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REMOTE SENSING IMAGES CHANGE DETECTION USING
THE SIAMESE NETWORK COMBINED WITH PURE SWIN
TRANSFORMER

Xu SONG??, Xinyu TONG*?, Asif Igbal HAJAMYDEEN*2

While Transformers have become prevalent in detecting changes in remote
sensing imagery, several challenges hinder their broader adoption in the field, such
as missing detection, low precision of contour boundary detection and the complexity
of calculation in the data processing. Addressing these challenges, our research
introduces the SiamFormer architecture, which employs a layered Swin Transformer
encoder coupled with a cascaded decoder for feature fusion, specifically designed for
change detection within remote sensing imagery. First, our approach integrates the
Siamese network framework with a pure Swin Transformer, crafting a decoder with a
hierarchical layout to bolster its capabilities for pixel-level change detection in
remote sensing images. Second, we improve the interconnection status between
decoder layers by top-down cascade paths and dense cascades to produce high-
quality high-resolution image semantic feature change outputs. Furthermore, to
mitigate the loss of edge details in change objects caused by high-dimensional
downsampling, we implement a convolutional decoding classifier. This classifier
efficiently reduces the channel dimensions of the merged change feature map to the
bare minimum. Our experimental analysis, conducted on the CDD and LEVIR-CD
datasets, demonstrates that our proposed methodology outperforms existing change
detection techniques for remote sensing imagery in terms of effectiveness.

Key words: change detection; high-resolution remote sensing; Swin Transformer;
Self-Attention mechanism; Siamese network

1. Introduction

Change detection (CD) is a distinct technological approach used to identify
alterations in terrestrial objects by analyzing and juxtaposing multiple images of the
same geographic area taken at various times. Currently, this technology has been
extensively used in forest land cover, urban planning, and environmental
monitoring.

Recently, deep learning (DL) has exhibited strong feature extraction ability
in various computer vision (CV) tasks. The DL-based CD can automatically extract
the deep change features of remote sensing images for image segmentation, which
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significantly reduces artificial feature engineering and help complete large-scale
CD tasks more robustly. Daudt et al. [1] introduced the concepts of fully
convolutional early fusion (FC-EF) and FC-Siam-Conc, incorporating jump
connections akin to those found in UNet [2], to precisely identify regions of change.
In a related development, Peng et al. [3] formulated the U-Net++MSOF network
model for CD, which integrates deep supervision with a dense connection strategy
to refine the edge delineation of areas undergoing change. Chen et al. [4] studied
the same field and captured the spatiotemporal dependence of images at different
scales through spatiotemporal attention mechanisms based on a multi-scale
spatiotemporal attention CD model of Siamese structures (STA-Net). Inspired by
the Transformer's design in NLP, researchers have developed a variety of deep
neural network models for image-related tasks, such as object detection and
segmentation. Notable examples include the Visual Transformer (ViT) [5], the shift
window-based Swin Transformer [6], and SegFormer [7]. These Transformer-
based models offer an advantage over traditional deep convolutional methods by
providing a broader effective receptive field (ERF) and a superior capability to
understand the contextual relationships between any two pixels in an image.
However, they are not immune to the challenges posed by variations in ground
object shapes, scene complexity, imaging conditions, and alignment inaccuracies,
which can lead to omissions and false positives. While, although the Transformer
architecture excels in capturing global context, the multi-head self-attention (MSA)
mechanism within it involves a vast number of tokens, resulting in extensive
calculations for global self-attention.

In response, we developed the SiamFormer, a network that combines
Siamese configurations with hierarchical Swin Transformer encoding frameworks,
aiming to streamline data processing and boost the capacity for modeling global
receptive fields and distant context relationships. Furthermore, we devised an
encoder for hierarchical feature extraction and a decoder for cascading feature
fusion, both rooted in the Swin Transformer architecture. This design is intended to
advance the extraction of global context and the modeling of extensive contextual
dependencies for pixel-level CD in remote sensing imagery. Meanwhile we
employed cascading fusion techniques to integrate features across scales and
generate detailed maps predicting changes.

