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IMPACT OF SEMI-SYMMETRIC NON-METRIC CONNECTION ON A
LORENTZIAN MANIFOLD

Uday Chand DE', Abdallah Abdelhameed SYIED?, Krishnendu DE?

An analysis of a Lorentzian manifold with a non-metric connection of semi-
symmetric type is conducted in this work. We illustrate that if a space-time allows a
semi-symmetric non-metric connection, then the integral curves of the associated vec-
tor are geodesic. Also it is demonstrated that if a twisted space-time admits a semi-
symmetric non-metric connection whose Ricci tensor vanishes, then the space-time rep-
resents a perfect fluid space-time. Further, we acquire that if a space-time admits a
semi-symmetric non-metric connection whose Ricci tensor vanishes and the torsion
tensor is pseudo symmetric, then the space-time is a perfect fluid space-time. In con-
clusion, to demonstrate the existence of a semi-symmetric type non-metric connection
on a Lorentzian manifold, we build a non-trivial example. Lastly, we discuss certain
applications of such space-time admitting Ricci solitons and generalized Ricci solitons.

Keywords: semi-symmetric non-metric connection, Lorentzian manifolds, perfect fluid
space-times, twisted space-times, Ricci soliton.
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1. Introduction

Lorentzian Geometry has appeared as a geometric theory in which general relativity
(GR) can be mathematically established. It has been a fascinating topic of research with
a significant role in differential geometry and GR for decades. This field involves various
mathematical techniques like geometric analysis, functional analysis, Lie algebras and Lie
groups. Therefore, any study concentred on it greatly interests many mathematicians.

The novel idea of a semi-symmetric metric connection (SSMC) on a smooth manifold
was initiated by Friedmann and Schouten in [22]. A linear connection V on a Lorentzian
manifold M of dimension n is referred to as a semi-symmetric connection when it possesses
non-zero torsion and fulfills

#h k h
Tij = 6;w; — 65w, (1)
where w; being a 1—form named the associated vector of the connection.
If Vigi; = 0, it is established that the connection satisfying the semi-symmetric

condition is identified as a SSMC; otherwise, it is classified as non-metric. Yano and Hayden
made advancements in this idea and achieved many intriguing outcomes in the realm of
Riemannian manifolds [17, 29]. Subsequently, the characteristics of the curvature tensor of
a SSMC in a Sasakian manifold were also examined by [20, 21]. Z. Nakao [26] conducted
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research on the Gauss curvature equation and the Codazzi-Mainardi equation, focusing on
a SSMC on both a Riemannian manifold and a submanifold. We may bring up Zengin
et al.’s work in this regard [30, 31]. Gozutok and Esin [18] introduced the concept of
investigating the tangent bundle of a hypersurface using SSMC. Demirbag, in [12], examined
the characteristics of a weakly Ricci-symmetric manifold that possesses a SSMC. This idea
further studied in [4, 15, 32].

After a considerable period of time, the examination of a SSMC V that satisfies
Vi gi; # 0 was initiated by Prvanovic [28] and referred to as a pseudo-metric semi-symmetric
connection. Shortly thereafter, Andorie continued this line of study [3]. In 1992, Agashe and
Chafle in [1] introduced the concept of a semi-symmetric non-metric connection (SSNMC).
This concept was subsequently advanced by multiple authors [2, 14, 16, 27].

SSNMC is defined as

TI}; = 5?(4.13‘ — 5;%%-, (2)

Gijk = —WjGik — WiJjks (3)
where w; is the associated vector of the SSNMC.
Let K Z . and R?j i, indicate the curvature tensor of SSNMC and the Livi-Civita connec-

tion respectively. Also, R;; and R;; stand for the Ricci tensor of SSNMC and the Livi-Civita
connection respectively. Then [1]

thjk = thjk + Ot,‘k(s;l - Oz,‘jéz,
aij = Viwj - wiwj = @iwj, (4)
Rij = Rij—(n—1)ay, (5)
R = R-—(n—1)q,

where trace(a;;) = a, R and R denote the scalar curvature of SSNMC and the manifold M,
respectively.
Without the cosmological term, Einstein’s field Equation is expressed as [25]:
R
595 = K13, (6)
where  represents the gravitational constant and T;; is the energy-momentum tensor(EMT).
Space-time is a Lorentzian manifold equipped with a globally time-like vector, pro-
viding the framework for the recent physical world’s model. The EMT for a perfect fluid
space-time (PFS) has the subsequent structure [25]:

Tij = (p+ o) wiw; + pgij, (7)

with p and o being the isotropic pressure and the energy-density, respectively.
The Ricci tensor of PFS has the following shape [10]:

R;; = ag;j + bw;wy, (8)

in which a and b are scalars.

