.3 Cascade Feature-Fusion Decode. The cascade feature fusion decoder, 

as suggested by SiamFormer, was utilized for extracting and integrating multi-scale 

features obtained from the hierarchical Swin Transformer encoder, so as to 

gradually enhance the salience of the change region and predict the CD image. 

Eventually, classification and dimension reduction were achieved through the 

convolution operation by the multi-scale classification head and up-sampling 

module. Based on that, a change map was generated. 

4. Experimental results and analysis 

4.1 Datasets and Preprocessing. Our study utilized two well-regarded 

datasets in the domain of remote sensing image CD, namely LEVIR-CD and CDD.  

The CDD dataset, sourced from Google Earth, features three distinct 

categories of images. This diversity in change scenarios enables a thorough 

validation of the proposed CD algorithm's efficiency. The images are standardized 

to a resolution of 256×256 pixels, comprising a dataset of 10,000 training pairs, 

3,000 testing pairs, and 3,000 validation pairs. The spatial resolution is 3-100cm/px, 

which ensures a high adaptation between the algorithm and hardware. 

Differently, the LEVIR-CD database is established based on the Google 

Earth API. The dual phases of the data span from 5 to 14 years and reflect the 

maximum land use change consisting of numerous land change maps. The dataset 

includes 637 pairs of databanks, and the spatial resolution is 50cm/px. In LEVIR-

CD, the standard image size is 1024×1024px, and there are more than 31,000 

independent mark change instances. 

4.2 Implementation Details.We used Pytorch and NVIDIA GeForce RTX 

3090 24GB VRAM for model training during our experiments. Data enhancement 

and weighted use of various loss functions were performed during model training, 
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and favorable results were obtained. Besides, the Adam gradient-based momentum 

optimizer was used to perform model training, and the weight attenuation was 

0.0001. Additionally, our approach incorporates the application of the cosine 

annealing attenuation technique for modulating the learning rate throughout the 

training phase of the model. After the learning rate was attenuated from 0.0001 (the 

initial value) to 1, it returned to the original level through readjustment. 

Subsequently, the current local optimal solution was temporarily excluded to 

identify the global optimal solution, with 20 rounds as an iteration until the model 

reached 120 rounds of training. The model training was implemented based on a 

batch size of 20. 

4.3 Performance Metrics. The task of detecting changes in high-resolution 

remote sensing imagery can be equated to performing binary classification on 

pixels. In the analysis of this binary classification, we followed Bandara’s work that 

employ evaluation metrics such as precision (p), recall (r), F1-score (F1), and the 

Intersection over Union (IoU). Additionally, we report the number of parameters 

(Params.), and the floating-point operations (FLOPs). 

4.4 Results and Discussion. In this section, we evaluate and compare eight 

leading-edge models in the domain of CD within remote sensing imagery, focusing 

on their effectiveness in executing CD tasks. 

4.4.1 Comparative Analysis. Table 1 displays a comparison of the outcomes 

from eight cutting-edge networks specialized in CD on the testing subsets from 

LEVIR-CD and CDD change detection datasets. By comparing data regarding 

performance metrics, we concluded that the network introduced in this research 

outperformed competing models with respect to F1, IoU, and Rec. In addition, 

compared to some other Transformer-based models, such BIT and ChangeFormer, 

our proposed model basically leads in every metric. On the LEVIR-CD dataset, our 

model achieves the leading F1 value, which is higher than the second-best 

ChangeFormer by 0.52 and third-best SCADNet by 0.60. In particular, we achieve 

first place in all metrics on the CDD dataset, surpassing the second-best model by 

0.30 in F1, 0.7 in Pre., 1.42 in Rec. and 2.48 in IoU.  

Furthermore, we also concluded that during the resolution of more complex 

detection problems, such models could exhibit inferior capabilities in feature 

extraction, leading to diminished accuracy and lackluster robustness. Among them, 

in our comparative experiment, fewer feature extraction layers were adopted in FC-

EF, and the number of channels in the last layer was small, resulting also in smaller 

models. Compared with similar networks based on a pure Transformer coder, our 

network not only improves on the recognition metrics, but also in the number of 

Params. was less than half of those networks. Especially, the computational 

complexity of our network on FLOPs was far lower than that of other models. This 

result indicated that the calculation strategy of our model was indeed effective, 
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which can significantly reduce the calculation complexity and parameters and 

contribute to optimal CD performance. 
Table 1 

Model Performance Compared on LEVIR-CD and CDD Dataset 

Method 
LEVIR-CD CDD Params. FLOPs 

Pre./% Rec./% F1/% IoU/% Pre./% Rec./% F1/% IoU/% (M) (G) 

FC-EF[1] 80.24 70.31 74.95 59.93 66.73 54.08 59.74 42.59 1.35 1.78 

STANet[11] 91.90 85.00 88.10 79.12 92.28 85.44 88.61 80.12 16.93 6.58 

IFNet[12] 94.02 82.93 88.13 78.77 94.96 86.08 90.30 - 50.71 41.18 

SNUNet[13] 89.18 87.17 88.16 78.83 95.60 94.90 95.30 - 12.03 27.44 

BIT[14] 89.24 89.37 89.31 80.68 88.97 82.73 85.74 75.03 3.55 4.35 

SCADNet[15] 90.14 91.74 90.32 90.56 - - - - 66.94 70.72 

ChangeFormer[16] 92.05 88.80 90.40 82.48 94.50 93.52 94.23 89.09 41.00 101.4 

SiamFormer 91.45 90.39 90.92 83.35 96.30 94.90 95.60 91.57 27.70 7.21 

4.4.2 Comparison on the LEVIR-CD and CDD Dataset. As depicted in 

Fig. 5, 2,048 pairs of LEVIR-CD datasets and 2,999 pairs of CDD datasets were 

tested in model training. Moreover, they were also compared separately according 

to the five groups of comparative references we established during the experiments. 

Our comparative experiment showed that SiamFormer performs best in change map 

prediction, far exceeding the second model, with a high similarity with the true 

value. Compared with the comparative model, there is almost no noise in our model, 

and the size of the detected object is close to the true value.  

 
Fig. 5. Comparative performance analysis of various models on the LEVIR-CD dataset for change 

detection tasks. 

 

Fig. 6 shows a comparative prediction chart based on CDD datasets, 

confirming that our model presents favorable results. Especially in the boundary of 
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the image, our model is almost the same as the true value in texture and size, which 

outperforms the experimental results of other comparative models. 
 

 
Fig. 6. Comparative performance analysis of various models on the CDD dataset for change 

detection tasks. 

5. Conclusion 

In this paper, we introduced the SiamFormer, a dual-phase Siamese network 

framework based on the Swin Transformer, to improve the resolution of change 

detection in large datasets and reduce model complexity. By combining the pre-

training model of the Swin Transformer with the Siamese network, we developed a 

multi-layer encoder to extract high-resolution features of dual phases. Cascade 

feature fusion coding was introduced for effective classification of change regions 

between images. Experimental results indicated that the Siamese network's layered 

coding and Swin Transformer's feature fusion decoding capabilities accurately 

identified change targets without deep CNNs. This approach significantly reduces 

model complexity. Future research should focus on exploring weakly supervised or 

unsupervised learning for model training to further reduce the reliance on massive 

data for high-resolution change detection. 
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