2 Related Work

2.1 Siamese Network. Siamese networks are also called twin networks as
shown in Fig. 1, and their major characteristic is the ability to share weights. Using
the process of CD as an illustration, when two akin images (Inputl and Input2) are
fed into the identical network for training purposes, the calculation of loss hinges
on their discrepancy. After backpropagation training, the output feature map of both
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images can be predicted by the Siamese network. In this case, when feature maps
are very similar, they would subsequently represent a smaller eigenvalue difference
of the corresponding vector matrix. Building on this premise, the feature map
produced by the Siamese network is applicable for tasks such as target detection
and identification.

Network2 Input2
Loss Embeddmg Sharing
Network2 In pu t1

Fig. 1. Siamese network

2.2 Transformers in CD. Initially introduced for sequence processing tasks
in machine translation within NLP [8], the Transformer architecture has garnered
attention for its success in recent years in image feature extraction methods within
CV tasks. Notably, the pioneering ViT network has achieved a favorable balance
between speed and precision in image recognition. Several researchers have
explored the integration of CD with CV tasks and put forward a novel hierarchical
visual Transformer named Swin Transformer, which has demonstrated remarkable
efficacy and efficiency. Serving as a visual backbone, the Swin Transformer has
showcased superior performance across various visual tasks such as image
classification, target detection, and semantic segmentation, owing to its innovative
Multi-Scale Attention (MSA) mechanism involving shifted windows [9].

2.3 Relations between our work and existing models. Bandara [10]
introduced a multi-layer Siamese encoder empowered by self-attention mechanisms
to extract features related to changes in dual phases. This framework incorporates
four modules with distinct characteristics to compute feature disparities across
multiple scales. Finally, a lightweight MLP decoder is employed to amalgamate
previous features and generate CD predictions. Bandara's research findings served
as a significant source of inspiration for our study. In contrast, we adopted MSA
mechanisms based on shifted windows in the coding stage to avoid the heavy
calculation load of global attention during feature extraction. This reduced the
calculation complexity of our model. Additionally, it provided favorable conditions
for the extraction and output of high-resolution images. Moreover, a cascade feature
fusion decoder was introduced in the decoding stage. Compared with the
lightweight MLP-based decoder, we improved the interconnection between
decoding layers through top-down cascade paths and dense cascades. The feature
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classification head was used to process the fused images, thus achieving the
semantic feature change output of high-quality and high-resolution images.

3. Proposed Approach

3.1 Architecture. The present research introduces a CD model tailored for
high-resolution remote sensing images, utilizing the Siamese network as its
overarching architecture. The detailed model configuration is illustrated in Fig. 2.
SiamFormer is a standard model based on encoding and decoding architectures,

mainly including three components:
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As depicted in Fig. 2, the dual-temporal images (1st-tp T1 and 2nd-tp T2)
are initially fed into a multi-layer Siamese encoder. This encoder comprises two
parallel sub-networks featuring identical structures and shared weights. Each sub-
network is composed of four stages, with each stage comprising Patch Merging and
Swin Transformer layers. In addition, the convolution-free down-sampling
technique is adopted in each coding stage. Compared with the ViT, the most
significant difference lies in the construction of hierarchical feature maps. During
feature extraction, the feature mapping with hierarchical structures was generated
by merging and down-sampling in each layer. Subsequently, a cascaded feature
fusion decoder was employed to progressively integrate the multi-scale high-
resolution features obtained from the multi-layer Swin Transformer encoder.
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Finally, a predicted CD mask code was generated by the classification head and up-
sampling.

3.2 Hierarchical Swin Transformer Encoder. As mentioned previously,
the model adopts a hierarchical Swin Transformer encoder. For a given dual-phase
image, the process can generate high-resolution coarse features and low-resolution
fine features akin to those required for convolution in CD tasks. Specifically, the
dimension size of the dual-phase image is HxWx3. The feature map F;

(i,j={1,2,3,4} and C; ;. 1>C; ;) with the output size of (21111 X 2%) x C;;j generated
through the hierarchical Transformer encoder was hierarchically fused to the
cascade feature fusion decoder for further processing to obtain the change map.
3.2.1 Patch Partition & Patch Embedding. Patch Partition: Patch Partition:
The RGB images, sized HxWxC, are partitioned into non-overlapping, equally-
sized Nx(P?xC) patches (or 4x4 blocks), where N denotes the number of tokens
and P represents the image size. Each P?xC patch is treated as a patch token,
resulting in a total of N patch tokens (the effective input sequence length of the
Transformer). Specifically, in patches with a dimension of P? and C channels, the

feature dimension size of each patch after flattening is PxPxC. There are N:gx %
patch tokens in total. In other words, each image with a size of HxWxC is processed
into % patches. Each patch is flattened to a token vector with PxPx=C dimensions.