Using the earlier equations, we determine
K

a:—§(p—0) and b=k(p+ o). (9)
If the relations p = 0, p = o0, 3p = o and p + ¢ = 0 hold, then the PF space-time
is called as the dust matter, stiff matter, radiation era and dark matter era (DME) of
the Universe [8], respectively. It also covers the phantom era in which £ < —1. The
quintessence is a speculative kind of dark energy, or more precisely, a scalar field, that
physicists have suggested as a potential explanation for the universe’s observed accelerating
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speed of expansion. Additionally, when —1 < £ < 0, the quintessence phase is included in
dark energy.

Existence of a unit time-like and torse-forming vector, among other restrictions,
characterize Robertson-Walker (RW) space-times as well as generalized Robertson-Walker
(GRW) space-time [23]. They demonstrate that the presence of a single, distinct vector may
still define Twisted manifolds without any additional restrictions. Due to their inclusion of
a scale function which is both space and time dependent, twisted manifolds generalize RW
and GRW space-times.

Twisted space-times are defined for this purpose. Compared to warped space-times,
which allows periodic changes to the world, twisted space-times are far more general. Chen
[9] first proposed the concept of twisted space-time and described as a Lorentzian manifold
M™ with the metric (in local form)

ds? = gjpdzid2" = —(dt)? + ¢2(z7t)g;kdzjdzk, (10)

where ¢g* denotes the metric tensor of an (n-1) dimensional Riemannian manifold. The twisted
space-time becomes the GRW space-time if ¢ is solely a function of t.

The general outline of the research is as follows:

We produce the concepts of SSNMC in Introduction Section. In Section 2 we demon-
strate tha main results of our paper. Last Section establishes the existence of a SSNMC on
a Lorentzian manifold.

2. SSNMC on a Lorentzian manifold

This part presents important findings regarding a Lorentzian manifold that possesses
a SSNMC.

Theorem 2.1. If a space-time allows a SSNMC whose Ricci tensor vanishes, then the
integral curves of the associated vector w; are geodesic.

Proof. Suppose M* admits a SSNMC whose Ricci tensor vanishes. Then from equation (5)
we get

Rij = 3C¥ij. (11)
Since R;; is symmetric, therefore the previous equations implies that
aij = aji~
Consequently,
Viw]‘ = iji,

that is, the associated vector w; is irrotational.
Multiplying with w?, it arises

wi (iji) = wi (Viwj) = O7
which indicates that the integral curves of the vector w; are geodesic. O

Theorem 2.2. If a PFS admits a SSNMC whose Ricci tensor vanishes, then the state
equation is given by

6
3p+o=—.
K
Proof. In virtue of Egs. (6) and (7), one may get

R
Rij — 59 = [(p + 0) wiw; + pgij) - (12)
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Multiplying with w’, one finds

ijij = |:§ - HO':| Wi . (13)
Assume that M* admits a SSNMC whose Ricci tensor vanishes. Thus, Eq. (4) implies

Rij =3 [Viwj — wiwj] .

Contracting with w’, we acquire that

ijij == 3wi. (14)
Thus Eqgs. (13) and (14) together give
R
ko = — —3. (15)
2
Multiplying Eq. (12) by g%, we infer
R = ko — 3kp. (16)
Using Eq. (15) in Eq. (16), one sees that
R
Kp=—"— 1. (17)

The combination of Egs. (15) and (17) leads to

6
3p+o=-—.
K
O

Theorem 2.3. If a PFS admits a SSNMC whose Ricci tensor vanishes and the associated
vector w; s parallel, then the space-time is vacuum. Consequently, the semi-symmetry and
Weyl semi-symmetry are equivalent.

Proof. Let the associated vector w; be parallel with respect to SSNMC. Then

Viw; = 0. (18)
Consequently, we find
Viwj = WiWj. (19)
Hence, we have
Rij =0.

This indicates that the space-time is vacuum.

Minkowski space-time, which illustrates empty space without a cosmological constant,
is a prominent example of a vacuum space-time. In order to describe an empty cosmos with
no curvature, E. A. Milne created the Milne model.