Similar to flattened patches in ViT, a flattened 2D patch sequence with Nx(P2xC)
dimensions can be obtained.

Linear Embedding: The tensor with a dimension size of Nx(P?xC) is
projected to any dimension (C) so a linear embedding with a dimension size of

(% X %)XC can be obtained.

3.2.2 Patch Merging. In most convolution neural networks, down-sampling
through feature mapping is accomplished by convolution. In the Swin Transformer,
Patch is the smallest unit in the feature map. So, Patch merging can be used for
convolution-free down-sampling. For example, in a 10x10 feature map, there will
be 10x10 = 100 patches. In this case, patch merging is performed by the grouping
of nxn adjacent patches and the splicing based on depth. This can successfully
promote n times of effective down-sampling for the input. The input is converted

from HxWxC to (%%)X(ZnC), where H, W, and C represent the height, width,

and depth of the channel, respectively.

3.2.3 Swin Transformer Block. The conventional MSA mechanism utilized
in VIT enables global self-attention computations as illustrated in Fig. 3(b). At the
beginning, 16 times downsampling is done through convolution, and then the size
of the feature map remains unchanged throughout the entire process. Therefore, the
calculation of Attention is performed on the entire feature map, resulting in a large
computational load which makes it unsuitable for high-resolution image processing.
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To eliminate these issues, the Swin Transformer incorporated a W-MSA
approach, adopting multi-scale features, initially downsampling by 4 times, then
halving the feature map after each stage, and finally downsampling by 16 times as
illustrated in Fig. 3(a). Divide windows within each feature map and perform
attention calculation on the elements inside each window instand of calculation the
entire feature map, thus greatly reducing computational complexity. However, the
W-MSA module is not able to interact with the information due to the segmentation
of the window, therefore, the SW-MSA module is proposed as shown in Fig. 3(c).

segmentation
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(a) Swin Transformer (b) ViT (c) SW-MSA

Fig. 3. (). Based on Swin Tranformer feature processing module (b). Based on ViT feature
processing module (c) The shifted window-based multi-head self-attention mechanism

The orange border area represents a window, and the black border area
represents a patch as shown in Fig. 3. The input image can be split into non-
overlapping windows via the W-MSA mechanism. Based on that, the self-attention
of all tokens inside the window can be calculated. In this scheme, the patch
represents a subset of these windows. Given that the window size remains constant
across the network, the computational complexity of the window-based MSA scales
linearly with respect to the number of patches in the image. The calculation burden
can be significantly reduced during processing, and it is effective for feature
extraction of high-resolution images.

If an image has the dimension size of HxWxC and includes HxW patches,
where each window contains MxM patches, the complexity of MSA and W-MSA
can be computed as follows.

Firstly, the operational formula of the MSA module proposed in
Transformer can be expressed as:

Attention(Q, K,V )= Softmax(?;(_c;)v Q)
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where, Q,K,V € RM*xd represent the query, key, and value matrices,
respectively, M? and d denote the number of patches in a window and the dimension
size of the query or key.

Subsequently, the computational complexity can be determined using the
subsequent attention formula:

Q=xW? K =xW*V =xW"Q(1)=3HWC" )
QK" Q(2)=(HW)C 3)
Z=QK'V Q(3)=(HW)C o
ZW*  Q4)=HWC? (5)
QK™ xcount(Windows)  Q(5)= %%(M 2¥c (6)
After the integration of the above results, new formulas are obtained:
Q(MSA) = 4HWC? +2(HW? %)
Q(W—MSA)=4HWCZ+2%%(M2)2C=4HWCZ+2M2HWC (8)

Although the calculation amount based on Windows can be reduced, the
visual field of each window is restricted. Only the token inside the current window
can be exhibited, but the global information cannot be presented. Moreover, the
information cannot be exchanged between windows. Based on that, we increased
the receptive field and strengthened the interaction between windows through
hierarchical structures and SW-MSA mechanisms.