In a vacuum space-time R?jk = Cf”jk in some region of the space-time. This implies
that semi-symmetry and Weyl semi-symmetry are equivalent is such a space-time. O

In [23] it is established that M represents a twisted space-time iff it allows a time-like
and unit torse-forming vector, that is, V ur = ¢{g;r +ujur} and ujuj = —1. In this article,
we prove:

Theorem 2.4. If a twisted space-time admits a SSNMC whose Ricci tensor vanishes, then
the space-time becomes a PFS.
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Proof. Consider w; is a torse-forming vector with respect to SSNMC, that is,
Viwj = @ (gjk + wiw;) , (20)
where ¢ is a scalar.
In view of Eq. (4), we deduce
Viw; = @gjk + (¢ + 1) wiw;. (21)
Hence using (11) we infer
Rij = 3o,
= 3[Viw; —wiw;],
= 3¢lgij +wiw]. (22)
This equation represents PFS. (]

Comparing Eqs. (8) and (22), we obtain

Hence, we state:

Corollary 2.1. A twisted space-time admittting a SSNMC whose Ricci tensor vanishes,

represents quintessence phase.

Theorem 2.5. If a space-time admits a SSNMC whose Ricci tensor vanishes and the torsion

tensor is pseudo symmetric, then the space-time is a perfect fluid space-time.

Proof. Assume that the torsion tensor 7' of SSNMC V is pseudo symmetric in the sense of

Chaki [7]. Then
VTl = 20, T) + b T} + b;Th + b"Thij,
where Ty;; = gllcﬂlj.
From (2) it follows that
T,’}j = Jw;.
In view of Eq. (2), one finds
Thij = guwj — gjiwi.
Eq. (23) leads to
VT = 20k T3 + b Tl + by Ty, + 0" Ty
Now, we get
W'y = " (graw; — gjawn)

bew; — f gk,

where f = b wy,.
Utilizing Eqgs. (24) and (27) in Eq. (26), it can be conclude that

3Viwj = 8bgw; — 2f gk + 3bjwg.
Using Eq. (4), we deduce
3Viw; = 8bgw;j — 2fgjx + 3bjwi + 3wjwy.
Let us assume that the Ricci tensor vanishes with respect to SSNMC. Consequently,
Viw; = Vjw.

Therefore, Eq. (28) implies that
bkwj = bjwk.

(23)

(24)
(25)

(26)

(28)
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Multiplying with w’, we obtain

bk = —fwk.
Thus Eq. (28) becomes
11f 2f
Viw; = <1 - 3) WhWj = k-
Since Rij =0, thus
Rij = Viwj — WiWwy
—11 2
= waiwj - gfgz‘j’ (29)
this means that the space-time is PFS. ]
Comparing Egs. (8) and (29), we obtain
7f 5f
=——ando=—-—". 30
b 6K anda 2K (30)

Therefore, we state:

Corollary 2.2. In a space-time admitting a SSNMC whose Ricci tensor vanishes and the
torsion tensor is pseudo symmetric, then p and o are given by (30).

Remark 2.1. From Eq. (30), we can say that for this space-time the state equation is

demonstrated by £ = % = constant.

Remark 2.2. Since p and o are not constants, the current result is consistent with the
current state of the Cosmos.

3. Example of semisymmetric non-metric connection

Let
M={y', i=1,2,3,4and y* # 0}
denote a semi-Riemannian manifold of dimension 4, (yl, v2, 92, y4) is the standard coordi-

nates of a point in R*.

4 y4

Let v, = e%a%l, vy = e%aiy,,, vy = 6%8%3, vy = e%ﬁf‘;; be the linearly
independent vectors on M and they form a basis. Also, let vy be the unite time-like vector
in M.

The Lorentzian metric is

0
B 0
9= 1

[ e
o O = O
o O O

0 -1
Thus, M endowed with g may be described as a 4-dimensional Lorentzian manifold. Then
the Lie brackets are given by

v, ifj=4andi=1,2,3
[vi,v;]=4 —3v; ifi=4andj=1,2,3 . (31)
0 otherwise
Using the foregoing Lie bracket and Koozul’s formula for Livi-Civita connection V, we obtain
svg fori,j=1,2,3
Vyvj =4 v, ifj=4andi=1,23 . (32)
0 otherwise
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The non-vanishing components of the curvature tensor are given by

R(vi, 2o = 7 R (v1,v3) 01 = U R(vi,v4)v1 = T
1 —1 -1
R(vi,v2)ve = 1 R (vz,v3) v2 = R R (v2,04) v2 = RS
1 1 -1
R(vi,v3)vs = Zvl, R (vg,v3) v3 = ZUQ, R (vs,v4) v3 = TU4’
R(vi,va)va = 7 R (v3,v4) va = RS R (va,v4) vg = vz