Fig. 4 depicts a pair of consecutive Swin Transformer blocks. Each block
encompasses a normalization layer (LayerNorm), an MSA module, a residual
connection, and a two-layer MLP featuring GELU nonlinearity. These two
consecutive Transformer blocks incorporate both a W-MSA module and an SW-
MSA module.

Based on the design mechanism of this sliding partition window, the
consecutive Swin Transformer blocks can be represented as follows:

7' =W ~WSA(LN (2*))+ 2 (9)
Z' =MLP[LN(ZA'D+ZA' (10)
2 = sW — MSA(LN (2'))+ 2' (11)

7' = MLP(LN (z'“D+ 2" (12)
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Here, 7' and z' denote the output features of the (S) W-MSA module and the
MLP module of the I'" block, respectively.
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Fig. 4. Swin Transformer blocks

3.3 Cascade Feature-Fusion Decode. The cascade feature fusion decoder,
as suggested by SiamFormer, was utilized for extracting and integrating multi-scale
features obtained from the hierarchical Swin Transformer encoder, so as to
gradually enhance the salience of the change region and predict the CD image.
Eventually, classification and dimension reduction were achieved through the
convolution operation by the multi-scale classification head and up-sampling
module. Based on that, a change map was generated.

4. Experimental results and analysis

4.1 Datasets and Preprocessing. Our study utilized two well-regarded
datasets in the domain of remote sensing image CD, namely LEVIR-CD and CDD.

The CDD dataset, sourced from Google Earth, features three distinct
categories of images. This diversity in change scenarios enables a thorough
validation of the proposed CD algorithm's efficiency. The images are standardized
to a resolution of 256x256 pixels, comprising a dataset of 10,000 training pairs,
3,000 testing pairs, and 3,000 validation pairs. The spatial resolution is 3-100cm/px,
which ensures a high adaptation between the algorithm and hardware.

Differently, the LEVIR-CD database is established based on the Google
Earth API. The dual phases of the data span from 5 to 14 years and reflect the
maximum land use change consisting of numerous land change maps. The dataset
includes 637 pairs of databanks, and the spatial resolution is 50cm/px. In LEVIR-
CD, the standard image size is 1024x1024px, and there are more than 31,000
independent mark change instances.

4.2 Implementation Details.We used Pytorch and NVIDIA GeForce RTX
3090 24GB VRAM for model training during our experiments. Data enhancement
and weighted use of various loss functions were performed during model training,
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and favorable results were obtained. Besides, the Adam gradient-based momentum
optimizer was used to perform model training, and the weight attenuation was
0.0001. Additionally, our approach incorporates the application of the cosine
annealing attenuation technique for modulating the learning rate throughout the
training phase of the model. After the learning rate was attenuated from 0.0001 (the
initial value) to 1, it returned to the original level through readjustment.
Subsequently, the current local optimal solution was temporarily excluded to
identify the global optimal solution, with 20 rounds as an iteration until the model
reached 120 rounds of training. The model training was implemented based on a
batch size of 20.

4.3 Performance Metrics. The task of detecting changes in high-resolution
remote sensing imagery can be equated to performing binary classification on
pixels. In the analysis of this binary classification, we followed Bandara’s work that
employ evaluation metrics such as precision (p), recall (r), F1-score (F1), and the
Intersection over Union (loU). Additionally, we report the number of parameters
(Params.), and the floating-point operations (FLOPS).

4.4 Results and Discussion. In this section, we evaluate and compare eight
leading-edge models in the domain of CD within remote sensing imagery, focusing
on their effectiveness in executing CD tasks.