The rest of the component of curvature tensor may be deduced from the symmetric property
of the curvature tensor. From the previous expression of the curvature tensors we acquire
the non-vanishing component of the Ricci tensor

3
R('Ul,’l]l) = R('UQ,UQ) = R(U37v3) = _R('U4,’U4) =7

1
and the scalar curvature
R =3.
Then from the equation
Vaoy = Vay +w (y) z, (33)

where w is a one-form, it follows from Eq. (32) and Eq. (33) that
Vo,

i

v = Vyivj + VUi

From the above we conclude that
Vvi Uy 75 0.

Hence, the linear connection is non-metric on M*?.

4. Applications to Ricci Solitons and Generalized Ricci Solitons

In this section we investigate Ricci solitons and generalized Ricci solitons using the
connection V.

The concept of Ricci flow was defined by Hamilton [19] as a way to derive a canonical
metric on a differentiable manifold. If the manifold fulfills the evolution equation % gik(t) =
—2Rj, then this is called a Ricci flow equation. Also, Triplet (g,w, A) is the Ricci soliton,
where g is a semi-Riemannian metric, w is a smooth vector (also known as the potential
vector), and A\ is a constant that corresponds to

fngk + QRjk — 2/\gjk =0, (34)
in which the Lie derivative of g along a vector w is written as £,¢. The soliton mentioned
above is an Einstein metric if w is zero or Killing. Depending on whether \ is positive,
zero, or negative, the Ricci soliton is referred to as shrinking, steady, or expanding. In
contemporary physics, metrics that fulfil (34) are quite useful. In the context of string
theory, theoretical physicists have been examining the Ricci soliton condition. A number of
intriguing results about Ricci solitons have been examined in [6, 11, 13].

We know that

.fngk = ijk + kaj. (35)

Using Eq. (4), we acquire
Logik = Vjwk + View; + 2wjwg. (36)
Egs. (34) and (36) jointly reveal
V,wi + Viw; + 2R — 2Agjk + 2wjwy, = 0. (37)
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Multiplying Eq. (37) with w/w* and using the relation w’(V wy) = wy, we infer
Rjpw’w® = -\ (38)
Suppose the space-time admits a SSNMC whose Ricci tensor vanishes. Then using
(5), we provide
3ajpwiwh = <. (39)
Then using Eq. (4) and the relation w’(V;wy) = 0, we acquire

A=3. (40)

Theorem 4.1. If a space-time with a SSNMC whose Ricci tensor vanishes allows a Ricci
soliton, then this Ricci soliton is shrinking.

Now we examine a generalized Ricci soliton (GRS), which is defined as a semi-
Riemannian manifold that admits a vector field u that is differentiable and fulfilling

Lugjr + 20nwjwy, + 281 Rji — 2Agj, = 0, (41)

where a1, 51 € R.

GRS equations are the equations described in (41). In particular, Killing’s equation
is represented in (41), if oy = 81 = A =0. If oy = 51 =0 and A # 0, then the homothetic
equation is shown. In this case, the Ricci solitons are represented when a; = 0, 1 = —1

and A # 0. Moreover, the Einstein-Weyl scenario is represented if oy =1, f; = —ﬁ and

A =0. Finally, oy = 1, 1 = % and A # 0 relate to the vacuum near-horizon geometry
equation.
Using Eq. (36) in Eq. (41), we obtain

Vwi + Viw; + 2wjwg, + 201wjwi + 261 Rk — 2Agjk = 0, (42)
Multiplying Eq. (42) with w/w® and using the relation w’ (V;wy) = wy, we provide
A= a1 — 361 (43)

Theorem 4.2. If a space-time with a SSNMC whose Ricci tensor vanishes allows a GRS,
then this GRS is expanding for cy < 3031; steady if oy = 351; shrinking for ay > 301.

Assume that a GRS is admitted in a twisted space-time with an SSRMC. After that,
we can take

Viwj = @ (gjk + wiw;) - (44)
Now using Eq. (44) in Eq. (41), we infer
1
Ry = E{()‘ —)gix — (a1 + ¢ + Dwjwi }, (45)
this means that the space-time is a PFS.

Theorem 4.3. If a twisted space-time with a SSNMC whose Ricci tensor vanishes allows a
GRS, then it becomes a PFS.
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