4.4.1 Comparative Analysis. Table 1 displays a comparison of the outcomes
from eight cutting-edge networks specialized in CD on the testing subsets from
LEVIR-CD and CDD change detection datasets. By comparing data regarding
performance metrics, we concluded that the network introduced in this research
outperformed competing models with respect to Fi1, loU, and Rec. In addition,
compared to some other Transformer-based models, such BIT and ChangeFormer,
our proposed model basically leads in every metric. On the LEVIR-CD dataset, our
model achieves the leading F1 value, which is higher than the second-best
ChangeFormer by 0.52 and third-best SCADNet by 0.60. In particular, we achieve
first place in all metrics on the CDD dataset, surpassing the second-best model by
0.30in F1, 0.7 in Pre., 1.42 in Rec. and 2.48 in loU.

Furthermore, we also concluded that during the resolution of more complex
detection problems, such models could exhibit inferior capabilities in feature
extraction, leading to diminished accuracy and lackluster robustness. Among them,
in our comparative experiment, fewer feature extraction layers were adopted in FC-
EF, and the number of channels in the last layer was small, resulting also in smaller
models. Compared with similar networks based on a pure Transformer coder, our
network not only improves on the recognition metrics, but also in the number of
Params. was less than half of those networks. Especially, the computational
complexity of our network on FLOPs was far lower than that of other models. This
result indicated that the calculation strategy of our model was indeed effective,
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which can significantly reduce the calculation complexity and parameters and
contribute to optimal CD performance.

Table 1
Model Performance Compared on LEVIR-CD and CDD Dataset
LEVIR-CD CDD Params.[FLOPs
Method
Pre./%|Rec./% [F1/% |loU/% |Pre./%Rec./%[F1/% | 1oU/%|(M) (G)
FC-EF[1] 80.24 70.31| 74.95| 59.93| 66.73| 54.08 59.74| 42.59 1.35 1.78
STANet[11] 91.90 85.0088.10 | 79.12] 92.28| 85.44| 88.61) 80.12 | 16.93 6.58
IFNet[12] 94.02| 82.93| 88.13| 78.77| 94.96| 86.08| 90.30| - 50.71 | 41.18
SNUNEet[13] 89.18 87.17| 88.16| 78.83] 95.60| 94.90| 95.30 - 12.03 | 27.44
BIT[14] 89.24 89.37| 89.31| 80.68| 88.97| 82.73| 85.74| 75.03 3.55 4.35
SCADNet[15] 90.14 91.74| 90.32| 90.56] - - - - 66.94| 70.72
ChangeFormer[16]| 92.05 88.80| 90.40| 82.48| 94.50 93.52| 94.23 89.09 | 41.00 | 101.4
SiamFormer 91.45 90.39| 90.92| 83.35] 96.30 94.90 95.60 91.57 | 27.70 7.21

4.4.2 Comparison on the LEVIR-CD and CDD Dataset. As depicted in
Fig. 5, 2,048 pairs of LEVIR-CD datasets and 2,999 pairs of CDD datasets were
tested in model training. Moreover, they were also compared separately according
to the five groups of comparative references we established during the experiments.
Our comparative experiment showed that SiamFormer performs best in change map
prediction, far exceeding the second model, with a high similarity with the true
value. Compared with the comparative model, there is almost no noise in our model,
and the size of the detected object is close to the true value.
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Fig. 5. Comparative performance analysis of various models on the LEVIR-CD dataset for change
detection tasks.

Fig. 6 shows a comparative prediction chart based on CDD datasets,
confirming that our model presents favorable results. Especially in the boundary of
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the image, our model is almost the same as the true value in texture and size, which
outperforms the experimental results of other comparative models.
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Fig. 6. Comparative performance analysis of various models on the CDD dataset for change
detection tasks.

5. Conclusion

In this paper, we introduced the SiamFormer, a dual-phase Siamese network
framework based on the Swin Transformer, to improve the resolution of change
detection in large datasets and reduce model complexity. By combining the pre-
training model of the Swin Transformer with the Siamese network, we developed a
multi-layer encoder to extract high-resolution features of dual phases. Cascade
feature fusion coding was introduced for effective classification of change regions
between images. Experimental results indicated that the Siamese network's layered
coding and Swin Transformer's feature fusion decoding capabilities accurately
identified change targets without deep CNNs. This approach significantly reduces
model complexity. Future research should focus on exploring weakly supervised or
unsupervised learning for model training to further reduce the reliance on massive
data for high-resolution change detection.
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